1
|
Yueqing W, Lei X, Xu W, Jiao W, Limin G, Zhongbo S. Molecular mechanism of SH3GL3 recombinant protein and attenuates the acute lung inflammation in Klebsiella pneumonia rats by mollugin treatment by regulating STAT3/ROS signaling pathway. Int J Biol Macromol 2025; 307:142339. [PMID: 40120906 DOI: 10.1016/j.ijbiomac.2025.142339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
In recent years, pulmonary infection caused by Klebsiella pneumoniae has been increasing in clinical practice, becoming one of the important pathogens threatening human health. Morukin, as a commonly used antibiotic, has a certain effect in the treatment of bacterial pneumonia, but the acute pulmonary inflammation caused by Morukin has also brought serious side effects to patients. Therefore, the aim of this study was to explore the molecular mechanism of SH3GL3 recombinant protein and investigate its effect on reducing acute pulmonary inflammation in the treatment of Klebsiella pneumoniae infection by modulating the STAT3/ROS signaling pathway. In this study, recombinant SH3GL3 protein was prepared by genetic engineering technology to establish an animal model of Klebsiella pneumoniae infection. The effect of recombinant SH3GL3 protein on acute pulmonary inflammation was evaluated by observing the pathological changes of lung tissue, inflammatory cell infiltration and expression levels of inflammatory factors in each group. Western blot, immunohistochemistry and other techniques were used to detect the expression and activity of STAT3 and ROS signaling pathway related proteins, in order to reveal the molecular mechanism of SH3GL3 recombinant protein in alleviating inflammation. In the SH3GL3 recombinant protein intervention group, the pathological changes of lung tissue were significantly reduced, the number of inflammatory cells was reduced, and the expression level of inflammatory factors was decreased. Further molecular mechanism studies have shown that SH3GL3 recombinant protein can significantly inhibit the phosphorylation and activation of STAT3 and reduce the production of ROS, thus inhibiting the activation of STAT3/ROS signaling pathway and alleviating pulmonary inflammation. The recombinant protein SH3GL3 effectively alleviates acute pulmonary inflammation in the treatment of Klebsiella pneumoniae infection with morukin by regulating the STAT3/ROS signaling pathway.
Collapse
Affiliation(s)
- Wang Yueqing
- Department of Laboratory Medicine, Wuxi Huishan District People's Hospital, Wuxi 214187, China
| | - Xu Lei
- Department of Oral and Maxillofacial Surgery, Wuxi Stomatological Hospital, Wuxi 214001, China
| | - Wang Xu
- Department of Laboratory Medicine, Affiliated Wuxi Fifth Hospital of Jiangnan University, Wuxi 214005, China
| | - Wang Jiao
- Department of Laboratory Medicine, Wuxi Huishan District People's Hospital, Wuxi 214187, China
| | - Gu Limin
- Department of Laboratory Medicine, Wuxi Huishan District People's Hospital, Wuxi 214187, China.
| | - Shang Zhongbo
- Department of Laboratory Medicine, Wuxi Huishan District People's Hospital, Wuxi 214187, China.
| |
Collapse
|
2
|
Iyer KR, Clarke SL, Guarischi‐Sousa R, Gjoni K, Heath AS, Young EP, Stitziel NO, Laurie C, Broome JG, Khan AT, Lewis JP, Xu H, Montasser ME, Ashley KE, Hasbani NR, Boerwinkle E, Morrison AC, Chami N, Do R, Rocheleau G, Lloyd‐Jones DM, Lemaitre RN, Bis JC, Floyd JS, Kinney GL, Bowden DW, Palmer ND, Benjamin EJ, Nayor M, Yanek LR, Kral BG, Becker LC, Kardia SLR, Smith JA, Bielak LF, Norwood AF, Min Y, Carson AP, Post WS, Rich SS, Herrington D, Guo X, Taylor KD, Manson JE, Franceschini N, Pollard KS, Mitchell BD, Loos RJF, Fornage M, Hou L, Psaty BM, Young KA, Regan EA, Freedman BI, Vasan RS, Levy D, Mathias RA, Peyser PA, Raffield LM, Kooperberg C, Reiner AP, Rotter JI, Jun G, de Vries PS, Assimes TL. Unveiling the Genetic Landscape of Coronary Artery Disease Through Common and Rare Structural Variants. J Am Heart Assoc 2025; 14:e036499. [PMID: 39950338 PMCID: PMC12074758 DOI: 10.1161/jaha.124.036499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/21/2024] [Indexed: 02/17/2025]
Abstract
BACKGROUND Genome-wide association studies have identified several hundred susceptibility single nucleotide variants for coronary artery disease (CAD). Despite single nucleotide variant-based genome-wide association studies improving our understanding of the genetics of CAD, the contribution of structural variants (SVs) to the risk of CAD remains largely unclear. METHOD AND RESULTS We leveraged SVs detected from high-coverage whole genome sequencing data in a diverse group of participants from the National Heart Lung and Blood Institute's Trans-Omics for Precision Medicine program. Single variant tests were performed on 58 706 SVs in a study sample of 11 556 CAD cases and 42 907 controls. Additionally, aggregate tests using sliding windows were performed to examine rare SVs. One genome-wide significant association was identified for a common biallelic intergenic duplication on chromosome 6q21 (P=1.54E-09, odds ratio=1.34). The sliding window-based aggregate tests found 1 region on chromosome 17q25.3, overlapping USP36, to be significantly associated with coronary artery disease (P=1.03E-10). USP36 is highly expressed in arterial and adipose tissues while broadly affecting several cardiometabolic traits. CONCLUSIONS Our results suggest that SVs, both common and rare, may influence the risk of coronary artery disease.
