1
|
Parikh MJ, Madder RD. Near-Infrared Spectroscopy-Guided Percutaneous Coronary Intervention: Practical Applications and Available Evidence. Interv Cardiol Clin 2023; 12:257-268. [PMID: 36922066 DOI: 10.1016/j.iccl.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Intracoronary near-infrared spectroscopy (NIRS) has been extensively validated against the gold standard of histopathology to identify lipid-rich plaque. NIRS is currently in clinical use as a combined multimodality imaging catheter with intravascular ultrasonography. When used before PCI, NIRS has clinical utility in determining the mechanism underlying acute coronary syndromes and can be used to guide stent length selection and identify the risk of periprocedural myocardial infarction. When used after PCI, NIRS can identify vulnerable patients at increased risk of future patient-level cardiovascular events and can detect vulnerable plaques at increased risk of future site-specific coronary events.
Collapse
Affiliation(s)
- Malav J Parikh
- Frederik Meijer Heart & Vascular Institute, Spectrum Health, Grand Rapids, 100 Michigan Street Northeast, Grand Rapids, MI 49503, USA
| | - Ryan D Madder
- Frederik Meijer Heart & Vascular Institute, Spectrum Health, Grand Rapids, 100 Michigan Street Northeast, Grand Rapids, MI 49503, USA.
| |
Collapse
|
2
|
Gaba P, Gersh BJ, Muller J, Narula J, Stone GW. Evolving concepts of the vulnerable atherosclerotic plaque and the vulnerable patient: implications for patient care and future research. Nat Rev Cardiol 2023; 20:181-196. [PMID: 36151312 DOI: 10.1038/s41569-022-00769-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/12/2022] [Indexed: 11/08/2022]
Abstract
Understanding the natural history of coronary artery atherosclerosis is necessary to determine prognosis and prescribe effective therapies. Traditional management of coronary artery disease has focused on the treatment of flow-limiting anatomical obstructions that lead to ischaemia. In most scenarios, revascularization of these atherosclerotic plaques has not substantially improved freedom from death or myocardial infarction, questioning the utility of contemporary revascularization strategies to improve prognosis. Advances in non-invasive and invasive imaging techniques have helped to identify the characteristics of obstructive and non-obstructive plaques that are precursors for plaque progression and future acute coronary syndromes as well as cardiac death. These 'vulnerable plaques' develop as a consequence of systemic inflammation and are prone to inducing thrombosis. Vulnerable plaques most commonly have a large plaque burden with a well-formed necrotic core and thin fibrous cap and are metabolically active. Perivascular adipose tissue might, in some patients, be used as a surrogate for coronary inflammation and predict future risk of adverse cardiac events. Vulnerable plaques can be identified in their quiescent state, offering the potential for therapeutic passivation. In this Review, we describe the biological and compositional features of vulnerable plaques, the non-invasive and invasive diagnostic modalities to characterize vulnerable plaques, the prognostic utility of identifying vulnerable plaques, and the future studies needed to explore the value of intensified pharmacological and focal treatments of vulnerable plaques.
Collapse
Affiliation(s)
- Prakriti Gaba
- Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Bernard J Gersh
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - James Muller
- Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jagat Narula
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gregg W Stone
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
3
|
Hartman EMJ, De Nisco G, Kok AM, Tomaniak M, Nous FMA, Korteland SA, Gijsen FJH, den Dekker WK, Diletti R, van Mieghem NMDA, Wilschut JM, Zijlstra F, van der Steen AFW, Budde RPJ, Daemen J, Wentzel JJ. Wall shear stress-related plaque growth of lipid-rich plaques in human coronary arteries: an near-infrared spectroscopy and optical coherence tomography study. Cardiovasc Res 2022; 119:1021-1029. [PMID: 36575921 PMCID: PMC10153640 DOI: 10.1093/cvr/cvac178] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 10/07/2022] [Accepted: 10/19/2022] [Indexed: 12/29/2022] Open
Abstract
AIMS Low wall shear stress (WSS) is acknowledged to play a role in plaque development through its influence on local endothelial function. Also, lipid-rich plaques (LRPs) are associated with endothelial dysfunction. However, little is known about the interplay between WSS and the presence of lipids with respect to plaque progression. Therefore, we aimed to study the differences in WSS-related plaque progression between LRPs, non-LRPs, or plaque-free regions in human coronary arteries. METHODS AND RESULTS In the present single-centre, prospective study, 40 patients who presented with an acute coronary syndrome successfully underwent near-infrared spectroscopy intravascular ultrasound (NIRS-IVUS) and optical coherence tomography (OCT) of at least one non-culprit vessel at baseline and completed a 1-year follow-up. WSS was computed applying computational fluid dynamics to a three-dimensional reconstruction of the coronary artery based on the fusion of the IVUS-segmented lumen with a CT-derived centreline, using invasive flow measurements as boundary conditions. For data analysis, each artery was divided into 1.5 mm/45° sectors. Plaque growth based on IVUS-derived percentage atheroma volume change was compared between LRPs, non-LRPs, and plaque-free wall segments, as assessed by both OCT and NIRS. Both NIRS- and OCT-detected lipid-rich sectors showed a significantly higher plaque progression than non-LRPs or plaque-free regions. Exposure to low WSS was associated with a higher plaque progression than exposure to mid or high WSS, even in the regions classified as a plaque-free wall. Furthermore, low WSS and the presence of lipids had a synergistic effect on plaque growth, resulting in the highest plaque progression in lipid-rich regions exposed to low shear stress. CONCLUSION This study demonstrates that NIRS- and OCT-detected lipid-rich regions exposed to low WSS are subject to enhanced plaque growth over a 1-year follow-up. The presence of lipids and low WSS proves to have a synergistic effect on plaque growth.
