1
|
Dalpati N, Rai SK, Sharma P, Sarangi PP. Integrins and integrin-driven secretory pathways as multi-dimensional regulators of tumor-associated macrophage recruitment and reprogramming in tumor microenvironment. Matrix Biol 2025; 135:55-69. [PMID: 39645091 DOI: 10.1016/j.matbio.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Integrins, a group of transmembrane receptors, play a crucial role in mediating the interactions between cells and extracellular matrix (ECM) proteins. The intracellular signaling initiated by these cell-matrix interactions in leukocytes mediates many essential cellular processes such as survival, migration, metabolism, and other immunological functions. Macrophages, as phagocytes, participate in both proinflammatory and anti-inflammatory processes, including progression. Numerous reports have shown that the integrin-regulated secretome, comprising cytokines, chemokines, growth factors, proteases, and other bioactive molecules, is a crucial modulator of macrophage functions in tumors, significantly influencing macrophage programming and reprogramming within the tumor microenvironment (TME) in addition to driving their step-by-step entry process into tumor tissue spaces. Importantly, studies have demonstrated a pivotal role for integrin receptor-mediated secretome and associated signaling pathways in functional reprogramming from anti-tumorigenic to pro-tumorigenic phenotype in tumor-associated macrophages (TAMs). In this comprehensive review, we have provided an in-depth analysis of the latest findings of various key pathways, mediators, and signaling cascades associated with integrin-driven polarization of macrophages in tumors. This manuscript will provide an updated understanding of the modulation of inflammatory monocytes/ macrophages and TAMs by integrin-driven secretory pathways in various functions such as migration, differentiation, and their role in tumor progression, angiogenesis, and metastasis.
Collapse
Affiliation(s)
- Nibedita Dalpati
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Shubham Kumar Rai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Prerna Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Pranita P Sarangi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
2
|
Jalali P, Yaghoobi A, Rezaee M, Zabihi MR, Piroozkhah M, Aliyari S, Salehi Z. Decoding common genetic alterations between Barrett's esophagus and esophageal adenocarcinoma: A bioinformatics analysis. Heliyon 2024; 10:e31194. [PMID: 38803922 PMCID: PMC11128929 DOI: 10.1016/j.heliyon.2024.e31194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Background Esophageal adenocarcinoma (EAC) is a common cancer with a poor prognosis in advanced stages. Therefore, early EAC diagnosis and treatment have gained attention in recent decades. It has been found that various pathological changes, particularly Barrett's Esophagus (BE), can occur in the esophageal tissue before the development of EAC. In this study, we aimed to identify the molecular contributor in BE to EAC progression by detecting the essential regulatory genes that are differentially expressed in both BE and EAC. Materials and methods We conducted a comprehensive bioinformatics analysis to detect BE and EAC-associated genes. The common differentially expressed genes (DEGs) and common single nucleotide polymorphisms (SNPs) were detected using the GEO and DisGeNET databases, respectively. Then, hub genes and the top modules within the protein-protein interaction network were identified. Moreover, the co-expression network of the top module by the HIPPIE database was constructed. Additionally, the gene regulatory network was constructed based on miRNAs and circRNAs. Lastly, we inspected the DGIdb database for possible interacted drugs. Results Our microarray dataset analysis identified 92 common DEGs between BE and EAC with significant enrichment in skin and epidermis development genes. The study also identified 22 common SNPs between BE and EAC. The top module of PPI network analysis included SCEL, KRT6A, SPRR1A, SPRR1B, SPRR3, PPL, SPRR2B, EVPL, and CSTA. We constructed a ceRNA network involving three specific mRNAs, 23 miRNAs, and 101 selected circRNAs. According to the results from the DGIdb database, TD101 was found to interact with the KRT6A gene. Conclusion The present study provides novel potential candidate genes that may be involved in the molecular association between Esophageal adenocarcinoma and Barrett's Esophagus, resulting in developing the diagnostic tools and therapeutic targets to prevent progression of BE to EAC.