Collapse
Affiliation(s)
- Kruthika R. Iyer
- Data Science and Biotechnology, Gladstone InstitutesSan FranciscoCAUSA
- Department of Medicine, Division of Cardiovascular MedicineStanford University School of MedicineStanfordCAUSA
| | - Shoa L. Clarke
- Department of Medicine, Division of Cardiovascular MedicineStanford University School of MedicineStanfordCAUSA
- Department of Medicine, Stanford Prevention Research CenterStanford University School of MedicineStanfordCAUSA
| | - Rodrigo Guarischi‐Sousa
- Department of Medicine, Division of Cardiovascular MedicineStanford University School of MedicineStanfordCAUSA
| | - Ketrin Gjoni
- Data Science and Biotechnology, Gladstone InstitutesSan FranciscoCAUSA
- Department of Epidemiology and BiostatisticsUniversity of CaliforniaSan FranciscoCAUSA
| | - Adam S. Heath
- Department of Epidemiology, Human Genetics Center, School of Public HealthThe University of Texas Health Science Center at HoustonHoustonTXUSA
| | - Erica P. Young
- Department of Medicine, Division of CardiologyWashington University School of MedicineSaint LouisMOUSA
- McDonnell Genome Institute, Washington University School of MedicineSaint LouisMOUSA
| | - Nathan O. Stitziel
- Department of Medicine, Division of CardiologyWashington University School of MedicineSaint LouisMOUSA
- McDonnell Genome Institute, Washington University School of MedicineSaint LouisMOUSA
- Department of GeneticsWashington University School of MedicineSaint LouisMOUSA
| | - Cecelia Laurie
- Department of BiostatisticsUniversity of WashingtonSeattleWAUSA
| | - Jai G. Broome
- Department of BiostatisticsUniversity of WashingtonSeattleWAUSA
- Department of Medicine, Division of Internal MedicineUniversity of WashingtonSeattleWAUSA
| | - Alyna T. Khan
- Department of BiostatisticsUniversity of WashingtonSeattleWAUSA
| | - Joshua P. Lewis
- Department of MedicineUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Huichun Xu
- Department of MedicineUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - May E. Montasser
- Department of MedicineUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Kellan E. Ashley
- Department of MedicineUniversity of Mississippi Medical CenterJacksonMSUSA
| | - Natalie R. Hasbani
- Department of Epidemiology, Human Genetics Center, School of Public HealthThe University of Texas Health Science Center at HoustonHoustonTXUSA
| | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics Center, School of Public HealthThe University of Texas Health Science Center at HoustonHoustonTXUSA
- Human Genome Sequencing CenterBaylor College of MedicineHoustonTXUSA
| | - Alanna C. Morrison
- Department of Epidemiology, Human Genetics Center, School of Public HealthThe University of Texas Health Science Center at HoustonHoustonTXUSA
| | - Nathalie Chami
- The Charles Bronfman Institute for Personalized MedicineIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Ron Do
- The Charles Bronfman Institute for Personalized MedicineIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Ghislain Rocheleau
- The Charles Bronfman Institute for Personalized MedicineIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | | | - Rozenn N. Lemaitre
- Department of Medicine, Cardiovascular Health Research UnitUniversity of WashingtonSeattleWAUSA
| | - Joshua C. Bis
- Department of Medicine, Cardiovascular Health Research UnitUniversity of WashingtonSeattleWAUSA
| | - James S. Floyd
- Department of Medicine, Cardiovascular Health Research UnitUniversity of WashingtonSeattleWAUSA
- Department of EpidemiologyUniversity of WashingtonSeattleWAUSA
| | - Gregory L. Kinney
- Department of EpidemiologyColorado School of Public HealthAuroraCOUSA
| | - Donald W. Bowden
- Department of BiochemistryWake Forest University School of MedicineWinston‐SalemNCUSA
| | - Nicholette D. Palmer
- Department of BiochemistryWake Forest University School of MedicineWinston‐SalemNCUSA
| | - Emelia J. Benjamin