Collapse
Affiliation(s)
- Eline M J Hartman
- Department of Cardiology, Erasmus MC, Dr. Molewaterplein 40, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Giuseppe De Nisco
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy
| | - Annette M Kok
- Department of Cardiology, Erasmus MC, Dr. Molewaterplein 40, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Mariusz Tomaniak
- Department of Cardiology, Erasmus MC, Dr. Molewaterplein 40, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.,First Department of Cardiology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Fay M A Nous
- Department of Cardiology, Erasmus MC, Dr. Molewaterplein 40, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, ErasmusMC, 3000 CA Rotterdam, The Netherlands
| | - Suze-Anne Korteland
- Department of Cardiology, Erasmus MC, Dr. Molewaterplein 40, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Frank J H Gijsen
- Department of Cardiology, Erasmus MC, Dr. Molewaterplein 40, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Wijnand K den Dekker
- Department of Cardiology, Erasmus MC, Dr. Molewaterplein 40, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Roberto Diletti
- Department of Cardiology, Erasmus MC, Dr. Molewaterplein 40, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Nicolas M D A van Mieghem
- Department of Cardiology, Erasmus MC, Dr. Molewaterplein 40, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Jeroen M Wilschut
- Department of Cardiology, Erasmus MC, Dr. Molewaterplein 40, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Felix Zijlstra
- Department of Cardiology, Erasmus MC, Dr. Molewaterplein 40, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Anton F W van der Steen
- Department of Cardiology, Erasmus MC, Dr. Molewaterplein 40, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Ricardo P J Budde
- Department of Radiology and Nuclear Medicine, ErasmusMC, 3000 CA Rotterdam, The Netherlands
| | - Joost Daemen
- Department of Cardiology, Erasmus MC, Dr. Molewaterplein 40, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Jolanda J Wentzel
- Department of Cardiology, Erasmus MC, Dr. Molewaterplein 40, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
4
|
Wang L, Zhang D, Zhan W, Zeng Z, Yin J, Wang K, Wang H, Song L, Gu Z, Guo C, Zhong Q, Wang W, Rong X, Bei W, Guo J. Chinese medicine Fufang Zhenzhu Tiaozhi capsule ameliorates coronary atherosclerosis in diabetes mellitus-related coronary heart disease minipigs. Biomed Pharmacother 2022; 156:113831. [PMID: 36228370 DOI: 10.1016/j.biopha.2022.113831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 12/08/2022] Open
Abstract
BACKGROUND Diabetes mellitus-related coronary heart disease (DM-CHD) is the most common cause of death in diabetic patients. Various studies have shown that Chinese medicine Fufang-Zhenzhu-Tiaozhi capsule (FTZ) has therapeutic effects on cardiovascular diseases. More research is required to determine the mechanism of FTZ protection against coronary atherosclerosis. OBJECTIVE To investigate the unique mechanism of FTZ in treatment of DM-CHD minipigs with coronary atherosclerosis. METHODS High-fat/high-sucrose/high-cholesterol diet combined with streptozotocin and coronary balloon injury were used to induce DM-CHD minipig model, which was then randomly divided into: DM-CHD model, DM-CHD treated with FTZ or positive drug (Metformin + Atorvastatin, M+A). After twenty-two weeks, ultrasonography, electrocardiography, and image detection were employed to detect cardiac functions and assess coronary artery stenosis and plaque. Human umbilical vein endothelial cells (HUVECs) were treated high glucose or/and FTZ. Pigs tissues and treated-cells were collected for further testing. RESULTS In DM-CHD minipigs, FTZ treatment significantly reduced disordered glycolipid metabolism similar as M+A administration. FTZ and M+A also alleviated coronary stenosis and myocardial injury. In addition, IκB and NF-κB phosphorylation levels, as well as the protein levels of IL-1β, Bax, cleave-Caspase 3, Bcl-2, and α-SMA were dramatically increased in the DM-CHD coronary artery, whereas CD31 and VE-cadherin expressions were decreased. Similar to M+A, FTZ reversed these protein levels in the DM-CHD coronary artery. Furthermore, FTZ ameliorated the damage and high migration activity of HUVECs induced by high glucose. CONCLUSIONS FTZ improves coronary atherosclerosis through modulating inflammation, alleviating apoptosis, and inhibiting EndMT of coronary artery to protects against DM-CHD.
Collapse
Affiliation(s)
- Lexun Wang
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), SATCM Level 3 Lab of Lipid Metabolism, Guangzhou 510006, China; Guangdong TCM Key Laboratory of Metabolic Diseases, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dongxing Zhang
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), SATCM Level 3 Lab of Lipid Metabolism, Guangzhou 510006, China; Guangdong TCM Key Laboratory of Metabolic Diseases, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wenjing Zhan
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), SATCM Level 3 Lab of Lipid Metabolism, Guangzhou 510006, China; Guangdong TCM Key Laboratory of Metabolic Diseases, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhihuan Zeng
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, Guangdong, China
| | - Jianying Yin
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), SATCM Level 3 Lab of Lipid Metabolism, Guangzhou 510006, China; Guangdong TCM Key Laboratory of Metabolic Diseases, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ke Wang
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), SATCM Level 3 Lab of Lipid Metabolism, Guangzhou 510006, China; Guangdong TCM Key Laboratory of Metabolic Diseases, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hong Wang
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), SATCM Level 3 Lab of Lipid Metabolism, Guangzhou 510006, China; Guangdong TCM Key Laboratory of Metabolic Diseases, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lixia Song
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), SATCM Level 3 Lab of Lipid Metabolism, Guangzhou 510006, China; Guangdong TCM Key Laboratory of Metabolic Diseases, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhanhui Gu
