1
|
Bai Q, Sheng Z, Liu Y, Zhang R, Yong VW, Xue M. Intracerebral haemorrhage: from clinical settings to animal models. Stroke Vasc Neurol 2020; 5:388-395. [PMID: 33376200 PMCID: PMC7804065 DOI: 10.1136/svn-2020-000334] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 12/13/2022] Open
Abstract
Spontaneous intracerebral haemorrhage (ICH) is a devastating type of stroke with high mortality and morbidity and for which no effective treatments are available to date. Much experimental and clinical research have been performed to explore its mechanisms regard the subsequent inflammatory cascade and to seek the potential therapeutic strategies. The aim of this review is to discuss insights from clinical settings that have led to the development of numerous animal models of ICH. Some of the current and future challenges for clinicians to understand ICH are also surveyed.
Collapse
Affiliation(s)
- Qian Bai
- The Departments of Cerebrovascular Diseases; Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhaofu Sheng
- The Departments of Cerebrovascular Diseases; Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Liu
- The Departments of Cerebrovascular Diseases; Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruiyi Zhang
- The Departments of Cerebrovascular Diseases; Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Voon Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Mengzhou Xue
- The Departments of Cerebrovascular Diseases; Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
López-Morales MA, Castelló-Ruiz M, Burguete MC, Jover-Mengual T, Aliena-Valero A, Centeno JM, Alborch E, Salom JB, Torregrosa G, Miranda FJ. Molecular mechanisms underlying the neuroprotective role of atrial natriuretic peptide in experimental acute ischemic stroke. Mol Cell Endocrinol 2018; 472:1-9. [PMID: 29842904 DOI: 10.1016/j.mce.2018.05.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 05/04/2018] [Accepted: 05/24/2018] [Indexed: 10/16/2022]
Abstract
Along with its role in regulating blood pressure and fluid homeostasis, the natriuretic peptide system could be also part of an endogenous protective mechanism against brain damage. We aimed to assess the possibility that exogenous atrial natriuretic peptide (ANP) could protect against acute ischemic stroke, as well as the molecular mechanisms involved. Three groups of rats subjected to transient middle cerebral artery occlusion (tMCAO, intraluminal filament technique, 60 min) received intracerebroventricular vehicle, low-dose ANP (0.5 nmol) or high-dose ANP (2.5 nmol), at 30 min reperfusion. Neurofunctional condition, and brain infarct and edema volumes were measured at 24 h after tMCAO. Apoptotic cell death and expression of natriuretic peptide receptors (NPR-A and NPR-C), K+ channels (KATP, KV and BKCa), and PI3K/Akt and MAPK/ERK1/2 signaling pathways were analyzed. Significant improvement in neurofunctional status, associated to reduction in infarct and edema volumes, was shown in the high-dose ANP group. As to the molecular mechanisms analyzed, high-dose ANP: 1) reduced caspase-3-mediated apoptosis; 2) did not modify the expression of NPR-A and NPR-C, which had been downregulated by the ischemic insult; 3) induced a significant reversion of ischemia-downregulated KATP channel expression; and 4) induced a significant reversion of ischemia-upregulated pERK2/ERK2 expression ratio. In conclusion, ANP exerts a significant protective role in terms of both improvement of neurofunctional status and reduction in infarct volume. Modulation of ANP on some molecular mechanisms involved in ischemia-induced apoptotic cell death (KATP channels and MAPK/ERK1/2 signaling pathway) could account, at least in part, for its beneficial effect. Therefore, ANP should be considered as a potential adjunctive neuroprotective agent improving stroke outcome after successful reperfusion interventions.
Collapse
Affiliation(s)
- Mikahela A López-Morales
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - María Castelló-Ruiz
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Hospital Universitari i Politècnic La Fe, Valencia, Spain; Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Departamento de Fisiología, Universidad de Valencia, Valencia, Spain
| | - María C Burguete
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Departamento de Fisiología, Universidad de Valencia, Valencia, Spain
| | - Teresa Jover-Mengual
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Departamento de Fisiología, Universidad de Valencia, Valencia, Spain
| | - Alicia Aliena-Valero
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - José M Centeno
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Departamento de Fisiología, Universidad de Valencia, Valencia, Spain
| | - Enrique Alborch
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Departamento de Fisiología, Universidad de Valencia, Valencia, Spain
| | - Juan B Salom
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Hospital Universitari i Politècnic La Fe, Valencia, Spain; Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Departamento de Fisiología, Universidad de Valencia, Valencia, Spain
| | - Germán Torregrosa
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Hospital Universitari i Politècnic La Fe, Valencia, Spain; Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Departamento de Fisiología, Universidad de Valencia, Valencia, Spain.