Collapse
Affiliation(s)
- Pooya Jalali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Yaghoobi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Malihe Rezaee
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zabihi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Piroozkhah
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Aliyari
- Division of Applied Bioinformatics, German Cancer Research Center DKFZ Heidelberg, Iran
| | - Zahra Salehi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Pang X, He X, Qiu Z, Zhang H, Xie R, Liu Z, Gu Y, Zhao N, Xiang Q, Cui Y. Targeting integrin pathways: mechanisms and advances in therapy. Signal Transduct Target Ther 2023; 8:1. [PMID: 36588107 PMCID: PMC9805914 DOI: 10.1038/s41392-022-01259-6] [Citation(s) in RCA: 433] [Impact Index Per Article: 216.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 01/03/2023] Open
Abstract
Integrins are considered the main cell-adhesion transmembrane receptors that play multifaceted roles as extracellular matrix (ECM)-cytoskeletal linkers and transducers in biochemical and mechanical signals between cells and their environment in a wide range of states in health and diseases. Integrin functions are dependable on a delicate balance between active and inactive status via multiple mechanisms, including protein-protein interactions, conformational changes, and trafficking. Due to their exposure on the cell surface and sensitivity to the molecular blockade, integrins have been investigated as pharmacological targets for nearly 40 years, but given the complexity of integrins and sometimes opposite characteristics, targeting integrin therapeutics has been a challenge. To date, only seven drugs targeting integrins have been successfully marketed, including abciximab, eptifibatide, tirofiban, natalizumab, vedolizumab, lifitegrast, and carotegrast. Currently, there are approximately 90 kinds of integrin-based therapeutic drugs or imaging agents in clinical studies, including small molecules, antibodies, synthetic mimic peptides, antibody-drug conjugates (ADCs), chimeric antigen receptor (CAR) T-cell therapy, imaging agents, etc. A serious lesson from past integrin drug discovery and research efforts is that successes rely on both a deep understanding of integrin-regulatory mechanisms and unmet clinical needs. Herein, we provide a systematic and complete review of all integrin family members and integrin-mediated downstream signal transduction to highlight ongoing efforts to develop new therapies/diagnoses from bench to clinic. In addition, we further discuss the trend of drug development, how to improve the success rate of clinical trials targeting integrin therapies, and the key points for clinical research, basic research, and translational research.
Collapse
Affiliation(s)
- Xiaocong Pang
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Xu He
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Zhiwei Qiu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Hanxu Zhang
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Ran Xie
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Zhiyan Liu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Yanlun Gu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Nan Zhao
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Qian Xiang
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034, Beijing, China. .,Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191, Beijing, China.
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034, Beijing, China. .,Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191, Beijing, China.
| |
Collapse
|
4
|
Hou H, Li J, Wang J, Zhou L, Li J, Liang J, Yin G, Li X, Cheng Y, Zhang K. ITGA9 Inhibits Proliferation and Migration of Dermal Microvascular Endothelial Cells in Psoriasis. CLINICAL, COSMETIC AND INVESTIGATIONAL DERMATOLOGY 2022; 15:2795-2806. [PMID: 36573168 PMCID: PMC9789714 DOI: 10.2147/ccid.s394398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Background Cell proliferation, migration, and angiogenesis are aberrant in psoriatic human dermal microvascular endothelial cells (HDMECs), resulting in abnormal endothelial function and microvascular dilation in psoriasis. Objective To explore the role of Integrin subunit alpha 9 (ITGA9) in proliferation and migration of dermal microvascular endothelial cells. Methods HDMECs were isolated from the skin of 6 psoriatic patients and 6 healthy controls. Expression levels of ITGA9 mRNA and protein were assessed with qRT-PCR and Western blot, respectively, while miqRT-PCR was used to determine expression levels of miR-146a-3p. Cell proliferation and migration were assessed in human microvascular endothelial cell line (HMEC-1), following overexpression of either ITGA9 or miR-146a-3p, or co-transfection with miR-146a-3p-mimic and pLVX - ITGA9. Cell viability was detected by Cell Counting Kit-8 assay and 5-ethynyl-2'-deoxyuridine (EdU) cell proliferation assay. Cell apoptosis was assessed, using annexin V-FITC/PI apoptosis detection kit, while cell migration was detected by wound healing and transwell assay. Results Expression levels of ITGA9 were significantly decreased in psoriatic HDMECs compared to normal controls. Moreover, expression levels of miR-146a-3p were higher in psoriatic HDMECs than in normal controls. Overexpression of miR-146a-3p lowered expression levels of ITGA9, accompanied by increased proliferation and migration of HMEC-1 in vitro. In contrast, overexpression of ITGA9 inhibited proliferation and migration of HMEC-1, while increasing expression levels of cdc42, ki67, focal adhesion kinase (FAK), c-Src tyrosine kinase (Src), RAC1 and RhoA. Conclusion ITGA9 can repress the proliferation and migration of HMEC-1, suggesting utility of ITGA9 as a potential therapeutic intervention for psoriasis.