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), SATCM Level 3 Lab of Lipid Metabolism, Guangzhou 510006, China; Guangdong TCM Key Laboratory of Metabolic Diseases, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Caijuan Guo
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), SATCM Level 3 Lab of Lipid Metabolism, Guangzhou 510006, China; Guangdong TCM Key Laboratory of Metabolic Diseases, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qin Zhong
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), SATCM Level 3 Lab of Lipid Metabolism, Guangzhou 510006, China; Guangdong TCM Key Laboratory of Metabolic Diseases, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Weixuan Wang
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), SATCM Level 3 Lab of Lipid Metabolism, Guangzhou 510006, China; Guangdong TCM Key Laboratory of Metabolic Diseases, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xianglu Rong
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), SATCM Level 3 Lab of Lipid Metabolism, Guangzhou 510006, China; Guangdong TCM Key Laboratory of Metabolic Diseases, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Weijian Bei
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), SATCM Level 3 Lab of Lipid Metabolism, Guangzhou 510006, China; Guangdong TCM Key Laboratory of Metabolic Diseases, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Jiao Guo
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), SATCM Level 3 Lab of Lipid Metabolism, Guangzhou 510006, China; Guangdong TCM Key Laboratory of Metabolic Diseases, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Tomaniak M, Hartman EM, Tovar Forero MN, Wilschut J, Zijlstra F, Van Mieghem NM, Kardys I, Wentzel JJ, Daemen J. Near-infrared spectroscopy to predict plaque progression in plaque-free artery regions. EUROINTERVENTION 2022; 18:253-261. [PMID: 34930718 PMCID: PMC9912955 DOI: 10.4244/eij-d-21-00452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Positive near-infrared spectroscopy (NIRS) signals might be encountered in areas without evident artery wall thickening, being typically perceived as artefacts. AIMS We aimed to evaluate the utility of NIRS to identify artery wall regions associated with an increase in wall thickness (WT) as assessed by serial intravascular ultrasound (IVUS) and optical coherence tomography (OCT). METHODS In this prospective, single-centre study, patients presenting with acute coronary syndrome (ACS) underwent NIRS-IVUS and OCT assessment of a non-culprit artery at baseline and 12-month follow-up. For each vessel, 1.5 mm segments were identified, matched and divided into 45 sectors. The relationship between the change in IVUS-based WT (DWT) and the presence of NIRS-positive signals and OCT-detected lipid was evaluated using linear mixed models. RESULTS A total of 37 patients (38 vessels, 6,936 matched sectors) were analysed at baseline and 12 months. A total of 140/406 (34.5%) NIRS (+) sectors and 513/1,575 (32.6%) OCT-lipid (+) sectors were found to be located in thin (WT<0.5 mm) wall sectors. In the thin wall sectors, an increase in WT was significantly more pronounced in NIRS (+) vs NIRS (-) sectors (0.11 mm vs 0.06 mm, p<0.001). In the thick wall sectors, there was a decrease in WT observed that was less pronounced in the NIRS (+) versus NIRS (-) sectors (-0.08 mm vs -0.09 mm, p<0.001). Thin wall NIRS (+) OCT-lipid (+) sectors showed significant wall thickening (DWT=0.13 mm). CONCLUSIONS NIRS-positive signals in otherwise non-diseased arterial walls as assessed by IVUS could identify vessel wall regions prone to WT increase over 12-month follow-up. Our observations suggest that NIRS-positive signals in areas without evident wall thickening by IVUS should no longer be viewed as benign or imaging artefact.
Collapse
Affiliation(s)
- Mariusz Tomaniak
- Department of Cardiology, Erasmus University Medical Center, Thorax Center, Rotterdam, the Netherlands,First Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Eline M.J. Hartman
- Department of Cardiology, Erasmus University Medical Center, Thorax Center, Rotterdam, the Netherlands
| | | | - Jeroen Wilschut
- Department of Cardiology, Erasmus University Medical Center, Thorax Center, Rotterdam, the Netherlands
| | - Felix Zijlstra
- Department of Cardiology, Erasmus University Medical Center, Thorax Center, Rotterdam, the Netherlands
| | - Nicolas M. Van Mieghem
- Department of Cardiology, Erasmus University Medical Center, Thorax Center, Rotterdam, the Netherlands
| | - Isabella Kardys
- Department of Cardiology, Erasmus University Medical Center, Thorax Center, Rotterdam, the Netherlands
| | - Jolanda J. Wentzel
- Department of Cardiology, Erasmus University Medical Center, Thorax Center, Rotterdam, the Netherlands
| | - Joost Daemen
- Department of Cardiology, Room Rg-628, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, the Netherlands
| |
Collapse
|
6
|
Kuku KO, Singh M, Ozaki Y, Dan K, Chezar-Azerrad C, Waksman R, Garcia-Garcia HM. Near-Infrared Spectroscopy Intravascular Ultrasound Imaging: State of the Art. Front Cardiovasc Med 2020; 7:107. [PMID: 32695796 PMCID: PMC7338425 DOI: 10.3389/fcvm.2020.00107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
Acute coronary syndromes (ACS) secondary to coronary vessel plaques represent a major cause of cardiovascular morbidity and mortality worldwide. Advancements in imaging technology over the last 3 decades have continuously enabled the study of coronary plaques via invasive imaging methods like intravascular ultrasound (IVUS) and optical coherence tomography (OCT). The introduction of near-infrared spectroscopy (NIRS) as a modality that could detect the lipid (cholesterol) content of atherosclerotic plaques in the early nineties, opened the potential of studying “vulnerable” or rupture-prone, lipid-rich coronary plaques in ACS patients. Most recently, the ability of NIRS-IVUS to identify patients at risk of future adverse events was shown in a prospective multicenter trial, the Lipid-Rich-plaque Study. Intracoronary NIRS-IVUS imaging offers a unique method of coronary lipid-plaque characterization and could become a valuable clinical diagnostic and treatment monitoring tool.
