1
|
Schlegel M, Cyr Y, Newman AAC, Schreyer K, Barcia Durán JG, Sharma M, Bozal FK, Gourvest M, La Forest M, Afonso MS, van Solingen C, Fisher EA, Moore KJ. Targeting Unc5b in macrophages drives atherosclerosis regression and pro-resolving immune cell function. Proc Natl Acad Sci U S A 2024; 121:e2412690121. [PMID: 39436659 PMCID: PMC11536151 DOI: 10.1073/pnas.2412690121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/19/2024] [Indexed: 10/23/2024] Open
Abstract
Atherosclerosis results from lipid-driven inflammation of the arterial wall that fails to resolve. Imbalances in macrophage accumulation and function, including diminished migratory capacity and defective efferocytosis, fuel maladaptive inflammation and plaque progression. The neuroimmune guidance cue netrin-1 has dichotomous roles in inflammation partly due to its multiple receptors; in atherosclerosis, netrin-1 promotes macrophage survival and retention via its receptor Unc5b. To minimize the pleiotropic effects of targeting netrin-1, we tested the therapeutic potential of deleting Unc5b in mice with advanced atherosclerosis. We generated Unc5bfl/flCx3cr1creERT2/WT mice, which allowed conditional deletion of Un5b (∆Unc5bMØ) in monocytes and macrophages by tamoxifen injection. After inducing advanced atherosclerosis by hepatic PCSK9 overexpression and western diet feeding for 20 wk, Unc5b was deleted and hypercholesterolemia was normalized to simulate clinical lipid management. Deletion of myeloid Unc5b led to a 40% decrease in atherosclerotic plaque burden and reduced plaque complexity compared to Unc5bfl/flCx3cr1WT/WT littermate controls (CtrlMØ). Consistently, plaque macrophage content was reduced by 50% in ∆Unc5bMØ mice due to reduced plaque Ly6Chi monocyte recruitment and macrophage retention. Compared to CtrlMØ mice, plaques in ∆Unc5bMØ mice had reduced necrotic area and fewer apoptotic cells, which correlated with improved efferocytotic capacity by Unc5b-deficient macrophages in vivo and in vitro. Beneficial changes in macrophage dynamics in the plaque upon Unc5b deletion were accompanied by an increase in atheroprotective T cell populations, including T-regulatory and Th2 cells. Our data identify Unc5b in advanced atherosclerosis as a therapeutic target to induce pro-resolving restructuring of the plaque immune cells and to promote atherosclerosis regression.
Collapse
Affiliation(s)
- Martin Schlegel
- Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich, Klinikum rechts der Isar, Technical University of Munich (TUM) School of Medicine and Health, Munich81675, Germany
| | - Yannick Cyr
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Alexandra A. C. Newman
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Korbinian Schreyer
- Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich, Klinikum rechts der Isar, Technical University of Munich (TUM) School of Medicine and Health, Munich81675, Germany
| | - José Gabriel Barcia Durán
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Monika Sharma
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Fazli K. Bozal
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Morgane Gourvest
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Maxwell La Forest
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Milessa S. Afonso
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Coen van Solingen
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Edward A. Fisher
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
- Department of Cell Biology, New York University Langone Health, New York, NY10016
| | - Kathryn J. Moore
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
- Department of Cell Biology, New York University Langone Health, New York, NY10016
| |
Collapse
|
2
|
Phu TA, Vu NK, Ng M, Gao AS, Stoolman JS, Chandel NS, Raffai RL. ApoE enhances mitochondrial metabolism via microRNA-142a/146a-regulated circuits that suppress hematopoiesis and inflammation in hyperlipidemia. Cell Rep 2023; 42:113206. [PMID: 37824329 DOI: 10.1016/j.celrep.2023.113206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/08/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023] Open
Abstract
Apolipoprotein E (ApoE) is recognized for its pleiotropic properties that suppress inflammation. We report that ApoE serves as a metabolic rheostat that regulates microRNA control of glycolytic and mitochondrial activity in myeloid cells and hematopoietic stem and progenitor cells (HSPCs). ApoE expression in myeloid cells increases microRNA-146a, which reduces nuclear factor κB (NF-κB)-driven GLUT1 expression and glycolytic activity. In contrast, ApoE expression reduces microRNA-142a, which increases carnitine palmitoyltransferase 1a (CPT1A) expression, fatty acid oxidation, and oxidative phosphorylation. Improved mitochondrial metabolism by ApoE expression causes an enrichment of tricarboxylic acid (TCA) cycle metabolites and nicotinamide adenine dinucleotide (NAD+) in macrophages. The study of mice with conditional ApoE expression supports the capacity of ApoE to foster microRNA-controlled immunometabolism. Modulation of microRNA-146a and -142a in the hematopoietic system of hyperlipidemic mice using RNA mimics and antagonists, respectively, improves mitochondrial metabolism, which suppresses inflammation and hematopoiesis. Our findings unveil microRNA regulatory circuits, controlled by ApoE, that exert metabolic control over hematopoiesis and inflammation in hyperlipidemia.
Collapse
Affiliation(s)
- Tuan Anh Phu
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, San Francisco, CA 94121, USA; Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Ngan K Vu
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, San Francisco, CA 94121, USA; Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Martin Ng
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, San Francisco, CA 94121, USA; Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Alex S Gao
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, San Francisco, CA 94121, USA; Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Joshua S Stoolman
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Navdeep S Chandel
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Biochemistry & Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Robert L Raffai
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, San Francisco, CA 94121, USA; Northern California Institute for Research and Education, San Francisco, CA 94121, USA; Department of Surgery, Division of Endovascular and Vascular Surgery, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
3
|
Apolipoprotein E and Atherosclerosis: From Lipoprotein Metabolism to MicroRNA Control of Inflammation. J Cardiovasc Dev Dis 2018; 5:jcdd5020030. [PMID: 29789495 PMCID: PMC6023389 DOI: 10.3390/jcdd5020030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/08/2018] [Accepted: 05/18/2018] [Indexed: 12/26/2022] Open
Abstract
Apolipoprotein (apo) E stands out among plasma apolipoproteins through its unprecedented ability to protect against atherosclerosis. Although best recognized for its ability to mediate plasma lipoprotein clearance in the liver and protect against macrophage foam cell formation, our recent understanding of the influence that apoE can exert to control atherosclerosis has significantly widened. Among apoE’s newfound athero-protective properties include an ability to control exaggerated hematopoiesis, blood monocyte activation and aortic stiffening in mice with hyperlipidemia. Mechanisms responsible for these exciting new properties extend beyond apoE’s ability to prevent cellular lipid excess. Rather, new findings have revealed a role for apoE in regulating microRNA-controlled cellular signaling in cells of the immune system and vascular wall. Remarkably, infusions of apoE-responsive microRNA mimics were shown to substitute for apoE in protecting against systemic and vascular inflammation to suppress atherosclerosis in mice with hyperlipidemia. Finally, more recent evidence suggests that apoE may control the release of microvesicles that could modulate cellular signaling, inflammation and atherosclerosis at a distance. These exciting new findings position apoE within the emerging field of intercellular communication that could introduce new approaches to control atherosclerosis cardiovascular disease.
Collapse
|
4
|
Abstract
Plasma lipoproteins are essential vehicles of lipid distribution for cellular energy and structural requirements as well as for excretion of lipid excess. Imbalances in lipoprotein metabolism are known to contribute to metabolic diseases ranging from vascular inflammation and atherosclerosis to obesity and diabetes. The lipid and protein cargo carried by lipoprotein subclasses have long been the focus of studies exploring the contribution of plasma lipoproteins in health and in metabolic disorders. More recent studies have revealed the presence of noncoding RNA as a new form of cargo carried by plasma lipoproteins. Lipoprotein-associated microRNAs have been identified to distribute differentially among plasma lipoprotein subclasses and contribute to cellular signaling. These findings highlight plasma lipoprotein-associated RNA as a potential source of biological signaling and warrant a renewed interest in the study of plasma lipoprotein biology. This chapter describes principles and methods based on density ultracentrifugation and size exclusion chromatography for the isolation of plasma lipoproteins as a source of extracellular RNA.
Collapse
|
5
|
Ceron CS, Baligand C, Joshi S, Wanga S, Cowley PM, Walker JP, Song SH, Mahimkar R, Baker AJ, Raffai RL, Wang ZJ, Lovett DH. An intracellular matrix metalloproteinase-2 isoform induces tubular regulated necrosis: implications for acute kidney injury. Am J Physiol Renal Physiol 2017; 312:F1166-F1183. [PMID: 28331061 PMCID: PMC5495883 DOI: 10.1152/ajprenal.00461.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 03/16/2017] [Accepted: 03/16/2017] [Indexed: 12/25/2022] Open
Abstract
Acute kidney injury (AKI) causes severe morbidity, mortality, and chronic kidney disease (CKD). Mortality is particularly marked in the elderly and with preexisting CKD. Oxidative stress is a common theme in models of AKI induced by ischemia-reperfusion (I-R) injury. We recently characterized an intracellular isoform of matrix metalloproteinase-2 (MMP-2) induced by oxidative stress-mediated activation of an alternate promoter in the first intron of the MMP-2 gene. This generates an NH2-terminal truncated MMP-2 (NTT-MMP-2) isoform that is intracellular and associated with mitochondria. The NTT-MMP-2 isoform is expressed in kidneys of 14-mo-old mice and in a mouse model of coronary atherosclerosis and heart failure with CKD. We recently determined that NTT-MMP-2 is induced in human renal transplants with delayed graft function and correlated with tubular cell necrosis. To determine mechanism(s) of action, we generated proximal tubule cell-specific NTT-MMP-2 transgenic mice. Although morphologically normal at the light microscopic level at 4 mo, ultrastructural studies revealed foci of tubular epithelial cell necrosis, the mitochondrial permeability transition, and mitophagy. To determine whether NTT-MMP-2 expression enhances sensitivity to I-R injury, we performed unilateral I-R to induce mild tubular injury in wild-type mice. In contrast, expression of the NTT-MMP-2 isoform resulted in a dramatic increase in tubular cell necrosis, inflammation, and fibrosis. NTT-MMP-2 mice had enhanced expression of innate immunity genes and release of danger-associated molecular pattern molecules. We conclude that NTT-MMP-2 "primes" the kidney to enhanced susceptibility to I-R injury via induction of mitochondrial dysfunction. NTT-MMP-2 may be a novel AKI treatment target.
Collapse
Affiliation(s)
- Carla S Ceron
- Department of Medicine, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California
| | - Celine Baligand
- Department of Radiology, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California; and
| | - Sunil Joshi
- Department of Medicine, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California
| | - Shaynah Wanga
- Department of Medicine, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California
| | - Patrick M Cowley
- Department of Medicine, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California
| | - Joy P Walker
- Department of Surgery, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California
| | - Sang Heon Song
- Department of Medicine, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California
| | - Rajeev Mahimkar
- Department of Medicine, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California
| | - Anthony J Baker
- Department of Medicine, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California
| | - Robert L Raffai
- Department of Surgery, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California
| | - Zhen J Wang
- Department of Radiology, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California; and
| | - David H Lovett
- Department of Medicine, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California;
| |
Collapse
|
6
|
Immunosuppression With FTY720 Reverses Cardiac Dysfunction in Hypomorphic ApoE Mice Deficient in SR-BI Expression That Survive Myocardial Infarction Caused by Coronary Atherosclerosis. J Cardiovasc Pharmacol 2016; 67:47-56. [PMID: 26322923 DOI: 10.1097/fjc.0000000000000312] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
AIMS We recently reported that immunosuppression with FTY720 improves cardiac function and extends longevity in Hypomorphic ApoE mice deficient in scavenger receptor Type-BI expression, also known as the HypoE/SR-BI(–/–) mouse model of diet-induced coronary atherosclerosis and myocardial infarction (MI). In this study, we tested the impact of FTY720 on cardiac dysfunction in HypoE/SR-BI(–/–) mice that survive MI and subsequently develop chronic heart failure. METHODS/RESULTS HypoE/SR-BI(–/–) mice were bred to Mx1-Cre transgenic mice, and offspring were fed a high-fat diet (HFD) for 3.5 weeks to provoke hyperlipidemia, coronary atherosclerosis, and recurrent MIs. In contrast to our previous study, hyperlipidemia was rapidly reversed by inducible Cre-mediated gene repair of the HypoE allele and switching mice to a normal chow diet. Mice that survived the period of HFD were subsequently given oral FTY720 in drinking water or not, and left ventricular (LV) function was monitored using serial echocardiography for up to 15 weeks. In untreated mice, LV performance progressively deteriorated. Although FTY720 treatment did not initially prevent a decline of heart function among mice 6 weeks after Cre-mediated gene repair, it almost completely restored normal LV function in these mice by 15 weeks. Reversal of heart failure did not result from reduced atherosclerosis as the burden of aortic and coronary atherosclerosis actually increased to similar levels in both groups of mice. Rather, FTY720 caused systemic immunosuppression as assessed by reduced numbers of circulating T and B lymphocytes. In contrast, FTY720 did not enhance the loss of T cells or macrophages that accumulated in the heart during the HFD feeding period, but it did enhance the loss of B cells soon after plasma lipid lowering. Moreover, FTY720 potently reduced the expression of matrix metalloproteinase-2 and genes involved in innate immunity-associated inflammation in the heart. CONCLUSIONS Our data demonstrate that immunosuppression with FTY720 prevents postinfarction myocardial remodeling and chronic heart failure.