| | - Francisco J Miranda
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Departamento de Fisiología, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
3
|
Vibhuti, Khan R, Sharma A, Jain S, Mohanty S, Prasad K. Intra-arterial transplantation of human bone marrow mesenchymal stem cells (hBMMSCs) improves behavioral deficits and alters gene expression in rodent stroke model. J Neurochem 2017; 143:722-735. [PMID: 29049855 DOI: 10.1111/jnc.14241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 09/29/2017] [Accepted: 10/11/2017] [Indexed: 12/17/2022]
Abstract
Stroke is a multi-factorial polygenic disease and is a major cause of death and adult disability. Administration of bone marrow stem cells protects ischemic rat brain by facilitating recovery of neurological functions. But the molecular mechanism of stem cells action and their effect on gene expression is not well explored. In this study, we have transplanted 1 × 106 human bone marrow mesenchymal stem cells (hBMMSCs) in middle cerebral artery occluded (MCAo) adult male Wistar rats through intracarotid artery route at 24 h after surgery. Motor behavioral tests (rotarod and open field) were performed to assess the changes in motor functions at day 0 and day1, 4, 8 and 14. The expression of studied genes at mRNA and protein level was quantified by using Q-PCR and western blotting, respectively. Further, we have assessed the methylation pattern of promoter of these genes by using methylation-specific PCR. Data were analyzed statistically and correlated. A significant improvement in behavioral deficits was observed in stem cells treated group after 14th day post stroke. Significantly (p < 0.05) increased mRNA and protein levels of brain derived neurotrophic factor and ANP genes in hBMMSCs treated group along with decrease in methylation level at their promoter was observed. On the other hand, significantly decreased mRNA and protein level of TSP1 and WNK1 in hBMMSCs treated group was observed. In conclusion, hBMMSCs administration significantly improves the behavioral deficits by improving motor and locomotor coordination. The promoter of TSP1 and WNK1 genes was found to be hyper-methylated in hBMMSCs group resulting in their decreased expression while the promoter of ANP and brain derived neurotrophic factor was found to be hypo-methylated. This study might shed a light on how hBMMSCs affect the gene expression by modulating methylation status.
Collapse
Affiliation(s)
- Vibhuti
- Department of Neurology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Rehan Khan
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Suman Jain
- Department of Physiology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Sujata Mohanty
- Stem Cell Facility, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Kameshwar Prasad
- Department of Neurology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
4
|
Azizkhani R, Keshavarz E. Investigation of changes in brain natriuretic peptide serum levels and its diagnostic value in patients with mild and moderate head trauma, in patients referred to emergency department of Alzahra Hospital, Isfahan, 2013-2014. Adv Biomed Res 2017; 5:191. [PMID: 28217629 PMCID: PMC5220685 DOI: 10.4103/2277-9175.190983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/22/2015] [Indexed: 11/05/2022] Open
Abstract
Background: Head trauma is one of the most common reasons for emergency department (ED) care. Over the past decade, initial management strategies in mild and moderate head trauma have become focused on selective computed tomography (CT) use based upon presence or absence of specific aspects of patient history and/or clinical examination which has received more attention following reports of increased cancer risk from CT scans. Recently changes in serum brain natriuretic peptide (BNP) levels following head trauma have been studied. We investigated the changes in serum levels of BNP in patients with mild and moderate head trauma, in whom the first brain CT scanning was normal. Materials and Methods: This study is a cross-sectional, descriptive research. It was performed in patients with mild and moderate head trauma. Forty-one patients with isolated mild and moderate traumatic brain injury (Glasgow Coma Scale = 9–15) were included. First brain CT scans were obtained during 2 h after ED arrival and the second one after 24 h. Plasma BNP levels were determined using a specific immunoassay system. Results: Twenty-three patients were in Group A (with normal first and second brain CT) and 18 patients in Group B (with normal first and abnormal second brain CT). With P = 0.001, serum BNP level = 9.04 was determined for differentiating two groups. Conclusion: We concluded that serum BNP level is higher in patients with mild and moderate head trauma with delayed pathologic changes in second brain CT relative to patients with mild and moderate head trauma and with normal delayed brain CT.
Collapse
Affiliation(s)
- Reza Azizkhani
- Department of Emergency Medicine, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Es'haq Keshavarz
- Department of Emergency Medicine, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Meyer T, Herrmann-Lingen C. Natriuretic Peptides in Anxiety and Panic Disorder. ANXIETY 2017; 103:131-145. [DOI: 10.1016/bs.vh.2016.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
6
|
Abstract
Ischemic brain edema, the accumulation of fluid within the brain parenchyma following stroke, is a predictable consequence of both ischemic and hemorrhagic strokes. Its development is the result of injury to both brain parenchyma and the blood vessels supplying the parenchyma. Ischemic stroke produces both cytotoxic (intracellular) edema, which develops when cells are damaged, and vasogenic (extracellular) edema, which arises from injury to structures essential to blood-brain barrier integrity. An understanding of the distinction between cytotoxic and vasogenic edema is essential in preventing secondary brain injury, since the treatments for the two entities differ. The development of new brain imaging technologies has advanced our understanding of brain edema. Both computed tomography (CT) and magnetic resonance imaging (MRI) can detect edema. Specific MRI sequences such as diffusion-weighted imaging can distinguish cytotoxic and vasogenic subtypes, and thereby detect ischemic cell injury within minutes of the onset of symptoms. Brain edema causes neurologic deterioration predominantly through its mass effect, which leads to distortion of the intracranial contents and impairment of both regional and global cerebral blood flow (CBF). Edema may also cause local tissue dysfunction. Management of the intracranial hypertension and tissue shifts caused by ischemic brain swelling is based on the fundamental relationship between pressure, flow, and resistance. Interventions are directed at preserving CBF and preventing secondary brain injury. Strategies include reducing intracranial blood volume with hypocapnia, reducing brain volume with osmotic agents, reducing cerebral metabolism with hypothermia and barbiturates, reducing resistance with rheologic agents, increasing blood pressure with vasoconstrictors, and expanding the cranial vault with decompressive surgery. All individual therapies must be used as part of a structured approach that involves frequent serial neurologic assessments, quantitative measures of pressure, flow, and resistance, and prespecified protocols for intervention.