Collapse
Affiliation(s)
- Kayode O Kuku
- MedStar Cardiovascular Research Network, MedStar Washington Hospital Center, MedStar Health Research Institute, Washington, DC, United States.,Section of Interventional Cardiology MedStar Washington Hospital Center, MedStar Heart and Vascular Institute, Washington, DC, United States.,Georgetown University Department of Medicine, Washington, DC, United States
| | - Manavotam Singh
- Section of Interventional Cardiology MedStar Washington Hospital Center, MedStar Heart and Vascular Institute, Washington, DC, United States.,Georgetown University Department of Medicine, Washington, DC, United States
| | - Yuichi Ozaki
- Section of Interventional Cardiology MedStar Washington Hospital Center, MedStar Heart and Vascular Institute, Washington, DC, United States.,Georgetown University Department of Medicine, Washington, DC, United States
| | - Kazuhiro Dan
- Section of Interventional Cardiology MedStar Washington Hospital Center, MedStar Heart and Vascular Institute, Washington, DC, United States.,Georgetown University Department of Medicine, Washington, DC, United States
| | - Chava Chezar-Azerrad
- Section of Interventional Cardiology MedStar Washington Hospital Center, MedStar Heart and Vascular Institute, Washington, DC, United States.,Georgetown University Department of Medicine, Washington, DC, United States
| | - Ron Waksman
- MedStar Cardiovascular Research Network, MedStar Washington Hospital Center, MedStar Health Research Institute, Washington, DC, United States.,Section of Interventional Cardiology MedStar Washington Hospital Center, MedStar Heart and Vascular Institute, Washington, DC, United States.,Georgetown University Department of Medicine, Washington, DC, United States
| | - Hector M Garcia-Garcia
- MedStar Cardiovascular Research Network, MedStar Washington Hospital Center, MedStar Health Research Institute, Washington, DC, United States.,Section of Interventional Cardiology MedStar Washington Hospital Center, MedStar Heart and Vascular Institute, Washington, DC, United States.,Georgetown University Department of Medicine, Washington, DC, United States
| |
Collapse
|
7
|
Hoogendoorn A, den Hoedt S, Hartman EMJ, Krabbendam-Peters I, Te Lintel Hekkert M, van der Zee L, van Gaalen K, Witberg KT, Dorst K, Ligthart JMR, Drouet L, Van der Heiden K, van Lennep JR, van der Steen AFW, Duncker DJ, Mulder MT, Wentzel JJ. Variation in Coronary Atherosclerosis Severity Related to a Distinct LDL (Low-Density Lipoprotein) Profile: Findings From a Familial Hypercholesterolemia Pig Model. Arterioscler Thromb Vasc Biol 2019; 39:2338-2352. [PMID: 31554418 PMCID: PMC6818985 DOI: 10.1161/atvbaha.119.313246] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE In an adult porcine model of familial hypercholesterolemia (FH), coronary plaque development was characterized. To elucidate the underlying mechanisms of the observed inter-individual variation in disease severity, detailed lipoprotein profiles were determined. Approach and Results: FH pigs (3 years old, homozygous LDLR R84C mutation) received an atherogenic diet for 12 months. Coronary atherosclerosis development was monitored using serial invasive imaging and histology. A pronounced difference was observed between mildly diseased pigs which exclusively developed early lesions (maximal plaque burden, 25% [23%-34%]; n=5) and advanced-diseased pigs (n=5) which developed human-like, lumen intruding plaques (maximal plaque burden, 69% [57%-77%]) with large necrotic cores, intraplaque hemorrhage, and calcifications. Advanced-diseased pigs and mildly diseased pigs displayed no differences in conventional risk factors. Additional plasma lipoprotein profiling by size-exclusion chromatography revealed 2 different LDL (low-density lipoprotein) subtypes: regular and larger LDL. Cholesterol, sphingosine-1-phosphate, ceramide, and sphingomyelin levels were determined in these LDL-subfractions using standard laboratory techniques and high-pressure liquid chromatography mass-spectrometry analyses, respectively. At 3 months of diet, regular LDL of advanced-diseased pigs contained relatively more cholesterol (LDL-C; regular/larger LDL-C ratio 1.7 [1.3-1.9] versus 0.8 [0.6-0.9]; P=0.008) than mildly diseased pigs, while larger LDL contained more sphingosine-1-phosphate, ceramides, and sphingomyelins. Larger and regular LDL was also found in plasma of 3 patients with homozygous FH with varying LDL-C ratios. CONCLUSIONS In our adult FH pig model, inter-individual differences in atherosclerotic disease severity were directly related to the distribution of cholesterol and sphingolipids over a distinct LDL profile with regular and larger LDL shortly after the diet start. A similar LDL profile was detected in patients with homozygous FH.
Collapse
Affiliation(s)
- Ayla Hoogendoorn
- From the Department of Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, the Netherlands (A.H., E.M.J.H., K.v.G., K.V.d.H., A.F.W.v.d.S., J.J.W.)
| | - Sandra den Hoedt
- Department of Internal Medicine, Laboratory of Vascular Medicine, Division of Pharmacology, Vascular & Metabolic Disease (S.d.H., L.v.d.Z., K.D., J.R.v.L., M.T.M.), Erasmus MC, Rotterdam, the Netherlands
| | - Eline M J Hartman
- From the Department of Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, the Netherlands (A.H., E.M.J.H., K.v.G., K.V.d.H., A.F.W.v.d.S., J.J.W.)
| | - Ilona Krabbendam-Peters
- Department of Cardiology, Experimental Cardiology (I.K.-P., M.t.L.H., D.J.D.), Erasmus MC, Rotterdam, the Netherlands
| | - Maaike Te Lintel Hekkert
- Department of Cardiology, Experimental Cardiology (I.K.-P., M.t.L.H., D.J.D.), Erasmus MC, Rotterdam, the Netherlands
| | - Leonie van der Zee
- Department of Internal Medicine, Laboratory of Vascular Medicine, Division of Pharmacology, Vascular & Metabolic Disease (S.d.H., L.v.d.Z., K.D., J.R.v.L., M.T.M.), Erasmus MC, Rotterdam, the Netherlands
| | - Kim van Gaalen
- From the Department of Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, the Netherlands (A.H., E.M.J.H., K.v.G., K.V.d.H., A.F.W.v.d.S., J.J.W.)
| | - Karen Th Witberg
- Department of Cardiology, Interventional Cardiology (K.T.W., J.M.R.L.), Erasmus MC, Rotterdam, the Netherlands
| | - Kristien Dorst
- Department of Internal Medicine, Laboratory of Vascular Medicine, Division of Pharmacology, Vascular & Metabolic Disease (S.d.H., L.v.d.Z., K.D., J.R.v.L., M.T.M.), Erasmus MC, Rotterdam, the Netherlands
| | - Jurgen M R Ligthart
- Department of Cardiology, Interventional Cardiology (K.T.W., J.M.R.L.), Erasmus MC, Rotterdam, the Netherlands
| | - Ludovic Drouet
- Department of Angiohematology, Hospital Lariboisiere, Paris, France (L.D.)
| | - Kim Van der Heiden
- From the Department of Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, the Netherlands (A.H., E.M.J.H., K.v.G., K.V.d.H., A.F.W.v.d.S., J.J.W.)
| | - Jeanine Roeters van Lennep
- Department of Internal Medicine, Laboratory of Vascular Medicine, Division of Pharmacology, Vascular & Metabolic Disease (S.d.H., L.v.d.Z., K.D., J.R.v.L., M.T.M.), Erasmus MC, Rotterdam, the Netherlands
| | - Antonius F W van der Steen
- From the Department of Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, the Netherlands (A.H., E.M.J.H., K.v.G., K.V.d.H., A.F.W.v.d.S., J.J.W.)