Collapse
Affiliation(s)
- Hui Hou
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jiao Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Juanjuan Wang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Ling Zhou
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jiannan Liang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Guohua Yin
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Xinhua Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Yueai Cheng
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China,Correspondence: Kaiming Zhang, Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan, Shanxi Province, People’s Republic of China, Tel +86-351-5656080, Email
| |
Collapse
|
5
|
Xiong X, Yang H, Ding C, Qin B, Deng Y, Xiong L, Liu X, Li Y, Xiao T, Lv Z. Functional and expression analysis reveals the involvement of integrin αvβ3 in antiviral immunity of grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2022; 129:52-63. [PMID: 35995370 DOI: 10.1016/j.fsi.2022.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/01/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Integrins are α-β heterodimeric cell receptors that can bind the protein components of pathogens, and play crucial roles in mammalian immune responses, but the immune functions mediated by integrins remains largely unknown in teleost fish. In this study, an integrin αvβ3 (GCαvβ3) originally assembled by αv (GCαv) and β3 (GCβ3) subunits, was identified from a teleost fish grass carp Ctenopharyngodon idella. The pairwise alignment analyses showed that the amino acid sequences of GCαv and GCβ3 shared high similarity (75.2-95.1%) and identity (58.6-90.7%) with their homologs from other vertebrates. Both GCαv and GCβ3 harbored the conserved protein domains and motifs, and were clustered in fish branch of the phylogenetic tree containing the counterparts from various vertebrates. Co-immunoprecipitation displayed that GCβ3 could interact with the grass carp reovirus (GCRV) outer capsid protein VP5. Two incubation experiments revealed that the interaction of GCRV or VP5 proteins with GCβ3 could induce the expressions of type I interferons (IFNs) including IFN2 and IFN3 in grass carp ovary cell line. The functional analysis demonstrated that GCαvβ3 served as a receptor of viral protein components to be involved in antiviral immunity as human integrin αvβ3 did. In addition, both GCαv and GCβ3 were significantly upregulated in various tissues of grass carp after GCRV infection. This study might provide fundamental basis for understanding the molecular characteristics and immune functions of GCαvβ3, and offer a new insight into the antiviral immune mechanism specific to the integrins in grass carp.
Collapse
Affiliation(s)
- Xiaoqing Xiong
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China; College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Hong Yang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China; College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Chunhua Ding
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China; College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Beibei Qin
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China; College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Yadong Deng
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China; College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Liming Xiong
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China; College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Xiaoyan Liu
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Yaoguo Li
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Tiaoyi Xiao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China.