- Department of Medicine, Cardiovascular Medicine, Boston Medical CenterBoston University Chobanian & Avedisian School of MedicineBostonMAUSA
- Department of EpidemiologyBoston University School of Public HealthBostonMAUSA
| | - Matthew Nayor
- Department of Medicine, Cardiovascular MedicineBoston University Chobanian & Avedisian School of MedicineBostonMAUSA
- Department of Medicine, Preventive Medicine & EpidemiologyBoston University Chobanian & Avedisian School of MedicineBostonMAUSA
| | - Lisa R. Yanek
- Department of MedicineJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Brian G. Kral
- Department of MedicineJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Lewis C. Becker
- Department of MedicineJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Sharon L. R. Kardia
- Department of EpidemiologyUniversity of Michigan School of Public HealthAnn ArborMIUSA
| | - Jennifer A. Smith
- Department of EpidemiologyUniversity of Michigan School of Public HealthAnn ArborMIUSA
- Institute for Social ResearchSurvey Research Center, University of MichiganAnn ArborMIUSA
| | - Lawrence F. Bielak
- Department of EpidemiologyUniversity of Michigan School of Public HealthAnn ArborMIUSA
| | - Arnita F. Norwood
- Department of MedicineUniversity of Mississippi Medical CenterJacksonMSUSA
| | - Yuan‐I Min
- Department of MedicineUniversity of Mississippi Medical CenterJacksonMSUSA
| | - April P. Carson
- Department of MedicineUniversity of Mississippi Medical CenterJacksonMSUSA
| | - Wendy S. Post
- Department of Medicine, Division of CardiologyJohns Hopkins UniversityBaltimoreMDUSA
| | - Stephen S. Rich
- Department of Genome SciencesUniversity of Virginia School of MedicineCharlottesvilleVAUSA
| | - David Herrington
- Department of MedicineWake Forest University School of MedicineWinston‐SalemNCUSA
| | - Xiuqing Guo
- Department of Pediatrics, The Institute for Translational Genomics and Population SciencesThe Lundquist Institute for Biomedical Innovation at Harbor‐UCLA Medical CenterTorranceCAUSA
| | - Kent D. Taylor
- Department of Pediatrics, The Institute for Translational Genomics and Population SciencesThe Lundquist Institute for Biomedical Innovation at Harbor‐UCLA Medical CenterTorranceCAUSA
| | - JoAnn E. Manson
- Department of MedicineBrigham and Women’s Hospital, Harvard Medical SchoolBostonMAUSA
| | - Nora Franceschini
- Department of EpidemiologyUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Katherine S. Pollard
- Data Science and Biotechnology, Gladstone InstitutesSan FranciscoCAUSA
- Department of Epidemiology and BiostatisticsUniversity of CaliforniaSan FranciscoCAUSA
- Chan Zuckerberg BiohubSan FranciscoCAUSA
| | - Braxton D. Mitchell
- Department of MedicineUniversity of Maryland School of MedicineBaltimoreMDUSA
- Geriatric Research and Education Clinical CenterBaltimore Veterans Administration Medical CenterBaltimoreMDUSA
| | - Ruth J. F. Loos
- The Charles Bronfman Institute for Personalized MedicineIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Myriam Fornage
- Brown Foundation Institute of Molecular MedicineUniversity of Texas Health Science Center at HoustonHoustonTXUSA
| | - Lifang Hou
- Department of Preventive MedicineNorthwestern UniversityChicagoILUSA
| | - Bruce M. Psaty
- Department of Medicine, Cardiovascular Health Research UnitUniversity of WashingtonSeattleWAUSA
- Department of EpidemiologyUniversity of WashingtonSeattleWAUSA
- Department of Health Systems and Population HealthUniversity of WashingtonSeattleWAUSA
| | - Kendra A. Young
- Department of EpidemiologyColorado School of Public HealthAuroraCOUSA
| | | | - Barry I. Freedman
- Department of Internal Medicine, Section on NephrologyWake Forest University School of MedicineWinston‐SalemNCUSA
| | | | - Daniel Levy
- Division of Intramural Research, Population Sciences BranchNational Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaMDUSA
| | - Rasika A. Mathias