| | - Dirk J Duncker
- Department of Cardiology, Experimental Cardiology (I.K.-P., M.t.L.H., D.J.D.), Erasmus MC, Rotterdam, the Netherlands
| | - Monique T Mulder
- Department of Internal Medicine, Laboratory of Vascular Medicine, Division of Pharmacology, Vascular & Metabolic Disease (S.d.H., L.v.d.Z., K.D., J.R.v.L., M.T.M.), Erasmus MC, Rotterdam, the Netherlands
| | - Jolanda J Wentzel
- From the Department of Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, the Netherlands (A.H., E.M.J.H., K.v.G., K.V.d.H., A.F.W.v.d.S., J.J.W.)
| |
Collapse
|
8
|
Role of Near-Infrared Spectroscopy (NIRS) in Intracoronary Imaging. CURRENT CARDIOVASCULAR IMAGING REPORTS 2019. [DOI: 10.1007/s12410-019-9510-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
9
|
Shishikura D, Sidharta SL, Honda S, Takata K, Kim SW, Andrews J, Montarello N, Delacroix S, Baillie T, Worthley MI, Psaltis PJ, Nicholls SJ. The relationship between segmental wall shear stress and lipid core plaque derived from near-infrared spectroscopy. Atherosclerosis 2018; 275:68-73. [PMID: 29864607 DOI: 10.1016/j.atherosclerosis.2018.04.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/11/2018] [Accepted: 04/18/2018] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND AIMS Wall shear stress (WSS) has an important role in the natural history of coronary atherosclerosis. The aim of this study is to investigate the relationship between WSS and the lipid content of atherosclerotic plaques as assessed by near-infrared spectroscopy (NIRS). METHODS We performed serial NIRS and intravascular ultrasound (IVUS) upon Doppler coronary flow guidewire of coronary plaques at baseline and after 12-18 months in 28 patients with <30% angiographic stenosis, who presented with coronary artery disease. Segmental WSS, plaque burden and NIRS-derived lipid rich plaque (LRP) were evaluated at both time-points in 482 consecutive 2-mm coronary segments. RESULTS Segments with LRP at baseline (n = 106) had a higher average WSS (1.4 ± 0.6 N/m2), compared to those without LRP (n = 376) (1.2 ± 0.6 N/m2, p<0.001). In segments without baseline LRP, WSS was higher in those who subsequently developed new LRP (n = 35) than those who did not (n = 341) (1.4 ± 0.8 vs. 1.1 ± 0.6 N/m2, p=0.002). Conversely, in segments with baseline LRP, WSS was lower in those who had regression of lipid content (n = 41) than those who did not (n = 65) (1.2 ± 0.4 vs. 1.6 ± 0.7 N/m2, p=0.007). Segments with the highest tertile of WSS displayed greater progression of LCBI irrespective of baseline lipid content (p<0.001). Multivariate analysis revealed that baseline WSS (p=0.017), PAV (p<0.001) and LCBI (p<0.001) were all independent predictors of change in LCBI over time. CONCLUSIONS Coronary segments with high WSS associate with progression of lipid content over time, which may indicate transformation to a more vulnerable phenotype.
Collapse
Affiliation(s)
- Daisuke Shishikura
- Vascular Research Centre, Heart Health Theme, South Australian Health & Medical Research Institute, Australia
| | - Samuel L Sidharta
- Discipline of Medicine, University of Adelaide, Adelaide, Australia; Cardiovascular Investigation Unit, University of Adelaide, Royal Adelaide Hospital, Adelaide, Australia
| | - Satoshi Honda
- Vascular Research Centre, Heart Health Theme, South Australian Health & Medical Research Institute, Australia
| | - Kohei Takata
- Vascular Research Centre, Heart Health Theme, South Australian Health & Medical Research Institute, Australia
| | - Susan W Kim
- Vascular Research Centre, Heart Health Theme, South Australian Health & Medical Research Institute, Australia
| | - Jordan Andrews
- Vascular Research Centre, Heart Health Theme, South Australian Health & Medical Research Institute, Australia
| | - Natalie Montarello
- Cardiovascular Investigation Unit, University of Adelaide, Royal Adelaide Hospital, Adelaide, Australia
| | - Sinny Delacroix
- Discipline of Medicine, University of Adelaide, Adelaide, Australia
| | - Timothy Baillie
- Discipline of Medicine, University of Adelaide, Adelaide, Australia
| | - Matthew I Worthley
- Vascular Research Centre, Heart Health Theme, South Australian Health & Medical Research Institute, Australia; Discipline of Medicine, University of Adelaide, Adelaide, Australia; Cardiovascular Investigation Unit, University of Adelaide, Royal Adelaide Hospital, Adelaide, Australia
| | - Peter J Psaltis
- Vascular Research Centre, Heart Health Theme, South Australian Health & Medical Research Institute, Australia; Discipline of Medicine, University of Adelaide, Adelaide, Australia; Cardiovascular Investigation Unit, University of Adelaide, Royal Adelaide Hospital, Adelaide, Australia
| | - Stephen J Nicholls
- Vascular Research Centre, Heart Health Theme, South Australian Health & Medical Research Institute, Australia; Discipline of Medicine, University of Adelaide, Adelaide, Australia; Cardiovascular Investigation Unit, University of Adelaide, Royal Adelaide Hospital, Adelaide, Australia.
| |
Collapse
|
10
|
Sidharta SL, Baillie TJ, Howell S, Nicholls SJ, Montarello N, Honda S, Shishikura D, Delacroix S, Kim S, Beltrame JF, Psaltis PJ, Worthley SG, Worthley MI. Evaluation of human coronary vasodilator function predicts future coronary atheroma progression. Heart 2018; 104:1439-1446. [DOI: 10.1136/heartjnl-2017-312579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/04/2018] [Accepted: 02/07/2018] [Indexed: 11/03/2022] Open
Abstract
ObjectiveCoronary vasodilator function and atherosclerotic plaque progression have both been shown to be associated with adverse cardiovascular events. However, the relationship between these factors and the lipid burden of coronary plaque remains unknown. These experiments focus on investigating the relationship between impaired coronary vasodilator function (endothelium dependent (salbutamol) and endothelium independent (glyceryl trinitrate)) and the natural history of atheroma plaque progression and lipid burden using dual modality intravascular ultrasound (IVUS) and near-infrared spectroscopy (NIRS) imaging.Methods33 patients with stable chest pain or acute coronary syndrome underwent serial assessment of coronary vasodilator function and intracoronary plaque IVUS and NIRS imaging. Coronary segmental macrovascular response (% change segmental lumen volume (ΔSLV)), plaque burden (per cent atheroma volume (PAV)), lipid core (lipid-rich plaque (LRP) and lipid core burden index (LCBI)) were measured at baseline and after an interval of 12–18 months (n=520 segments).ResultsLipid-negative coronary segments which develop into LRP over the study time period demonstrated impaired endothelial-dependent function (−0.24±2.96 vs 5.60±1.47%, P=0.04) and endothelial-independent function (13.91±4.45 vs 21.19±3.19%, P=0.036), at baseline. By multivariate analysis, endothelial-dependent function predicted ∆LCBI (β coefficient: −3.03, 95% CI (−5.81 to −0.25), P=0.033) whereas endothelial-independent function predicted ∆PAV (β coefficient: 0.07, 95% CI (0.04 to 0.10), P<0.0001).ConclusionsEpicardial coronary vasodilator function is a determinant of future atheroma progression and composition irrespective of the nature of clinical presentation.Trial registration numberACTRN12612000594820, Post-results.