| | - Zhao Lv
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
6
|
Peng L, Ma M, Dong Y, Wu Q, An S, Cao M, Wang Y, Zhou C, Zhou M, Wang X, Liang Q, Wang Y. Kuoxin Decoction promotes lymphangiogenesis in zebrafish and in vitro based on network analysis. Front Pharmacol 2022; 13:915161. [PMID: 36105188 PMCID: PMC9465995 DOI: 10.3389/fphar.2022.915161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022] Open
Abstract
Background: Inadequate lymphangiogenesis is closely related to the occurrence of many kinds of diseases, and one of the important treatments is to promote lymphangiogenesis. Kuoxin Decoction (KXF) is an herbal formula from traditional Chinese medicine used to treat dilated cardiomyopathy (DCM), which is associated with lymphangiogenesis deficiency. In this study, we comprehensively verified whether KXF promotes lymphangiogenesis in zebrafish and in vitro based on network analysis. Methods: We performed virtual screening of the active compounds of KXF and potential targets regarding DCM based on network analysis. Tg (Flila: EGFP; Gata1: DsRed) transgenic zebrafish embryos were treated with different concentrations of KXF for 48 h with or without the pretreatment of MAZ51 for 6 h, followed by morphological observation of the lymphatic vessels and an assessment of lymphopoiesis. RT-qPCR was employed to identify VEGF-C, VEGF-A, PROX1, and LYVE-1 mRNA expression levels in different groups. After the treatment of lymphatic endothelial cells (LECs) with different concentrations of salvianolic acid B (SAB, the active ingredient of KXF), their proliferation, migration, and protein expression of VEGF-C and VEGFR-3 were compared by CCK-8 assay, wound healing assay, and western blot. Results: A total of 106 active compounds were identified constituting KXF, and 58 target genes of KXF for DCM were identified. There were 132 pathways generated from KEGG enrichment, including 5 signaling pathways related to lymphangiogenesis. Zebrafish experiments confirmed that KXF promoted lymphangiogenesis and increased VEGF-C and VEGF-A mRNA expression levels in zebrafish with or without MAZ51-induced thoracic duct injury. In LECs, SAB promoted proliferation and migration, and it could upregulate the protein expression of VEGF-C and VEGFR-3 in LECs after injury. Conclusion: The results of network analysis showed that KXF could regulate lymphangiogenesis through VEGF-C and VEGF-A, and experiments with zebrafish confirmed that KXF could promote lymphangiogenesis. Cell experiments confirmed that SAB could promote the proliferation and migration of LECs and upregulate the protein expression of VEGF-C and VEGFR-3. These results suggest that KXF promotes lymphangiogenesis by a mechanism related to the upregulation of VEGF-C/VEGFR-3, and the main component exerting this effect may be SAB.
Collapse
Affiliation(s)
- Longping Peng
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengjiao Ma
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yidan Dong
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiong Wu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shiying An
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Cao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chang Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Maolin Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu Wang
- Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Qianqian Liang, ; Youhua Wang,
| | - Youhua Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Qianqian Liang, ; Youhua Wang,
| |
Collapse
|
7
|
Varney SD, Wu L, Longmate WM, DiPersio CM, Van De Water L. Loss of integrin α9β1 on tumor keratinocytes enhances the stromal vasculature and growth of cutaneous tumors. J Invest Dermatol 2021; 142:1966-1975.e8. [PMID: 34843681 DOI: 10.1016/j.jid.2021.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/02/2021] [Accepted: 11/12/2021] [Indexed: 10/19/2022]
Abstract
Angiogenesis is critical to tumor progression and the function of integrins in tumor angiogenesis is complex. Here we report that loss of integrin α9β1 expression from epidermal tumor cells is critical to maintain persistent stromal vessel density. Forced expression of α9 in transformed mouse keratinocytes dramatically reduces vessel density in allograft tumors, in vivo, compared to the same cells lacking α9β1. Moreover, α9 mRNA expression is dramatically reduced in mouse and human epidermal tumors as is α9β1-dependent gene regulation. Loss of tumor cell α9β1 occurs through at least two mechanisms: (1) ITGA9 gene copy number loss in human tumors, and (2) epigenetic silencing in mouse and human tumors. Importantly, we show that reversal of epigenetic silencing of Itga9 restores α9 expression in mouse keratinocytes, and that human tumors without ITGA9 copy number loss have increased promoter methylation. Our data suggest that for epidermal tumorigenesis to occur, tumor cells must avoid the tumor and angiogenic suppressive effects of α9β1 by repressing its expression through deletion and/or epigenetic silencing, thereby promoting stromal development and tumor growth.