- Department of MedicineJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Patricia A. Peyser
- Department of EpidemiologyUniversity of Michigan School of Public HealthAnn ArborMIUSA
| | - Laura M. Raffield
- Department of GeneticsUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | | | - Alex P. Reiner
- Division of Public HealthFred Hutchinson Cancer CenterSeattleWAUSA
| | - Jerome I. Rotter
- Department of Pediatrics, The Institute for Translational Genomics and Population SciencesThe Lundquist Institute for Biomedical Innovation at Harbor‐UCLA Medical CenterTorranceCAUSA
| | - Goo Jun
- Department of Epidemiology, Human Genetics Center, School of Public HealthThe University of Texas Health Science Center at HoustonHoustonTXUSA
| | - Paul S. de Vries
- Department of Epidemiology, Human Genetics Center, School of Public HealthThe University of Texas Health Science Center at HoustonHoustonTXUSA
| | - Themistocles L. Assimes
- Department of Medicine, Division of Cardiovascular MedicineStanford University School of MedicineStanfordCAUSA
- VA Palo Alto Healthcare SystemPalo AltoCAUSA
| |
Collapse
|
3
|
Popa MA, Mihai CM, Șuică VI, Antohe F, Dubey RK, Leeners B, Simionescu M. Dihydrotestosterone Augments the Angiogenic and Migratory Potential of Human Endothelial Progenitor Cells by an Androgen Receptor-Dependent Mechanism. Int J Mol Sci 2024; 25:4862. [PMID: 38732080 PMCID: PMC11084206 DOI: 10.3390/ijms25094862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Endothelial progenitor cells (EPCs) play a critical role in cardiovascular regeneration. Enhancement of their native properties would be highly beneficial to ensuring the proper functioning of the cardiovascular system. As androgens have a positive effect on the cardiovascular system, we hypothesized that dihydrotestosterone (DHT) could also influence EPC-mediated repair processes. To evaluate this hypothesis, we investigated the effects of DHT on cultured human EPCs' proliferation, viability, morphology, migration, angiogenesis, gene and protein expression, and ability to integrate into cardiac tissue. The results showed that DHT at different concentrations had no cytotoxic effect on EPCs, significantly enhanced the cell proliferation and viability and induces fast, androgen-receptor-dependent formation of capillary-like structures. DHT treatment of EPCs regulated gene expression of androgen receptors and the genes and proteins involved in cell migration and angiogenesis. Importantly, DHT stimulation promoted EPC migration and the cells' ability to adhere and integrate into murine cardiac slices, suggesting it has a role in promoting tissue regeneration. Mass spectrometry analysis further highlighted the impact of DHT on EPCs' functioning. In conclusion, DHT increases the proliferation, migration, and androgen-receptor-dependent angiogenesis of EPCs; enhances the cells' secretion of key factors involved in angiogenesis; and significantly potentiates cellular integration into heart tissue. The data offer support for potential therapeutic applications of DHT in cardiovascular regeneration and repair processes.
Collapse
Affiliation(s)
- Mirel Adrian Popa
- Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (M.A.P.); (C.M.M.); (V.I.Ș.); (F.A.)
| | - Cristina Maria Mihai
- Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (M.A.P.); (C.M.M.); (V.I.Ș.); (F.A.)
| | - Viorel Iulian Șuică
- Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (M.A.P.); (C.M.M.); (V.I.Ș.); (F.A.)
| | - Felicia Antohe
- Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (M.A.P.); (C.M.M.); (V.I.Ș.); (F.A.)
| | - Raghvendra K. Dubey
- Department for Reproductive Endocrinology, University Zurich, 8006 Zürich, Switzerland; (R.K.D.); (B.L.)
| | - Brigitte Leeners
- Department for Reproductive Endocrinology, University Zurich, 8006 Zürich, Switzerland; (R.K.D.); (B.L.)
| | - Maya Simionescu
- Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (M.A.P.); (C.M.M.); (V.I.Ș.); (F.A.)