Collapse
|
11
|
Katagiri Y, Tenekecioglu E, Serruys PW, Collet C, Katsikis A, Asano T, Miyazaki Y, Piek JJ, Wykrzykowska JJ, Bourantas C, Onuma Y. What does the future hold for novel intravascular imaging devices: a focus on morphological and physiological assessment of plaque. Expert Rev Med Devices 2017; 14:985-999. [DOI: 10.1080/17434440.2017.1407646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yuki Katagiri
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | - Carlos Collet
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Athanasios Katsikis
- Department of Cardiology, General Military Hospital of Athens, Athens, Greece
| | - Taku Asano
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Yosuke Miyazaki
- ThoraxCenter, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jan J Piek
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Christos Bourantas
- Barts Heart Centre, Barts Health NHS Trust, London, UK
- Institute of Cardiovascular Sciences, University College London, London, UK
| | - Yoshinobu Onuma
- ThoraxCenter, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
12
|
Abudayyeh I, Tran BG, Tobis JM. Optimizing Coronary Angioplasty with FFR and Intravascular Imaging. CURRENT CARDIOVASCULAR RISK REPORTS 2017. [DOI: 10.1007/s12170-017-0534-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
O'Brien A, LaCombe A, Stickland A, Madder RD. Intracoronary near-infrared spectroscopy: an overview of the technology, histologic validation, and clinical applications. Glob Cardiol Sci Pract 2016; 2016:e201618. [PMID: 29043266 PMCID: PMC5642785 DOI: 10.21542/gcsp.2016.18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Intracoronary near-infrared spectroscopy (NIRS) imaging, which is now clinically available in a combined NIRS and intravascular ultrasound catheter, is a novel catheter-based imaging modality capable of identifying lipid core plaque within the coronary arteries of living patients. The present manuscript provides an overview of intracoronary NIRS imaging with a focus on several concepts essential to individuals seeking to better understand this novel imaging modality. One of the major assets of NIRS is that it has been rigorously validated against the gold standard of histopathology and has been shown to accurately identify histologically-proven fibroatheroma. Clinical studies of NIRS have demonstrated its ability to accurately identify large lipid core plaques at culprit lesions across the spectrum of acute coronary syndromes. NIRS has also been shown to detect lesions at increased risk of causing peri-procedural myocardial infarction during PCI. With regards to predicting future risk, NIRS is seemingly capable of identifying vulnerable patients at increased risk of experiencing subsequent patient-level cardiovascular events. In addition to these clinical applications of NIRS, there are several large prospective observational studies underway to determine if NIRS imaging will be able to identify vulnerable plaques at increased risk of triggering site-specific future coronary events. These studies, once completed, are anticipated to provide valuable data regarding the ability of NIRS imaging to identify plaque vulnerability.
Collapse
Affiliation(s)
- Andrew O'Brien
- Michigan State University College of Human Medicine, Grand Rapids, Michigan, USA
| | - Andrew LaCombe
- Michigan State University College of Human Medicine, Grand Rapids, Michigan, USA
| | - Aubrey Stickland
- Michigan State University College of Human Medicine, Grand Rapids, Michigan, USA
| | - Ryan D Madder
- Michigan State University College of Human Medicine, Grand Rapids, Michigan, USA
| |
Collapse
|
14
|
Saybolt MD, Lilly SM, Patel D, Hamamdzic D, Llano R, Fenning RS, Madden S, Wilensky RL. The vulnerable artery: early and rapid deposition of lipid in coronary arteries is associated with subsequent development of thin-cap fibroatheromas. EUROINTERVENTION 2016; 11:e1612-8. [PMID: 27056122 DOI: 10.4244/eijv11i14a312] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
AIMS We aimed to determine whether intravascular ultrasound (IVUS) and near infrared spectroscopy (NIRS) could identify arteries which would subsequently develop a thin-cap fibroatheroma (TCFA). METHODS AND RESULTS Three-vessel angiography, IVUS and NIRS evaluations were performed at three, six and nine months after induction of diabetes mellitus and hypercholesterolaemia in 13 Yorkshire pigs (n=37 arteries). In vivo total arterial plaque plus media (P+M) area, echo-attenuated plaque (AP) area by IVUS, and lipid core burden index (LCBI) by NIRS were compared to histology at nine months. P+M mean area increased over time (3 vs. 6 months p<0.01; 6 vs. 9 months p<0.01), as did the AP area and mean LCBI between three and six months (p<0.01). There were 69 TCFAs within 18 arteries. The mean LCBI at six months was greater in arteries containing a TCFA (77.8±17.4 vs. 34.3±11.4; p=0.04) as was the ∆LCBI from three to six months (55.3±16.9 vs. 3.3±16.0; p=0.03). Arteries which contained TCFA at nine months had greater AP area by IVUS at six months (p=0.007). CONCLUSIONS The early and persistent accumulation of total arterial lipid detected by NIRS was associated with the future development of TCFAs.