Collapse
Affiliation(s)
- Jonathan Rosand
- Stroke Service, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Lee H. Schwamm
- Stroke Service, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA.
| |
Collapse
|
7
|
Mittal MK, LacKamp A. Intracerebral Hemorrhage: Perihemorrhagic Edema and Secondary Hematoma Expansion: From Bench Work to Ongoing Controversies. Front Neurol 2016; 7:210. [PMID: 27917153 PMCID: PMC5116572 DOI: 10.3389/fneur.2016.00210] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/08/2016] [Indexed: 12/30/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a medical emergency, which often leads to severe disability and death. ICH-related poor outcomes are due to primary injury causing structural damage and mass effect and secondary injury in the perihemorrhagic region over several days to weeks. Secondary injury after ICH can be due to hematoma expansion (HE) or a consequence of repair pathway along the continuum of neuroinflammation, neuronal death, and perihemorrhagic edema (PHE). This review article is focused on PHE and HE and will cover the animal studies, related human studies, and clinical trials relating to these mechanisms of secondary brain injury in ICH patients.
Collapse
Affiliation(s)
- Manoj K Mittal
- Department of Neurology, University of Kansas Medical Center , Kansas City, KS , USA
| | - Aaron LacKamp
- Department of Anesthesiology, University of Kansas Medical Center , Kansas City, KS , USA
| |
Collapse
|
8
|
Urodilatin reverses the detrimental influence of bradykinin in acute ischemic stroke. Exp Neurol 2016; 284:1-10. [DOI: 10.1016/j.expneurol.2016.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 06/15/2016] [Accepted: 07/14/2016] [Indexed: 02/03/2023]
|
9
|
Mahinrad S, de Craen AJM, Yasar S, van Heemst D, Sabayan B. Natriuretic peptides in the central nervous system: Novel targets for cognitive impairment. Neurosci Biobehav Rev 2016; 68:148-156. [PMID: 27229760 DOI: 10.1016/j.neubiorev.2016.05.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 04/22/2016] [Accepted: 05/22/2016] [Indexed: 02/06/2023]
Abstract
Natriuretic peptides (NPs) are traditionally known as cardiac hormones with diuretic, natriuretic and blood pressure lowering properties. Evidence indicates that NPs and their receptors are abundant in the central nervous system, suggesting their involvement in regulation of various brain functions. It has been shown that NPs are involved in the regulation of neurovascular and blood-brain barrier integrity, neuro-inflammation, neuroprotection, synaptic transmission and brain fluid homeostasis. In addition, NPs might contribute to the brain's inhibitory control over the hypothalamic-pituitary-adrenal axis. Studies have also shown that high systemic levels of NPs are associated with cognitive impairment independent of cardiovascular risk factors. In this review we discuss the potential roles of NPs in regulating structural and functional integrity of the brain. Based on the available neurobiological and clinical evidence, we propose that NPs might represent as potential novel diagnostic and therapeutic targets for cognitive impairment.
Collapse
Affiliation(s)
- Simin Mahinrad
- Department of Gerontology and Geriatrics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, the Netherlands.
| | - Anton J M de Craen
- Department of Gerontology and Geriatrics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, the Netherlands.
| | - Sevil Yasar
- Department of Medicine, Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, 5200 Eastern Avenue, MFL Center tower, Baltimore, MD 21224, United States.
| | - Diana van Heemst
- Department of Gerontology and Geriatrics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, the Netherlands.
| | - Behnam Sabayan
- Department of Gerontology and Geriatrics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, the Netherlands; Department of Radiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, the Netherlands.
| |
Collapse
|
10
|
Kajdácsi E, Varga L, Prohászka Z, Farkas H, Cervenak L. Atrial natriuretic peptide as a novel biomarker of hereditary angioedema. Clin Immunol 2016; 165:45-6. [PMID: 26960949 DOI: 10.1016/j.clim.2016.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 10/22/2022]
Affiliation(s)
- Erika Kajdácsi
- 3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary.
| | - Lilian Varga
- 3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltán Prohászka
- 3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Henriette Farkas
- 3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - László Cervenak
- 3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
11
|
Ruggieri F, Noris A, Beretta L, Mortini P, Gemma M. Serum B-Type Natriuretic Peptide is Affected by Neoplastic Edema in Patients with a Brain Tumor. World Neurosurg 2016; 85:193-6. [DOI: 10.1016/j.wneu.2015.08.074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 08/23/2015] [Accepted: 08/24/2015] [Indexed: 10/23/2022]
|
12
|
Neuronal tumour necrosis factor-α and interleukin-1β expression in a porcine model of intracerebral haemorrhage: Modulation by U-74389G. Brain Res 2015; 1615:98-105. [PMID: 25916578 DOI: 10.1016/j.brainres.2015.04.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 04/06/2015] [Accepted: 04/17/2015] [Indexed: 12/11/2022]
Abstract
Tumour necrosis factor α (TNF-α) and interleukin 1β (IL-1β) are important mediators of intracerebral haemorrhage (ICH) inflammatory response. Lazaroids, established antioxidants and neuroprotectants, have been studied in several brain pathologies. The present study was designed to investigate: a) TNF-α and IL-1β changes, in neurons and b) U-74389G effects, 4 and 24h after haematoma induction in a porcine model of intracerebral haemorrhage. In twenty male landrace pigs (swines) aged 135-150 days old, autologous whole blood was injected around the right basal ganglia territory; in ten of the pigs the lazaroid compound U-74389G was administered. Brain TNF-α and IL-1β immunopositive neurons were determined by immunoarray techniques at 4 and 24h timepoints. After the haematoma induction the number of TNF-α immunopositive neurons ipsilateral to the haematoma was significantly higher compared to the contralateral site at 4h (p<0.0005), while U-74389G significantly reduced the number of TNF-α immunopositive neurons, ipsilateral to the haematoma, at 4h (p=0.002); at 24h, TNF-α immunopositive neurons were found significantly lower in the control group ipsilateral to the haematoma in comparison to 4h timepoint(p<0.0005). The number of IL-1β immunopositive neurons at 4h after the hematoma induction was significantly higher ipsilateral to the haematoma site (p<0.0005). U-74389G had no statistical significant effect. TNF-α and IL-1β, increase in neurons, 4h after the haematoma induction, ipsilateral to the haematoma site. The administration of the antioxidant compound U-74389G, results in early (at 4h) decrease of TNF-α immunopositive neurons but shows no statistical significant effect to IL-1β immunopossitive neurons.
Collapse
|
13
|
Hodes A, Lichtstein D. Natriuretic hormones in brain function. Front Endocrinol (Lausanne) 2014; 5:201. [PMID: 25506340 PMCID: PMC4246887 DOI: 10.3389/fendo.2014.00201] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/12/2014] [Indexed: 01/11/2023] Open
Abstract
Natriuretic hormones (NH) include three groups of compounds: the natriuretic peptides (ANP, BNP and CNP), the gastrointestinal peptides (guanylin and uroguanylin), and endogenous cardiac steroids. These substances induce the kidney to excrete sodium and therefore participate in the regulation of sodium and water homeostasis, blood volume, and blood pressure (BP). In addition to their peripheral functions, these hormones act as neurotransmitters or neuromodulators in the brain. In this review, the established information on the biosynthesis, release and function of NH is discussed, with particular focus on their role in brain function. The available literature on the expression patterns of each of the NH and their receptors in the brain is summarized, followed by the evidence for their roles in modulating brain function. Although numerous open questions exist regarding this issue, the available data support the notion that NH participate in the central regulation of BP, neuroprotection, satiety, and various psychiatric conditions, including anxiety, addiction, and depressive disorders. In addition, the interactions between the different NH in the periphery and the brain are discussed.
Collapse
Affiliation(s)
- Anastasia Hodes
- Faculty of Medicine, Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Lichtstein
- Faculty of Medicine, Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
14
|
Dobrivojević M, Sinđić A, Edemir B, Kalweit S, Forssmann WG, Hirsch JR. Interaction between bradykinin and natriuretic peptides via RGS protein activation in HEK-293 cells. Am J Physiol Cell Physiol 2012; 303:C1260-8. [PMID: 23054060 DOI: 10.1152/ajpcell.00033.2012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, the interaction of natriuretic peptides (NP) and bradykinin (BK) signaling pathways was identified by measuring membrane potential (V(m)) and intracellular Ca(2+) using the patch-clamp technique and flow cytometry in HEK-293 cells. BK and NP receptor mRNA was identified using RT-PCR. BK (100 nM) depolarized cells activating bradykinin receptor type 2 (B(2)R) and Ca(2+)-dependent Cl(-) channels inhibitable by 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB; 10 μM). The BK-induced Ca(2+) signal was blocked by the B(2)R inhibitor HOE 140. [Des-Arg(9)]-bradykinin, an activator of B(1)R, had no effect on intracellular Ca(2+). NP [atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), C-type natriuretic peptide (CNP), and urodilatin] depolarized HEK-293 cells inhibiting K(+) channels. ANP, urodilatin, BNP [binding to natriuretic peptide receptor (NPR)-A] and 8-bromo-(8-Br)-cGMP inhibited the BK-induced depolarization while CNP (binding to NPR-Bi) failed to do so. The inhibitory effect on BK-triggered depolarization could be reversed by blocking PKG using the specific inhibitor KT 5823. BK-stimulated depolarization as well as Ca(2+) signaling was completely blocked by the phospholipase C (PLC) inhibitor U-73122 (10 nM). The inositol 1,4,5-trisphosphate receptor blocker 2-aminoethoxydiphenyl borate (2-APB; 50 μM) completely inhibited the BK-induced Ca(2+) signaling. UTP, another activator of the PLC-mediated Ca(2+) signaling pathway, was blocked by U-73122 as well but not by 8-Br-cGMP, indicating an intermediate regulatory step for NP via PKG in BK signaling such as regulators of G-protein signaling (RGS) proteins. When RGS proteins were inhibited by CCG-63802 in the presence of BK and 8-Br-cGMP, cells started to depolarize again. In conclusion, as natural antagonists of the B(2)R signaling pathway, NP may also positively interact in pathological conditions caused by BK.
Collapse
Affiliation(s)
- Marina Dobrivojević
- Department of Physiology, School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia
| | | | | | | | | | | |
Collapse
|
15
|
Kleindienst A, Brabant G, Morgenthaler NG, Emtmann I, Scheufler N, Buchfelder M. The atrial natriuretic peptide does not serve osmoregulation but predicts outcome following brain injury. ACTA NEUROCHIRURGICA. SUPPLEMENT 2012; 114:277-281. [PMID: 22327708 DOI: 10.1007/978-3-7091-0956-4_54] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Atrial natriuretic peptide (ANP) plays an important role in body fluid homeostasis. ANP has been established as a marker of cardiac dysfunction and may play a role in brain edema development after traumatic brain injury (TBI). In order to identify its specific assignment following TBI, we related clinical data and treatment variables in 63 patients to longitudinal midregional (MR) proatrail natriuretic peptide (ANP) measurements. ANP correlated significantly to age (p < 0.0001) and vasopressin release (p < 0.001). Following TBI, ANP was increased initially and on day 3 (cut-off 100 pg/L) in 22% of the patients, in 31% on day 7, and was normalized at follow-up examination. The group comparison revealed that ANP levels did not significantly differ with regard to injury severity, but that high ANP levels predicted a worse Glasgow Outcome Score at 6 months (p < 0.05). While the initially intact osmoregulation - a correlation of urine volume and high serum sodium (r = 0.536, p = 0.003) or low urine osmolality (r = -0.556, p = 0.009) - got lost post-injury, the ANP release was triggered by volume load (p < 0.005). High ANP levels correlated with the neuroendocrine stress response, i.e., high cortisol (p = 0.05) and prolactin (p < 0.001) levels. We conclude that MR-proANP measurements reveal a significant predictive function for the prognosis of TBI.
Collapse
Affiliation(s)
- Andrea Kleindienst
- Department of Neurosurgery, University of Erlangen-Nuremberg, Erlangen, Germany.
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
AbstractNatriuretic peptides (NPs) regulate salt and water homeostasis by inducing natriuresis and diuresis in the kidney. These actions in addition to those via the heart and vascular system play important roles in the regulation of blood pressure. In the central nervous system NPs play a significant role in neuronal development, synaptic transmission and neuroprotection. Currently, six different human NPs have been described: atrial natriuretic peptide (ANP), urodilatin (URO, renal natriuretic peptide), brain natriuretic peptide (BNP), and C-type natriuretic peptide (CNP) as well as guanylin and uroguanylin. ANP, URO and BNP activate the natriuretic peptide receptor A (NPR-A or guanylate cyclase A (GC-A)) while CNP activates natriuretic peptide receptor B (NPR-B or guanylate cyclase B (GC-B)). Guanylin and uroguanylin are known to activate guanylate cyclase C (GC-C). The receptors GC-A, GC-B, and GC-C are widely expressed in the human body. Currently, GC-B and CNP seems to have the highest expression in central nervous system compared to other NPs and their receptors. All known NPs generate intracellular cyclic GMP (cGMP) by activating their specific guanylate cyclase receptors. Subsequently, cGMP is able to activate protein kinase I or II (PKG I or II) and/or directly regulate transmembrane proteins such as ion channels, transporters and pumps. NPs also bind to the natriuretic peptide receptor C (also called clearance receptor NPR-C) which is a major pathway for the degradation of NPs and has no guanylate cyclase activity. In this review we will focus on new insights regarding the physiological effects of NPs in the brain, especially specific areas of their signaling pathways in neurons and glial cells.
Collapse
|
17
|
Säljö A, Bolouri H, Mayorga M, Svensson B, Hamberger A. Low-level blast raises intracranial pressure and impairs cognitive function in rats: prophylaxis with processed cereal feed. J Neurotrauma 2010; 27:383-9. [PMID: 19852583 DOI: 10.1089/neu.2009.1053] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
There is increasing evidence that even low levels of blast cause brain injury, but little is known about their thresholds and mechanisms. Exposure of rats to 10-60 kPa blasts elevate intracranial pressure (ICP) in a dose-dependent manner and impair cognitive function. We have evaluated a prophylactic measure against these brain injuries in a rat animal model, consisting of feeding them processed cereal. This type of feed is known to ameliorate disturbances in secretion of body fluids and to have anti-inflammatory effects. In humans, intake of processed cereals is effective against intestinal diarrhea and also reduces the symptoms of Ménière's disease. Rats were given either standard laboratory feed or processed cereal feed for 2 weeks before exposure to blast in a shock tube. The ICP was monitored at different time points up to 1 week after exposure to a 60-kPa blast, and for up to 24 h after exposure to a 30-kPa blast. Maximal ICP elevation was reached at 10 h in both groups. In the group of rats on standard feed exposed to 60 kPa, an ICP increase of 145% was noted at 10 h, and the corresponding increase in the rats fed processed cereal feed was only 50%. In rats exposed to a 30-kPa blast, those fed standard feed and processed cereal feed demonstrated increases of ICP of 80% and 40%, respectively. Cognitive function as measured by the Morris water maze was assessed in other groups of rats at 2 days after exposure to 10- or 30-kPa blasts. Their performance was significantly impaired at both exposure levels in rats on standard feed, but no functional impairment was seen in rats fed processed cereal feed.