| |
Collapse
|
4
|
Stark BC, Gao Y, Sepich DS, Belk L, Culver MA, Hu B, Mekel M, Ferris W, Shin J, Solnica-Krezel L, Lin F, Cooper JA. CARMIL3 is important for cell migration and morphogenesis during early development in zebrafish. Dev Biol 2022; 481:148-159. [PMID: 34599906 PMCID: PMC8781030 DOI: 10.1016/j.ydbio.2021.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 01/03/2023]
Abstract
Cell migration is important during early animal embryogenesis. Cell migration and cell shape are controlled by actin assembly and dynamics, which depend on capping proteins, including the barbed-end heterodimeric actin capping protein (CP). CP activity can be regulated by capping-protein-interacting (CPI) motif proteins, including CARMIL (capping protein Arp2/3 myosin-I linker) family proteins. Previous studies of CARMIL3, one of the three highly conserved CARMIL genes in vertebrates, have largely been limited to cells in culture. Towards understanding CARMIL function during embryogenesis in vivo, we analyzed zebrafish lines carrying mutations of carmil3. Maternal-zygotic mutants showed impaired endodermal migration during gastrulation, along with defects in dorsal forerunner cell (DFC) cluster formation, which affected the morphogenesis of Kupffer's vesicle (KV). Mutant KVs were smaller, contained fewer cells and displayed decreased numbers of cilia, leading to defects in left/right (L/R) patterning with variable penetrance and expressivity. The penetrance and expressivity of the KV phenotype in carmil3 mutants correlated well with the L/R heart positioning defect at the end of embryogenesis. This in vivo animal study of CARMIL3 reveals its new role during morphogenesis of the vertebrate embryo. This role involves migration of endodermal cells and DFCs, along with subsequent morphogenesis of the KV and L/R asymmetry.
Collapse
Affiliation(s)
- Benjamin C. Stark
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO
| | - Yuanyuan Gao
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Diane S. Sepich
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO
| | - Lakyn Belk
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Matthew A. Culver
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Bo Hu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Marlene Mekel
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO
| | - Wyndham Ferris
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO
| | - Jimann Shin
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO,Corresponding authors. Email addresses for correspondence after publication: Fang Lin, ; Lilianna Solnica-Krezel, ; John Cooper,
| | - Fang Lin
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA.,Corresponding authors. Email addresses for correspondence after publication: Fang Lin, ; Lilianna Solnica-Krezel, ; John Cooper,
| | - John A. Cooper
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO,Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO,Corresponding authors. Email addresses for correspondence after publication: Fang Lin, ; Lilianna Solnica-Krezel, ; John Cooper,
| |
Collapse
|
5
|
Grainger S, Nguyen N, Richter J, Setayesh J, Lonquich B, Oon CH, Wozniak JM, Barahona R, Kamei CN, Houston J, Carrillo-Terrazas M, Drummond IA, Gonzalez D, Willert K, Traver D. EGFR is required for Wnt9a-Fzd9b signalling specificity in haematopoietic stem cells. Nat Cell Biol 2019; 21:721-730. [PMID: 31110287 PMCID: PMC6559346 DOI: 10.1038/s41556-019-0330-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 04/11/2019] [Indexed: 12/31/2022]
Abstract
Wnt signalling drives a plethora of processes in development, homeostasis, and disease; however, the role and mechanism of individual ligand/receptor (Wnt/Frizzled, Fzd) interactions in specific biological processes remain poorly understood. Wnt9a is specifically required for the amplification of blood progenitor cells during development. Using genetic studies in zebrafish and human embryonic stem cells, paired with in vitro cell biology and biochemistry, we have determined that Wnt9a signals specifically through Fzd9b to elicit β-catenin-dependent Wnt signalling that regulates haematopoietic stem and progenitor cell emergence. We demonstrate that the epidermal growth factor receptor (EGFR) is required as a co-factor for Wnt9a/Fzd9b signalling. EGFR-mediated phosphorylation of one tyrosine residue on the Fzd9b intracellular tail in response to Wnt9a promotes internalization of the Wnt9a/Fzd9b/LRP signalosome and subsequent signal transduction. These findings provide mechanistic insights for specific Wnt/Fzd signals, which will be crucial for specific therapeutic targeting and regenerative medicine.
Collapse
Affiliation(s)
- Stephanie Grainger
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Nicole Nguyen
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jenna Richter
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.,Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Jordan Setayesh
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Brianna Lonquich
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Chet Huan Oon
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jacob M Wozniak
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA.,Skaggs School of Pharmacy and Pharmaceutical Science, University of California, San Diego, La Jolla, CA, USA.,Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Rocio Barahona
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Caramai N Kamei
- Massachusetts General Hospital Nephrology Division, Charlestown, MA, USA
| | - Jack Houston
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.,Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Marvic Carrillo-Terrazas
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California, San Diego, La Jolla, CA, USA.,Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Iain A Drummond
- Massachusetts General Hospital Nephrology Division, Charlestown, MA, USA.,Harvard Medical School, Department of Genetics, Boston, MA, USA
| | - David Gonzalez
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California, San Diego, La Jolla, CA, USA.,Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Karl Willert
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.
| | - David Traver
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA. .,Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|