Collapse
Affiliation(s)
- Matthew D Saybolt
- Cardiovascular Division, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Bentzon JF. Natural history of atherosclerosis: the first shall be the worst. EUROINTERVENTION 2016; 11:e1574-5. [PMID: 27056116 DOI: 10.4244/eijv11i14a306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Jacob Fog Bentzon
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain, and Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
16
|
Calcagno C, Mulder WJM, Nahrendorf M, Fayad ZA. Systems Biology and Noninvasive Imaging of Atherosclerosis. Arterioscler Thromb Vasc Biol 2016; 36:e1-8. [PMID: 26819466 PMCID: PMC4861402 DOI: 10.1161/atvbaha.115.306350] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Claudia Calcagno
- From the Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (C.C., W.J.M.M., Z.A.F.); Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands (W.J.M.M.); and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (M.N.).
| | - Willem J M Mulder
- From the Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (C.C., W.J.M.M., Z.A.F.); Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands (W.J.M.M.); and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (M.N.)
| | - Matthias Nahrendorf
- From the Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (C.C., W.J.M.M., Z.A.F.); Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands (W.J.M.M.); and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (M.N.)
| | - Zahi A Fayad
- From the Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (C.C., W.J.M.M., Z.A.F.); Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands (W.J.M.M.); and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (M.N.)
| |
Collapse
|
17
|
Madder RD, Khan M, Husaini M, Chi M, Dionne S, VanOosterhout S, Borgman A, Collins JS, Jacoby M. Combined Near-Infrared Spectroscopy and Intravascular Ultrasound Imaging of Pre-Existing Coronary Artery Stents. Circ Cardiovasc Imaging 2016; 9:CIRCIMAGING.115.003576. [DOI: 10.1161/circimaging.115.003576] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Ryan D. Madder
- From the Division of Cardiovascular Medicine, Frederik Meijer Heart and Vascular Institute, Spectrum Health, Grand Rapids, MI
| | - Mohsin Khan
- From the Division of Cardiovascular Medicine, Frederik Meijer Heart and Vascular Institute, Spectrum Health, Grand Rapids, MI
| | - Mustafa Husaini
- From the Division of Cardiovascular Medicine, Frederik Meijer Heart and Vascular Institute, Spectrum Health, Grand Rapids, MI
| | - Margaret Chi
- From the Division of Cardiovascular Medicine, Frederik Meijer Heart and Vascular Institute, Spectrum Health, Grand Rapids, MI
| | - Sarah Dionne
- From the Division of Cardiovascular Medicine, Frederik Meijer Heart and Vascular Institute, Spectrum Health, Grand Rapids, MI
| | - Stacie VanOosterhout
- From the Division of Cardiovascular Medicine, Frederik Meijer Heart and Vascular Institute, Spectrum Health, Grand Rapids, MI
| | - Andrew Borgman
- From the Division of Cardiovascular Medicine, Frederik Meijer Heart and Vascular Institute, Spectrum Health, Grand Rapids, MI
| | - J. Stewart Collins
- From the Division of Cardiovascular Medicine, Frederik Meijer Heart and Vascular Institute, Spectrum Health, Grand Rapids, MI
| | - Mark Jacoby
- From the Division of Cardiovascular Medicine, Frederik Meijer Heart and Vascular Institute, Spectrum Health, Grand Rapids, MI
| |
Collapse
|
18
|
Shim J, Al-Mashhadi RH, Sørensen CB, Bentzon JF. Large animal models of atherosclerosis - new tools for persistent problems in cardiovascular medicine. J Pathol 2015; 238:257-66. [DOI: 10.1002/path.4646] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/15/2015] [Accepted: 09/18/2015] [Indexed: 11/06/2022]
Affiliation(s)
- J Shim
- Department of Clinical Medicine; Aarhus University, and Department of Cardiology, Aarhus University Hospital; Denmark
| | - RH Al-Mashhadi
- Department of Clinical Medicine; Aarhus University, and Department of Cardiology, Aarhus University Hospital; Denmark
| | - CB Sørensen
- Department of Clinical Medicine; Aarhus University, and Department of Cardiology, Aarhus University Hospital; Denmark
| | - JF Bentzon
- Department of Clinical Medicine; Aarhus University, and Department of Cardiology, Aarhus University Hospital; Denmark
- Centro Nacional de Investigaciones Cardiovasculares Carlos III; Madrid Spain
| |
Collapse
|
19
|
Erlinge D. Near-infrared spectroscopy for intracoronary detection of lipid-rich plaques to understand atherosclerotic plaque biology in man and guide clinical therapy. J Intern Med 2015; 278:110-25. [PMID: 26096457 DOI: 10.1111/joim.12381] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ischaemic heart disease is the leading cause of death worldwide. The common denominator for plaques causing acute coronary syndrome (ACS) is lipid accumulation, either as a lipid core or lipid pools. An intracoronary imaging device to detect lipid-rich plaques (LRPs) could therefore identify most of the plaques causing ACS and sudden death. Near-infrared spectroscopy combined with intravascular ultrasound (NIRS-IVUS) is a promising new intracoronary imaging method that is able to specifically quantify lipid accumulation measured as the lipid core burden index (LCBI). NIRS-IVUS is highly specific for the identification of ST-elevation myocardial infarction (STEMI) and non-ST-elevation myocardial infarction (NSTEMI) culprit plaques usually in the form of a circular LRP. NIRS-IVUS may assist in defining the aetiology of coronary events. The effect of cholesterol-lowering therapy on the lipid core can be measured in coronary plaques in patients, and NIRS-IVUS may be a useful tool for drug development in phase II studies as a surrogate end-point for future ACS. Plaques with a high LCBI have an increased risk of peri-procedural events. NIRS-IVUS can help to define the diameter and length of stents to avoid procedure-related complications. Increased coronary LCBI predicts a higher risk of future cardiovascular events. Lipid core detection using NIRS may help to identify vulnerable plaques to treat them before they cause ACS or sudden death.