Collapse
Affiliation(s)
- Annette Säljö
- Institute of Biomedicine, Department of Medical Chemistry and Cell Biology, Sahlgren Academy, University of Gothenburg, Gothenburg, SE 405 30 Sweden.
| | | | | | | | | |
Collapse
|
18
|
Prado J, Baltrons MA, Pifarré P, García A. Glial cells as sources and targets of natriuretic peptides. Neurochem Int 2010; 57:367-74. [PMID: 20302900 DOI: 10.1016/j.neuint.2010.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2010] [Accepted: 03/10/2010] [Indexed: 11/19/2022]
Abstract
Natriuretic peptides and their receptors are widely expressed in mammalian CNS and increasing evidence implicates them in the regulation of neural development, synaptic transmission and processing of information, and neuroprotection. Although the peptides have been mainly localized in neuronal populations they are also produced in glial cells. Astroglia and microglia also express functional natriuretic peptide receptors that can regulate important physiological responses. In this article we review evidence on the localization of natriuretic peptides and their receptors in astroglial and microglial cells and summarize data supporting the participation of this signalling system in neuron-glia and glia-brain blood vessel communication relevant to CNS function.
Collapse
Affiliation(s)
- Judith Prado
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | | | | | | |
Collapse
|
19
|
Modrego PJ, Boned B, Berlanga JJ, Serrano M. Plasmatic B-type natriuretic peptide and C-reactive protein in hyperacute stroke as markers of CT-evidence of brain edema. Int J Med Sci 2008; 5:18-23. [PMID: 18219371 PMCID: PMC2204043 DOI: 10.7150/ijms.5.18] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Accepted: 01/08/2008] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE Plasmatic B-type-natriuretic peptide (NT-PBNP) and C-reactive protein (CRP) have been reportedly elevated in stroke patients; however their clinical significance remains uncertain. The purpose of this work is to investigate whether elevation of these proteins at baseline predicts CT-evidence of brain edema. METHODS We recruited 41 consecutive patients with stroke and determined NT-PBNP and CRP at baseline (within 5 hours after onset), after 48-72 hours, and at discharge. Stroke severity was measured by means of the NIHS scale at baseline and at discharge. We also carried out brain CT at admittance and after 48 hours. RESULTS There were 29 ischemic strokes and 12 hemorrhagic strokes. Evidence of brain edema on delayed scan was seen in 14 patients. Baseline levels of NT-PBNP did not predict CT-evidence of edema but CRP levels did so significantly (0.7 mg/dl in patients without edema versus 4.7 mg in patients with edema; p=0.001). Both NT-PBNP and PC levels correlated poorly to NIHSS score and increased markedly from baseline to the second determination in patients with edema. For these patients the NT-PBNP increase was 133.6 pmol/l in comparison to 1.58 pmol/l in patients without edema (p=0.002). Neither CRP nor NT-PBNP baseline levels were predictive of dependency or death. CONCLUSIONS We conclude that CRP at baseline but not NT-PBNP predicts CT evidence of brain edema in stroke patients. We hypothesize that NT-PBNP levels elevated in response to edema after 48 hours of admission.
Collapse
Affiliation(s)
- Pedro J Modrego
- Dept of Neurology. Miguel Servet University Hospital. Zaragoza. Spain.
| | | | | | | |
Collapse
|
20
|
Sviri GE, Soustiel JF, Zaaroor M. Alteration in brain natriuretic peptide (BNP) plasma concentration following severe traumatic brain injury. Acta Neurochir (Wien) 2006; 148:529-33; discussion 533. [PMID: 16322908 DOI: 10.1007/s00701-005-0666-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Accepted: 10/06/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Brain natriuretic peptide (BNP) is a potent natriuretic and vasodilator factor which, by its systemic effects, can decrease cerebral blood flow (CBF). In aneurysmal subarchnoid hemorrhage (aSAH), BNP plasma concentrations were found to be associated with hyponatremia and were progressively elevated in patients who eventually developed delayed ischemic deficit secondary to vasospasm. The purpose of the present study was to evaluate trends in BNP plasma concentrations during the acute phase following severe (traumatic brain injury) TBI. METHODS BNP plasma concentration was evaluated in 30 patients with severe isolated head injury (GCS<8 on admission) in four time periods after the injury (period 1: days 1-2; period 2: days 4-5; period 3: days 7-8; period 4: days 10-11). All patients were monitored for ICP during the first week after the injury. FINDINGS The initial BNP plasma concentrations (42+/-36.9 pg/ml) were 7.3 fold (p<0.01) higher in TBI patients as compared to the control group (5.78+/-1.90 pg/ml). BNP plasma concentrations were progressively elevated through days 7-8 after the injury in patients with diffused SAH as compared to patients with mild or no SAH (p<0.001) and in patients with elevated ICP as compared to patients without elevated ICP (p<0.001). Furthermore, trends in BNP plasma concentrations were significantly and positively associated with poor outcome. INTERPRETATION BNP plasma concentrations are elevated shortly after head injury and are continuously elevated during the acute phase in patients with more extensive SAH and in those with elevated ICP, and correlate with poor outcomes. Further studies should be undertaken to evaluate the role of BNP in TBI pathophysiology.
Collapse
Affiliation(s)
- G E Sviri
- Department of Neurosurgery, Rambam (Maimonides) Medical Center, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | |
Collapse
|
21
|
Fukui S, Fazzina G, Amorini AM, Dunbar JG, Marmarou A. Differential effects of atrial natriuretic peptide on the brain water and sodium after experimental cortical contusion in the rat. J Cereb Blood Flow Metab 2003; 23:1212-8. [PMID: 14526231 DOI: 10.1097/01.wcb.0000088762.02615.30] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Atrial natriuretic peptide (ANP) plays an important role in the regulation of water and sodium in the body via cyclic GMP (cGMP) pathway. Although ANP has been shown to be protective in cerebral ischemia or intracerebral hemorrhage, its role in traumatic brain injury (TBI) has yet to be elucidated. We herein assessed ANP effects on brain water and sodium in TBI. Controlled cortical impact (3 mm depth, 6 m/sec) was used to induce an experimental cortical contusion in rats. Continuous administration of ANP 0.2 (n = 6) or 0.7 microg/kg/24 h (n = 6), cGMP analogue (8-Bromo-cGMP) 0.1 (n = 5) or 0.3 mg/kg/24 h (n = 5), or vehicle (n = 6) was begun 15 minutes after injury, using a mini-osmotic pump implanted into the peritoneal cavity. At 24 hours after injury, ANP significantly exacerbated brain edema in the injured hemisphere in a dose-dependent manner while it reduced brain sodium concentrations in both hemispheres. These ANP effects could be mimicked by a cGMP analogue. In the second series (n = 20), BBB integrity was assessed by evaluating the extravasation of Evans blue dye. ANP or cGMP analogue significantly worsened BBB disruption in the injured hemisphere at 24 hours after injury. These findings suggest that ANP administration exacerbates brain edema after the experimental cortical contusion in rats, possibly because of an increase in the BBB permeability via cGMP pathway, whereas it reduces brain sodium levels.
Collapse
Affiliation(s)
- Shinji Fukui
- Division of Neurosurgery, Medical College of Virginia, Virginia Commonwealth University, Richmond, 23298, USA
| | | | | | | | | |
Collapse
|
22
|
Thiex R, Küker W, Müller HD, Rohde I, Schröder JM, Gilsbach JM, Rohde V. The long-term effect of recombinant tissue-plasminogen-activator (rt-PA) on edema formation in a large-animal model of intracerebral hemorrhage. Neurol Res 2003; 25:254-62. [PMID: 12739233 DOI: 10.1179/016164103101201463] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Hematoma puncture, fibrinolysis, and aspiration of the liquefied clot is a promising new treatment strategy for large intracerebral hemorrhages (ICH). Characteristics of the cellular injury and neuronal and glial cell death associated with ICH and the administration of fibrinolytic agents still need to be defined. We developed a porcine model to study the histopathological effects of recombinant tissue-Plasminogen-Activator (rt-PA) on perihematomatous cell integrity. In 20 pigs, lobar hematomas were induced by intracranial pressure (ICP)-controlled injections of 7.6 +/- 1.6 ml of autologous blood into the white matter of the right frontal hemisphere. In nine animals, the clots were lysed with rt-PA, thereby facilitating aspiration 2 h after hematoma induction. In 11 control pigs, the hematoma resorption followed its natural course. The rate of hematoma reduction and edema formation over 10 days was evaluated on planimetry of the MRI data and correlated to the histopathological changes found at autopsy. Although rt-PA significantly accelerated clot resolution compared to controls (p < 0.02), the increase of perihematomatous edema volume within 10 days was not significantly ameliorated in rt-PA-treated animals compared to controls on MRI. The extent of inflammatory infiltrates on histology was more pronounced in animals treated with rt-PA. In conclusion, despite significant reduction in the size of the hematoma clot liquefication with rt-PA and aspiration invokes a substantial inflammatory response when studied after 10 days and does not result in a reduction of the perihematomatous edema.
Collapse
Affiliation(s)
- Ruth Thiex
- Department of Neurosurgery, Aachen University, Pauwelsstr. 30, 52057 Aachen, Germany.
| | | | | | | | | | | | | |
Collapse
|
23
|
Hamberger A, Stenhagen G. Erucamide as a modulator of water balance: new function of a fatty acid amide. Neurochem Res 2003; 28:177-85. [PMID: 12608692 DOI: 10.1023/a:1022364830421] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aim of this study was to isolate a compound from blood plasma that inhibits intestinal diarrhea and that appears also to regulate fluid volumes in other organs. The isolation procedure included lipid extraction, liquid chromatography, and gas chromatography. The active substance was identified by mass spectrometry as erucamide (MW 337 Da). The biological effect was reproduced with authentic erucamide. Erucamide is a fatty acid amide, such as oleamide and anandamide, which modulate other physiological functions in a receptor-mediated fashion. All the exact biological functions of erucamide are as yet to be defined, but it is already known to stimulate angiogenesis. Erucamide concentrations were determined in body organs from the pig. The blood plasma level was 3 ng/g, and those of lung, kidney, liver, and brain were 12, 2.5, 1.0, and 0.5 ng/g, respectively. Erucamide was below detection level in the intestine, but is known to be present in the cerebrospinal fluid. In the rat, 3H-erucamide was accumulated in vivo into lung, liver, and spleen and in vitro into lung, liver, brain, and intestine. The in vitro uptake was time and temperature dependent, but not saturable.