Collapse
|
7
|
Getz GS, Reardon CA. ApoE knockout and knockin mice: the history of their contribution to the understanding of atherogenesis. J Lipid Res 2016; 57:758-66. [PMID: 27015743 DOI: 10.1194/jlr.r067249] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Indexed: 12/16/2022] Open
Abstract
ApoE is a multifunctional protein that is expressed by many cell types that influences many aspects of cardiovascular physiology. In humans, there are three major allelic variants that differentially influence lipoprotein metabolism and risk for the development of atherosclerosis. Apoe-deficient mice and human apoE isoform knockin mice, as well as hypomorphic Apoe mice, have significantly contributed to our understanding of the role of apoE in lipoprotein metabolism, monocyte/macrophage biology, and atherosclerosis. This brief history of these mouse models will highlight their contribution to the understanding of the role of apoE in these processes. These Apoe(-/-) mice have also been extensively utilized as an atherosensitive platform upon which to assess the impact of modulator genes on the development and regression of atherosclerosis.
Collapse
Affiliation(s)
- Godfrey S Getz
- Department of Pathology University of Chicago, Chicago, IL
| | | |
Collapse
|
8
|
The immunosuppressant FTY720 prolongs survival in a mouse model of diet-induced coronary atherosclerosis and myocardial infarction. J Cardiovasc Pharmacol 2014; 63:132-143. [PMID: 24508946 DOI: 10.1097/fjc.0000000000000031] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
FTY720, an analogue of sphingosine-1-phosphate, is cardioprotective during acute injury. Whether long-term FTY720 affords cardioprotection is unknown. Here, we report the effects of oral FTY720 on ischemia/reperfusion injury and in hypomorphic apoE mice deficient in SR-BI receptor expression (ApoeR61(h/h)/SRB1(-/- mice), a model of diet-induced coronary atherosclerosis and heart failure. We added FTY720 (0.3 mg·kg(-1)·d(-1)) to the drinking water of C57BL/6J mice. After ex vivo cardiac ischemia/reperfusion injury, these mice had significantly improved left ventricular (LV) developed pressure and reduced infarct size compared with controls. Subsequently, ApoeR61(h/h)/SRB1(-/-) mice fed a high-fat diet for 4 weeks were treated or not with oral FTY720 (0.05 mg·kg(-1)·d(-1)). This sharply reduced mortality (P < 0.02) and resulted in better LV function and less LV remodeling compared with controls without reducing hypercholesterolemia and atherosclerosis. Oral FTY720 reduced the number of blood lymphocytes and increased the percentage of CD4+Foxp3+ regulatory T cells (Tregs) in the circulation, spleen, and lymph nodes. FTY720-treated mice exhibited increased TGF-β and reduced IFN-γ expression in the heart. Also, CD4 expression was increased and strongly correlated with molecules involved in natural Treg activity, such as TGF-β and GITR. Our data suggest that long-term FTY720 treatment enhances LV function and increases longevity in mice with heart failure. These benefits resulted not from atheroprotection but from systemic immunosuppression and a moderate reduction of inflammation in the heart.
Collapse
|
9
|
Abstract
Mononuclear phagocytes (MPs) relevant to atherosclerosis include monocytes, macrophages, and dendritic cells. A decade ago, studies on macrophage behavior in atherosclerotic lesions were often limited to quantification of total macrophage area in cross-sections of plaques. Although technological advances are still needed to examine plaque MP populations in an increasingly dynamic and informative manner, innovative methods to interrogate the biology of MPs in atherosclerotic plaques developed in the past few years point to several mechanisms that regulate the accumulation and function of MPs within plaques. Here, I review the evolution of atherosclerotic plaques with respect to changes in the MP compartment from the initiation of plaque to its progression and regression, discussing the roles that recruitment, proliferation, and retention of MPs play at these different disease stages. Additional work in the future will be needed to better distinguish macrophages and dendritic cells in plaque and to address some basic unknowns in the field, including just how cholesterol drives accumulation of macrophages in lesions to build plaques in the first place and how macrophages as major effectors of innate immunity work together with components of the adaptive immune response to drive atherosclerosis. Answers to these questions are sought with the goal in mind of reversing disease where it exists and preventing its development where it does not.
Collapse
Affiliation(s)
- Gwendalyn J Randolph
- From the Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO.
| |
Collapse
|
10
|
|