Collapse
Affiliation(s)
- D Erlinge
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
20
|
Andreou I, Antoniadis AP, Shishido K, Papafaklis MI, Koskinas KC, Chatzizisis YS, Coskun AU, Edelman ER, Feldman CL, Stone PH. How do we prevent the vulnerable atherosclerotic plaque from rupturing? Insights from in vivo assessments of plaque, vascular remodeling, and local endothelial shear stress. J Cardiovasc Pharmacol Ther 2015; 20:261-275. [PMID: 25336461 DOI: 10.1177/1074248414555005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/14/2014] [Indexed: 01/13/2023]
Abstract
Coronary atherosclerosis progresses both as slow, gradual enlargement of focal plaque and also as a more dynamic process with periodic abrupt changes in plaque geometry, size, and morphology. Systemic vasculoprotective therapies such as statins, angiotensin-converting enzyme inhibitors, and antiplatelet agents are the cornerstone of prevention of plaque rupture and new adverse clinical outcomes, but such systemic therapies are insufficient to prevent the majority of new cardiac events. Invasive imaging methods have been able to identify both the anatomic features of high-risk plaque and the ongoing pathobiological stimuli responsible for progressive plaque inflammation and instability and may provide sufficient information to formulate preventive local mechanical strategies (eg, preemptive percutaneous coronary interventions) to avert cardiac events. Local endothelial shear stress (ESS) triggers vascular phenomena that synergistically exacerbate atherosclerosis toward an unstable phenotype. Specifically, low ESS augments lipid uptake and catabolism, induces plaque inflammation and oxidation, downregulates the production, upregulates the degradation of extracellular matrix, and increases cellular apoptosis ultimately leading to thin-cap fibroatheromas and/or endothelial erosions. Increases in blood thrombogenicity that result from either high or low ESS also contribute to plaque destabilization. An understanding of the actively evolving vascular phenomena, as well as the development of in vivo imaging methodologies to identify the presence and severity of the different processes, may enable early identification of a coronary plaque destined to acquire a high-risk state and allow for highly selective, focal preventive interventions to avert the adverse natural history of that particular plaque. In this review, we focus on the role of ESS in the pathobiologic processes responsible for plaque destabilization, leading either to accelerated plaque growth or to acute coronary events, and emphasize the potential to utilize in vivo risk stratification of individual coronary plaques to optimize prevention strategies to preclude new cardiac events.
Collapse
Affiliation(s)
- Ioannis Andreou
- The Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Antonios P Antoniadis
- The Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Koki Shishido
- The Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Michail I Papafaklis
- The Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Konstantinos C Koskinas
- The Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Yiannis S Chatzizisis
- The Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Ahmet U Coskun
- The Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Elazer R Edelman
- The Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Charles L Feldman
- The Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Peter H Stone
- The Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
21
|
Horváth M, Hájek P, Štěchovský C, Veselka J. Vulnerable plaque imaging and acute coronary syndrome. COR ET VASA 2014. [DOI: 10.1016/j.crvasa.2014.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Affiliation(s)
- Ann Marie Schmidt
- From the Diabetes Research Program, Department of Medicine, NYU Langone Medical Center, New York, NY
| |
Collapse
|
23
|
Sanchez OD, Sakakura K, Otsuka F, Yahagi K, Virmani R, Joner M. Expectations and limitations of contemporary intravascular imaging: lessons learned from pathology. Expert Rev Cardiovasc Ther 2014; 12:601-11. [PMID: 24738595 DOI: 10.1586/14779072.2014.902749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Acute coronary syndrome is the leading cause of death worldwide and plaque rupture is the most common underlying mechanism of coronary thrombosis. During the last 2 decades the understanding of atherosclerotic plaque progression advanced dramatically and pathology studies provided fundamental insights of underlying plaque morphology, which paved the way for invasive imaging modalities, which bring a new area of atherosclerotic plaque characterization in vivo. The development of intravascular ultrasound (IVUS) allowed the field to evaluate the principles of vascular anatomy, which is often underestimated by coronary angiography. Furthermore, IVUS image technologies were developed to obtain improved characterization of plaque composition. However, since spatial resolution of IVUS is insufficient to distinguish details of plaque morphology, a broad adoption of this technology in clinical practice was missing. Optical coherence tomography is a light-based imaging modality with higher spatial resolution compared to IVUS, which enables the assessment of vascular anatomy with great detail.
Collapse
|
24
|
Abstract
Atherosclerosis imaging strategies can delineate characteristics of plaques at risk of rupture and thrombosis. Structural plaque imaging identifies high-risk plaque features, including lipid pools, thin fibrous caps, and intraplaque hemorrhage. New molecular imaging techniques complement structural imaging approaches by illuminating important features of plaque biology, with a prominent focus on detecting inflammation as a high-risk phenotype. As we unravel the molecular and structural characteristics underlying thrombosis-prone plaques, there is significant promise for eventual early identification and prediction of atherosclerotic plaque complications before they occur. Here we focus on recent imaging insights into high-risk arterial plaques, the etiologic agent of acute myocardial infarction, stroke, and sudden cardiac death.
Collapse
Affiliation(s)
- Eric A Osborn
- Cardiology Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
25
|
Fenning RS, Wilensky RL. New Insights into the Vulnerable Plaque from Imaging Studies. Curr Atheroscler Rep 2014; 16:397. [DOI: 10.1007/s11883-014-0397-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Gebhard C, L'Allier PL, Tardif JC. Near-infrared spectroscopy for cardiovascular risk assessment? Not ready for prime time. Eur Heart J 2013; 35:263-5. [PMID: 24052602 DOI: 10.1093/eurheartj/eht361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
27
|
Hamamdzic D, Wilensky RL. Porcine models of accelerated coronary atherosclerosis: role of diabetes mellitus and hypercholesterolemia. J Diabetes Res 2013; 2013:761415. [PMID: 23844374 PMCID: PMC3697774 DOI: 10.1155/2013/761415] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 05/16/2013] [Indexed: 12/15/2022] Open
Abstract
Animal models of atherosclerosis have proven to be an invaluable asset in understanding the pathogenesis of the disease. However, large animal models may be needed in order to assess novel therapeutic approaches to the treatment of atherosclerosis. Porcine models of coronary and peripheral atherosclerosis offer several advantages over rodent models, including similar anatomical size to humans, as well as genetic expression and development of high-risk atherosclerotic lesions which are similar to humans. Here we review the four models of porcine atherosclerosis, including the diabetic/hypercholesterolemic model, Rapacz-familial hypercholesterolemia pig, the (PCSK9) gain-of-function mutant pig model, and the Ossabaw miniature pig model of metabolic syndrome. All four models reliably represent features of human vascular disease.
Collapse
Affiliation(s)
- Damir Hamamdzic
- Cardiovascular Division, Hospital of the University of Pennsylvania and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert L. Wilensky
- Cardiovascular Division, Hospital of the University of Pennsylvania and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
- *Robert L. Wilensky:
| |
Collapse
|