Collapse
Affiliation(s)
- Anders Hamberger
- Department of Anatomy and Cell Biology, University of Göteborg, Göteborg, Sweden.
| | | |
Collapse
|
24
|
Abstract
Hyponatremia in acute brain disease is a common occurrence, especially after an aneurysmal subarachnoid hemorrhage. Originally, excessive natriuresis, called cerebral salt wasting, and later the syndrome of inappropriate antidiuretic hormone secretion (SIADH), were considered to be the causes of hyponatremia. In recent years, it has become clear that most of these patients are volume-depleted and have a negative sodium balance, consistent with the original description of cerebral salt wasting. Elevated plasma concentrations of atrial or brain natriuretic peptide have been identified as the putative natriuretic factor. Hyponatremia and volume depletion may aggravate neurological symptoms, and timely treatment with adequate replacement of water and NaCl is essential. The use of fludrocortisone to increase sodium reabsorption by the renal tubules may be an alternative approach.
Collapse
Affiliation(s)
- Michiel G.H. Betjes
- Division of Nephrology and Hypertension, Department of Internal Medicine, University Hospital Rotterdam, Dijkzigt, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| |
Collapse
|
25
|
|
26
|
Gong C, Boulis N, Qian J, Turner DE, Hoff JT, Keep RF. Intracerebral hemorrhage-induced neuronal death. Neurosurgery 2001; 48:875-82; discussion 882-3. [PMID: 11322448 DOI: 10.1097/00006123-200104000-00037] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE The mechanisms underlying neural injury in intracerebral hemorrhage (ICH) remain uncertain. The present two-part study investigated cell death in the region of ICH and its association with caspase-3 activation. METHODS ICH was produced in adult rats by injection of 100 microl of autologous blood or saline into the right basal ganglia. The animals' brains were removed at 6 hours or at 1, 3, 7, or 14 days after hemorrhage. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin in situ nick end-labeling (TUNEL) was used to detect deoxyribonucleic acid (DNA) fragmentation. TUNEL-positive cells were quantified. Caspase-3 activation was measured by Western blotting and immunohistochemistry. Double labeling was used to compare TUNEL with caspase-3 distribution and to identify the cell types affected. TUNEL-positive cells were also quantified at 6 hours, 1 day, and 3 days after injection of 5 U of thrombin into the right basal ganglion. RESULTS At 6 hours, TUNEL-positive cells appeared in the ICH model (but not in the saline control brains) and were present for more than 2 weeks after ICH, peaking at 3 days. Western blot analysis revealed that the increase in immunoreactivity for the activated caspase-3 precedes that of DNA fragmentation, peaking at 1 day after ICH and declining thereafter. Immunohistochemistry analysis showed nucleus translocation of caspase-3 after ICH. Double-labeling studies demonstrated that both neurons and astrocytes surrounding the clot were TUNEL-positive. In addition, TUNEL and caspase-3 were colocalized in the same cells. Intracerebral thrombin injection elicited DNA fragmentation similar to that observed after the injection of blood. CONCLUSION Double-strand breaks in genomic DNA and induction of caspase-3 were demonstrated adjacent to parenchymal hematoma in the animals' brains. These results provide evidence that cell loss after ICH is associated with activation of caspase-3.
Collapse
Affiliation(s)
- C Gong
- Department of Surgery, University of Michigan, Ann Arbor 48109-0532, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Gong C, Boulis N, Qian J, Turner DE, Hoff JT, Keep RF. Intracerebral Hemorrhage-induced Neuronal Death. Neurosurgery 2001. [DOI: 10.1227/00006123-200104000-00037] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
28
|
Peeling J, Yan HJ, Chen SG, Campbell M, Del Bigio MR. Protective effects of free radical inhibitors in intracerebral hemorrhage in rat. Brain Res 1998; 795:63-70. [PMID: 9622595 DOI: 10.1016/s0006-8993(98)00253-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Iron compounds formed in the degradation of a hematoma can accelerate the formation of free radicals in adjacent ischemic or hypoperfused tissue. The purpose of this study was to examine the efficacy of compounds that quench free radicals in improving the outcome in rats with experimental intracerebral hemorrhage. Intracerebral hemorrhage was induced in rats by injection of bacterial collagenase and heparin into the caudate nucleus. Rats were treated with alpha-tocopherol plus ascorbic acid starting before hemorrhage, or with dimethylthiourea or alpha-phenyl-N-tert-butyl nitrone starting 2 h after hemorrhage, with treatment continued for 10 days after induction of hemorrhage. Outcome was assessed by behavioral analyses, magnetic resonance imaging, and histopathology. A trend towards behavioral improvement was found for rats treated with alpha-tocopherol/ascorbic acid, while behavior was significantly improved following intracerebral hemorrhage in rats treated with dimethylthiourea or alpha-phenyl-N-tert-butyl nitrone. These results suggest that free radicals may play a role in the development of brain injury following intracerebral hemorrhage, and that compounds that interrupt the free radical cascade may improve outcome. However, treatment did not significantly affect edema, resolution of the hematoma, or neuronal injury in tissue adjacent to the hemorrhage.
Collapse
Affiliation(s)
- J Peeling
- Department of Radiology, The University of Manitoba, Winnipeg, Manitoba, Canada.
| | | | | | | | | |
Collapse
|