Collapse
Affiliation(s)
| | | | | | | | - Livingston Van De Water
- Department of Surgery; Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
8
|
Xu S, Zhang T, Cao Z, Zhong W, Zhang C, Li H, Song J. Integrin-α9β1 as a Novel Therapeutic Target for Refractory Diseases: Recent Progress and Insights. Front Immunol 2021; 12:638400. [PMID: 33790909 PMCID: PMC8005531 DOI: 10.3389/fimmu.2021.638400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Integrins refer to heterodimers consisting of subunits α and β. They serve as receptors on cell membranes and interact with extracellular ligands to mediate intracellular molecular signals. One of the least-studied members of the integrin family is integrin-α9β1, which is widely distributed in various human tissues and organs. Integrin-α9β1 regulates the physiological state of cells through a variety of complex signaling pathways to participate in the specific pathological processes of some intractable diseases. In recent years, an increasing amount of research has focused on the role of α9β1 in the molecular mechanisms of different refractory diseases and its promising potential as a therapeutic target. Accordingly, this review introduces and summarizes recent research related to integrin-α9β1, describes the synergistic functions of α9β1 and its corresponding ligands in cancer, autoimmune diseases, nerve injury and thrombosis and, more importantly, highlights the potential of α9β1 as a distinctive target for the treatment of these intractable diseases.
Collapse
Affiliation(s)
- Shihan Xu
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Tingwei Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Zhengguo Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wenjie Zhong
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Chuangwei Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Han Li
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
9
|
MiR-148a inhibits the proliferation and migration of glioblastoma by targeting ITGA9. Hum Cell 2019; 32:548-556. [DOI: 10.1007/s13577-019-00279-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 08/28/2019] [Indexed: 02/04/2023]
|
10
|
Majesky MW. Vascular Development. Arterioscler Thromb Vasc Biol 2019; 38:e17-e24. [PMID: 29467221 DOI: 10.1161/atvbaha.118.310223] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 01/22/2018] [Indexed: 12/13/2022]
Abstract
The vascular system forms as a branching network of endothelial cells that acquire identity as arterial, venous, hemogenic, or lymphatic. Endothelial specification depends on gene targets transcribed by Ets domain-containing factors, including Ets variant gene 2 (Etv2), together with the activity of chromatin-remodeling complexes containing Brahma-related gene-1 (Brg1). Once specified and assembled into vessels, mechanisms regulating lumen diameter and axial growth ensure that the structure of the branching vascular network matches the need for perfusion of target tissues. In addition, blood vessels provide important morphogenic cues that guide or direct the development of organs forming around them. As the embryo grows and lumen diameters increase, smooth muscle cells wrap around the nascent vessel walls to provide mechanical strength and vasomotor control of the circulation. Increasing mechanical stretch and wall strain promote smooth muscle cell differentiation via coupling of actin cytoskeletal remodeling to myocardin and serum response factor-dependent transcription. Remodeling of artery walls by developmental signaling pathways reappears in postnatal blood vessels during physiological and pathological adaptation to vessel wall injury, inflammation, or chronic hypoxia. Recent reports providing insights into major steps in vascular development are reviewed here with a particular emphasis on studies that have been recently published in Arteriosclerosis, Thrombosis, and Vascular Biology.
