1
|
Tudurachi A, Anghel L, Tudurachi BS, Zăvoi A, Ceasovschih A, Sascău RA, Stătescu C. Beyond the Obstructive Paradigm: Unveiling the Complex Landscape of Nonobstructive Coronary Artery Disease. J Clin Med 2024; 13:4613. [PMID: 39200755 PMCID: PMC11354865 DOI: 10.3390/jcm13164613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Traditionally focused on obstructive atherosclerosis, contemporary research indicates that up to 70% of patients undergoing coronary angiography for angina and ischemic symptoms do not exhibit significant stenoses. Nonobstructive coronary artery disease (CAD) has emerged as a prevalent phenotype among these patients. This review emphasizes the emerging understanding that nonobstructive coronary artery disease, encompassing conditions such as ANOCA (Angina with No Obstructive Coronary Artery Disease), INOCA (Ischemia with No Obstructive Coronary Artery Disease), and MINOCA (Myocardial Infarction with No Obstructive Coronary Arteries), represents the most prevalent phenotype in cardiac patients. It delves into the complex pathophysiology underlying these conditions, focusing on microvascular dysfunction and coronary vasoreactivity, which contribute to myocardial ischemia despite the absence of significant coronary obstructions. Additionally, the review critically examines the limitations of current treatments which primarily target obstructive lesions and underscores the necessity for tailored therapies that address the specific microvascular and immunoinflammatory pathways involved in nonobstructive CAD. The main focus of this review is to advocate for a shift in diagnostic and therapeutic strategies to better identify and manage this widely prevalent yet under-recognized subset of CAD.
Collapse
Affiliation(s)
- Andreea Tudurachi
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I. M. Georgescu”, 700503 Iași, Romania; (A.T.); (A.Z.); (R.A.S.); (C.S.)
| | - Larisa Anghel
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I. M. Georgescu”, 700503 Iași, Romania; (A.T.); (A.Z.); (R.A.S.); (C.S.)
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iași, Romania;
| | - Bogdan-Sorin Tudurachi
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I. M. Georgescu”, 700503 Iași, Romania; (A.T.); (A.Z.); (R.A.S.); (C.S.)
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iași, Romania;
| | - Alexandra Zăvoi
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I. M. Georgescu”, 700503 Iași, Romania; (A.T.); (A.Z.); (R.A.S.); (C.S.)
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iași, Romania;
| | - Alexandr Ceasovschih
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iași, Romania;
- “St. Spiridon” Clinical Emergency Hospital, Independence Boulevard No. 1, 700111 Iasi, Romania
| | - Radu Andy Sascău
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I. M. Georgescu”, 700503 Iași, Romania; (A.T.); (A.Z.); (R.A.S.); (C.S.)
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iași, Romania;
| | - Cristian Stătescu
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I. M. