1
|
Hou L, Feng X, Zhu Z, Mi Y, He Q, Yin K, Zhao G. IGFBPL1 inhibits macrophage lipid accumulation by enhancing the activation of IGR1R/LXRα/ABCG1 pathway. Aging (Albany NY) 2023; 15:14791-14802. [PMID: 38157252 PMCID: PMC10781499 DOI: 10.18632/aging.205301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
Lipid accumulation in macrophages plays an important role in atherosclerosis and is the major cause of atherosclerotic cardiovascular disease. Reducing lipid accumulation in macrophages is an effective therapeutic target for atherosclerosis. Insulin-like growth factor 1 (IGF-1) exerts the anti-atherosclerotic effects by inhibiting lipid accumulation in macrophages. Furthermore, almost all circulating IGF-1 combines with IGF binding proteins (IGFBPs) to activate or inhibit the IGF signaling. However, the mechanism of IGFBPs in macrophage lipid accumulation is still unknown. GEO database analysis showed that among IGFBPS family members, IGFBPL1 has the largest expression change in unstable plaque. We found that IGFBPL1 was decreased in lipid-laden THP-1 macrophages. Through oil red O staining, NBD-cholesterol efflux, liver X receptor α (LXRα) transcription factor and IGR-1 receptor blocking experiments, our results showed that IGFBPL1 inhibits lipid accumulation in THP-1 macrophages through promoting ABCG1-meditated cholesterol efflux, and IGFBPL1 regulates ABCG1 expression and macrophage lipid metabolism through IGF-1R/LXRα pathway. Our results provide a theoretical basis of IGFBPL1 in the alternative or adjunct treatment options for atherosclerosis by reducing lipid accumulation in macrophages.
Collapse
Affiliation(s)
- Lianjie Hou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan 511518, Guangdong, China
- Guangzhou Huali Science and Technology Vocational College, Guangzhou 511325, Guangdong, China
| | - Xixi Feng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan 511518, Guangdong, China
| | - Zhi Zhu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan 511518, Guangdong, China
| | - Yali Mi
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan 511518, Guangdong, China
| | - Qin He
- Dali University, Dali 671003, Yunnan, China
| | - Kai Yin
- Department of Cardiology, The Second Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Guojun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan 511518, Guangdong, China
| |
Collapse
|
2
|
circ-CCND1 regulates the CCND1/P53/P21 pathway through sponging miR-138-5p in valve interstitial cells to aggravate aortic valve calcification. J Physiol Biochem 2022; 78:845-854. [PMID: 35776289 DOI: 10.1007/s13105-022-00907-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Abstract
To discuss the effect and mechanism of circular-CCND1 (circ-CCND1) on the regulation of calcified aortic valve disease (CAVD). Differentially expressed circRNAs were screened through the GSE155119 data set and biological prediction. Subsequently, the miR-138-5p, CCND1, and circ-CCND1 expression were detected in the non-calcified and calcified aortic valve. Then Pearson correlation analysis was performed to analyze the correlation between the above expression, and dual luciferase and RNA-pull down assays for verifying the target relationship. Porcine aortic valve interstitial cells (AVICs) were isolated and transfected with pcDNA-circ-CCND1, miR-138-5p inhibitor, and miR-138-5p mimics. The alkaline phosphatase (ALP) activity was quantitatively analyzed by ALP staining, and alizarin-red staining was to check the calcium nodules formation. Finally, Western blot was applied to detect the expression of proteins associated with osteogenic differentiation (Runx2, Osterix, OPN) and CCND1/P53/P21 pathway proteins. Circ-CCND1 was highly expressed in calcific aortic valves. After inhibiting circ-CCND1 expression, a significant reduction was shown in ALP activity, the degree of ossification and the formation of calcium nodules in AVICs, and osteogenic differentiation-related protein expression and CCND1/P53/P21 pathway protein expression. By contrast, inhibition of miR-138-5p and circ-CCND1 together promoted the calcification of AVICs and expression of CCND1/P53/P21 pathway proteins. P53 inhibitor (PFT-α) could significantly reduce activation of CCND1/P53/P21 pathway protein expression by circ-CCND1 overexpression. However, P53 activator (Nutlin-3) significantly restored the suppression of the above pathway-related protein expression by downregulation of circ-CCND1. Circ-CCND1 sponges miR-138-5p to regulate CCND1 expression, thereby promoting the calcification of AVICs.
Collapse
|
3
|
Djekic D, Pinto R, Repsilber D, Hyotylainen T, Henein M. Serum untargeted lipidomic profiling reveals dysfunction of phospholipid metabolism in subclinical coronary artery disease. Vasc Health Risk Manag 2019; 15:123-135. [PMID: 31190850 PMCID: PMC6526169 DOI: 10.2147/vhrm.s202344] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 02/18/2019] [Indexed: 11/23/2022] Open
Abstract
Purpose: Disturbed metabolism of cholesterol and triacylglycerols (TGs) carries increased risk for coronary artery calcification (CAC). However, the exact relationship between individual lipid species and CAC remains unclear. The aim of this study was to identify disturbances in lipid profiles involved in the calcification process, in an attempt to propose potential biomarker candidates. Patients and methods: We studied 70 patients at intermediate risk for coronary artery disease who had undergone coronary calcification assessment using computed tomography and Agatston coronary artery calcium score (CACS). Patients were divided into three groups: with no coronary calcification (NCC; CACS: 0; n=26), mild coronary calcification (MCC; CACS: 1–250; n=27), or severe coronary calcification (SCC; CACS: >250; n=17). Patients’ serum samples were analyzed using liquid chromatography-mass spectrometry in an untargeted lipidomics approach. Results: We identified 103 lipids within the glycerolipid, glycerophospholipid, sphingolipid, and sterol lipid classes. After false discovery rate correction, phosphatidylcholine (PC)(16:0/20:4) in higher levels and PC(18:2/18:2), PC(36:3), and phosphatidylethanolamine(20:0/18:2) in lower levels were identified as correlates with SCC compared to NCC. There were no significant differences in the levels of individual TGs between the three groups; however, clustering the lipid profiles showed a trend for higher levels of saturated and monounsaturated TGs in SCC compared to NCC. There was also a trend for lower TG(49:2), TG(51:1), TG(54:5), and TG(56:8) levels in SCC compared to MCC. Conclusion: In this study we investigated the lipidome of patients with coronary calcification. Our results suggest that the calcification process may be associated with dysfunction in autophagy. The lipidomic biomarkers revealed in this study may aid in better assessment of patients with subclinical coronary artery disease.
Collapse
Affiliation(s)
- Demir Djekic
- Department of Cardiology, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Rui Pinto
- Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| | - Dirk Repsilber
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Tuulia Hyotylainen
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Michael Henein
- Department of Public Health and Clinical Medicine, Umeå University and Heart Centre, Umeå, Sweden.,Molecular and Clinic Research Institute, St George University, London, UK.,Institute of Environment, Health and Physical Sciences, Brunel University, London, UK
| |
Collapse
|
4
|
Raddatz MA, Madhur MS, Merryman WD. Adaptive immune cells in calcific aortic valve disease. Am J Physiol Heart Circ Physiol 2019; 317:H141-H155. [PMID: 31050556 DOI: 10.1152/ajpheart.00100.2019] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Calcific aortic valve disease (CAVD) is highly prevalent and has no pharmaceutical treatment. Surgical replacement of the aortic valve has proved effective in advanced disease but is costly, time limited, and in many cases not optimal for elderly patients. This has driven an increasing interest in noninvasive therapies for patients with CAVD. Adaptive immune cell signaling in the aortic valve has shown potential as a target for such a therapy. Up to 15% of cells in the healthy aortic valve are hematopoietic in origin, and these cells, which include macrophages, T lymphocytes, and B lymphocytes, are increased further in calcified specimens. Additionally, cytokine signaling has been shown to play a causative role in aortic valve calcification both in vitro and in vivo. This review summarizes the physiological presence of hematopoietic cells in the valve, innate and adaptive immune cell infiltration in disease states, and the cytokine signaling pathways that play a significant role in CAVD pathophysiology and may prove to be pharmaceutical targets for this disease in the near future.