Collapse
Affiliation(s)
- Mark W Majesky
- From the Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, WA; and Departments of Pediatrics and Pathology, University of Washington, Seattle.
| |
Collapse
|
11
|
Proliferative Cells From Kaposiform Lymphangiomatosis Lesions Resemble Mesenchyme Stem Cell-like Pericytes Defective in Vessel Formation. J Pediatr Hematol Oncol 2018; 40:e495-e504. [PMID: 30256265 DOI: 10.1097/mph.0000000000001284] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Kaposiform lymphangiomatosis (KLA) is a vascular anomaly featuring lymphatic expansion. It has no known cause, no effective treatment, and is associated with high morbidity. Proliferative cells from 3 KLA patient lesions were characterized relative to adiopose-derived mesenchyme stem cells (ADSCs) and cells derived from a patient with the related disease kaposiform hemangioendothelioma (KHE). KLA cells variably expressed markers of mesenchyme stem cells (CD73, CD90, CD105, CD146) and lacked endothelial cell markers (CD31, CD34) as determined by flow cytometry. They expressed markers of vascular pericytes (neural/glial antigen 2, alpha-smooth muscle actin, platelet-derived growth factor-beta receptor, and CXCL12) as determined by quantitative reverse transcription polymerase chain reaction. Lesion cells transcribed vascular markers VEGFC and VEGFD, as well as VCAM-1, the latter of which was confirmed by flow cytometry, consistent with angiogenic MSC-like pericytes. Furthermore, conditioned medium from each was shown to promote the proliferation of growth factor-starved lymphatic endothelial cells. Unlike kaposiform hemangioendothelioma-derived MSC-like pericytes and ADSCs, KLA isolates were defective in support of vascular network formation in co-cultures with either vascular or lymphatic endothelial cells. Genetic analysis by whole exome sequencing revealed novel variant alleles in 2 populations of KLA cells (BAD, TSC1) that may bear on aberrant pericyte growth and function.
Collapse
|
12
|
Zebrafish VCAP1X2 regulates cardiac contractility and proliferation of cardiomyocytes and epicardial cells. Sci Rep 2018; 8:7856. [PMID: 29777134 PMCID: PMC5959901 DOI: 10.1038/s41598-018-26110-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/01/2018] [Indexed: 01/08/2023] Open
Abstract
Sarcomeric signaling complexes are important to sustain proper sarcomere structure and function, however, the mechanisms underlying these processes are not fully elucidated. In a gene trap experiment, we found that vascular cell adhesion protein 1 isoform X2 (VCAP1X2) mutant embryos displayed a dilated cardiomyopathy phenotype, including reduced cardiac contractility, enlarged ventricular chamber and thinned ventricular compact layer. Cardiomyocyte and epicardial cell proliferation was decreased in the mutant heart ventricle, as was the expression of pAKT and pERK. Contractile dysfunction in the mutant was caused by sarcomeric disorganization, including sparse myofilament, blurred Z-disc, and decreased gene expression for sarcomere modulators (smyd1b, mypn and fhl2a), sarcomeric proteins (myh6, myh7, vmhcl and tnnt2a) and calcium regulators (ryr2b and slc8a1a). Treatment of PI3K activator restored Z-disc alignment while injection of smyd1b mRNA restored Z-disc alignment, contractile function and cardiomyocyte proliferation in ventricles of VCAP1X2 mutant embryos. Furthermore, injection of VCAP1X2 variant mRNA rescued all phenotypes, so long as two cytosolic tyrosines were left intact. Our results reveal two tyrosine residues located in the VCAP1X2 cytoplasmic domain are essential to regulate cardiac contractility and the proliferation of ventricular cardiomyocytes and epicardial cells through modulating pAKT and pERK expression levels.
Collapse
|
13
|
Prangsaengtong O, Jantaree P, Lirdprapamongkol K, Ngiwsara L, Svasti J, Koizumi K. Aspirin suppresses components of lymphangiogenesis and lymphatic vessel remodeling by inhibiting the NF-κB/VCAM-1 pathway in human lymphatic endothelial cells. Vasc Med 2018; 23:201-211. [PMID: 29629844 DOI: 10.1177/1358863x18760718] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Lymphangiogenesis is the process of new vessel formation from pre-existing lymphatic vessels. The process mainly involves cell adhesion, migration, and tubule formation of lymphatic endothelial cells. Tumor-induced lymphangiogenesis is an important factor contributing to promotion of tumor growth and cancer metastasis via the lymphatic system. Finding the non-toxic agents that can prevent or inhibit lymphangiogenesis may lead to blocking of lymphatic metastasis. Recently, aspirin, a non-steroidal anti-inflammatory drug (NSAID), has been reported to inhibit in vivo lymphangiogenesis in tumor and incision wound models, but the mechanisms of actions of aspirin on anti-lymphangiogenesis have been less explored. In this study, we aim to explore the mechanism underlying the anti-lymphangiogenic effects of aspirin in primary human dermal lymphatic microvascular endothelial (HMVEC-dLy) cells in vitro. Pretreatment of aspirin at non-toxic dose 0.3 mM significantly suppressed in vitro cord formation, adhesion, and the migration abilities of the HMVEC-dLy cells. Western blotting analysis indicated that aspirin decreased expression of vascular cell adhesion molecule-1 (VCAM-1), at both protein and mRNA levels, and these correlated with the reduction of NF-κB p65 phosphorylation. By using NF-κB inhibitor (BAY-11-7085) and VCAM-1 siRNA, we showed that VCAM-1 expression is downstream of NF-κB activation, and this NF-κB/VCAM-1 signaling pathway controls cord formation, adhesion, and the migration abilities of the HMVEC-dLy cells. In summary, we demonstrate the potential of aspirin as an anti-lymphangiogenic agent, and elucidate its mechanism of action.
Collapse
Affiliation(s)
- Orawin Prangsaengtong
- 1 Department of Biopharmacy, Faculty of Pharmacy, Srinakharinwirot University, Nakhonnayok, Thailand
| | | | | | - Lukana Ngiwsara
- 2 Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand
| | - Jisnuson Svasti
- 2 Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand
| | - Keiichi Koizumi
- 3 Department of Kampo Diagnostics, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
14
|
Diao S, Lin X, Wang L, Dong R, Du J, Yang D, Fan Z. Analysis of gene expression profiles between apical papilla tissues, stem cells from apical papilla and cell sheet to identify the key modulators in MSCs niche. Cell Prolif 2017; 50. [DOI: 18.doi: 10.1111/cpr.12337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2025] Open
Abstract
AbstractObjectivesThe microenvironmental niche plays the key role for maintaining the cell functions. The stem cells from apical papilla (SCAPs) are important for tooth development and regeneration. However, there is limited knowledge about the key factors in niche for maintaining the function of SCAPs. In this study, we analyse the gene expression profiles between apical papilla tissues, SCAPs and SCAPs cell sheet to identify the key genes in SCAPs niche.Materials and methodsMicroarray assays and bioinformatic analysis were performed to screen the differential genes between apical papilla tissues and SCAPs, and SCAPs and SCAPs cell sheet. Recombinant human BMP6 protein was used in SCAPs. Then CCK‐8 assay, CFSE assay, alkaline phosphatase activity, alizarin red staining, quantitative calcium analysis and real‐time reverse transcriptase‐polymerase chain reaction were performed to investigate the cell proliferation and differentiation potentials of SCAPs.ResultsMicroarray analysis found that 846 genes were up‐regulated and 1203 genes were down‐regulated in SCAPs compared with apical papilla tissues. While 240 genes were up‐regulated and 50 genes were down‐regulated in SCAPs compared to in SCAPs cell sheet. Moreover, only 31 gene expressions in apical papilla tissues were recovered in cell sheet compared with SCAPs. Bioinformatic analysis identified that TGF‐β, WNT and MAPK signalling pathways may play an important role in SCAPs niche. Based on the analysis, we identified one key growth factor in niche, BMP6, which could enhance the cell proliferation, the osteo/dentinogenic, neurogenic and angiogenic differentiation potentials of SCAPs.ConclusionsOur results provided insight into the mechanisms of the microenvironmental niche which regulate the function of SCAPs, and identified the key candidate genes in niche to promote mesenchymal stem cells‐mediated dental tissue regeneration.