Collapse
Affiliation(s)
- Michael A Raddatz
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee.,Vanderbilt University School of Medicine , Nashville, Tennessee
| | - Meena S Madhur
- Department of Medicine, Vanderbilt University Medical Center , Nashville, Tennessee.,Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee.,Division of Clinical Pharmacology, Vanderbilt University Medical Center , Nashville, Tennessee
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee
| |
Collapse
|
5
|
Degenerative Aortic Stenosis, Dyslipidemia and Possibilities of Medical Treatment. ACTA ACUST UNITED AC 2018; 54:medicina54020024. [PMID: 30344255 PMCID: PMC6037252 DOI: 10.3390/medicina54020024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 12/20/2022]
Abstract
Degenerative aortic stenosis (DAS) is the most frequently diagnosed heart valve disease in Europe and North America. DAS is a chronic progressive disease which resembles development of atherosclerosis. Endothelial dysfunction, lipid infiltration, calcification and ossification are evidenced in both diseases. The same risk factors such as older age, male sex, smoking, and elevated levels of lipids are identified. The effect of smoking, visceral obesity, metabolic syndrome, hypercholesterolemia, low-density lipoprotein, high-density lipoprotein, lipoprotein(a), adiponectin and apolipoprotein(a) on development of DAS are being studied. The search for genetic ties between disorders of lipid metabolism and DAS has been started. DAS is characterized by a long symptom-free period which can last for several decades. Aortic valve replacement surgery is necessary when the symptoms occur. The lipid-lowering therapy effect on stopping or at least slowing down the progression of DAS was studied. However, the results of the conducted clinical trials are controversial. In addition, calcium homeostasis, bone metabolism and calcinosis-reducing medication are being studied. Although prospective randomized clinical trials have not demonstrated any positive effect of statins used for slowing progression of the disease, statins are still recommended for patients with dyslipidemia. Recent study has suggested that a specific modification of treatment, based on severity of disease, may have a beneficial effect in patients with aortic sclerosis and mild DAS. New clinical studies analyzing new treatment possibilities which could correct the natural course of the disease and reduce the need for aortic valve replacement by surgery or transcatheter treatment interventions are needed.
Collapse
|
6
|
Hisamatsu T, Miura K, Fujiyoshi A, Kadota A, Miyagawa N, Satoh A, Zaid M, Yamamoto T, Horie M, Ueshima H. Serum magnesium, phosphorus, and calcium levels and subclinical calcific aortic valve disease: A population-based study. Atherosclerosis 2018; 273:145-152. [PMID: 29655832 DOI: 10.1016/j.atherosclerosis.2018.03.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 02/22/2018] [Accepted: 03/21/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND AIMS Calcific aortic valve disease (CAVD) is the most common valve disease. Although micronutrients are known to contribute to cardiovascular disease, the relationship with CAVD remains poorly evaluated. We examined the association of serum levels of magnesium, phosphorus, and calcium with prevalence, incidence, and progression of aortic valve calcification (AVC). METHODS We conducted a prospective study in a population-based sample of Japanese men aged 40-79 years without known cardiovascular disease and chronic kidney disease at baseline, and quantified AVC from serial computed tomographic images with the Agatston method. RESULTS Of 938 participants at baseline (mean age, 63.7 ± 9.9 years), AVC prevalence was observed in 173 (18.4%). Of 596 participants without baseline AVC at follow-up (median duration, 5.1 years), AVC incidence was observed in 138 (23.2%). After adjustment for demographics, behaviors and cardiovascular risk factors, relative risks (95% confidence intervals) in the highest versus lowest categories of serum magnesium, phosphorus, and calcium were 0.62 (0.44-0.86), 1.45 (1.02-2.04), and 1.43 (0.95-2.15), respectively, for AVC prevalence and 0.62 (0.42-0.92), 1.93 (1.28-2.91), and 1.09 (0.77-1.55), respectively, for AVC incidence. Their linear trends of serum magnesium and phosphorus were also all statistically significant. Of 131 participants with baseline AVC, there was no association of any serum micronutrients with AVC progression. CONCLUSIONS Serum magnesium was inversely associated, while serum phosphorus was positively associated with AVC prevalence and incidence, suggesting that these serum micronutrients may be potential candidates for risk prediction or prevention of CAVD, and warranting further studies.
Collapse
Affiliation(s)
- Takashi Hisamatsu
- Department of Environmental Medicine and Public Health, Faculty of Medicine, Shimane University, Izumo, Japan; Department of Public Health, Shiga University of Medical Science, Otsu, Japan; Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Otsu, Japan.
| | - Katsuyuki Miura
- Department of Public Health, Shiga University of Medical Science, Otsu, Japan; Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Otsu, Japan
| | - Akira Fujiyoshi
- Department of Public Health, Shiga University of Medical Science, Otsu, Japan
| | - Aya Kadota
- Department of Public Health, Shiga University of Medical Science, Otsu, Japan; Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Otsu, Japan
| | - Naoko Miyagawa
- Department of Public Health, Shiga University of Medical Science, Otsu, Japan
| | - Atsushi Satoh
- Department of Preventive Medicine and Public Health, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Maryam Zaid
- Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Otsu, Japan
| | - Takashi Yamamoto
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Minoru Horie
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Hirotsugu Ueshima
- Department of Public Health, Shiga University of Medical Science, Otsu, Japan; Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Otsu, Japan
| | | |
Collapse
|