Collapse
Affiliation(s)
- Shu Diao
- Laboratory of Molecular Signaling and Stem Cells Therapy Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction Capital Medical University School of Stomatology Beijing China
- Department of Pediatric dentistry Capital Medical University School of Stomatology Beijing China
| | - Xiao Lin
- Laboratory of Molecular Signaling and Stem Cells Therapy Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction Capital Medical University School of Stomatology Beijing China
- Department of Implant Dentistry Capital Medical University School of Stomatology Beijing China
| | - Liping Wang
- Laboratory of Molecular Signaling and Stem Cells Therapy Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction Capital Medical University School of Stomatology Beijing China
| | - Rui Dong
- Laboratory of Molecular Signaling and Stem Cells Therapy Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction Capital Medical University School of Stomatology Beijing China
| | - Juan Du
- Laboratory of Molecular Signaling and Stem Cells Therapy Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction Capital Medical University School of Stomatology Beijing China
- Molecular Laboratory for Gene Therapy and Tooth Regeneration Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction Capital Medical University School of Stomatology Beijing China
| | - Dongmei Yang
- Laboratory of Molecular Signaling and Stem Cells Therapy Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction Capital Medical University School of Stomatology Beijing China
- Department of Pediatric dentistry Capital Medical University School of Stomatology Beijing China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction Capital Medical University School of Stomatology Beijing China
| |
Collapse
|
15
|
Diao S, Lin X, Wang L, Dong R, Du J, Yang D, Fan Z. Analysis of gene expression profiles between apical papilla tissues, stem cells from apical papilla and cell sheet to identify the key modulators in MSCs niche. Cell Prolif 2017; 50. [PMID: 28145066 DOI: 10.1111/cpr.12337] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/04/2017] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES The microenvironmental niche plays the key role for maintaining the cell functions. The stem cells from apical papilla (SCAPs) are important for tooth development and regeneration. However, there is limited knowledge about the key factors in niche for maintaining the function of SCAPs. In this study, we analyse the gene expression profiles between apical papilla tissues, SCAPs and SCAPs cell sheet to identify the key genes in SCAPs niche. MATERIALS AND METHODS Microarray assays and bioinformatic analysis were performed to screen the differential genes between apical papilla tissues and SCAPs, and SCAPs and SCAPs cell sheet. Recombinant human BMP6 protein was used in SCAPs. Then CCK-8 assay, CFSE assay, alkaline phosphatase activity, alizarin red staining, quantitative calcium analysis and real-time reverse transcriptase-polymerase chain reaction were performed to investigate the cell proliferation and differentiation potentials of SCAPs. RESULTS Microarray analysis found that 846 genes were up-regulated and 1203 genes were down-regulated in SCAPs compared with apical papilla tissues. While 240 genes were up-regulated and 50 genes were down-regulated in SCAPs compared to in SCAPs cell sheet. Moreover, only 31 gene expressions in apical papilla tissues were recovered in cell sheet compared with SCAPs. Bioinformatic analysis identified that TGF-β, WNT and MAPK signalling pathways may play an important role in SCAPs niche. Based on the analysis, we identified one key growth factor in niche, BMP6, which could enhance the cell proliferation, the osteo/dentinogenic, neurogenic and angiogenic differentiation potentials of SCAPs. CONCLUSIONS Our results provided insight into the mechanisms of the microenvironmental niche which regulate the function of SCAPs, and identified the key candidate genes in niche to promote mesenchymal stem cells-mediated dental tissue regeneration.
Collapse
Affiliation(s)
- Shu Diao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Department of Pediatric dentistry, Capital Medical University School of Stomatology, Beijing, China
| | - Xiao Lin
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Department of Implant Dentistry, Capital Medical University School of Stomatology, Beijing, China
| | - Liping Wang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Rui Dong
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Juan Du
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Dongmei Yang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Department of Pediatric dentistry, Capital Medical University School of Stomatology, Beijing, China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| |
Collapse
|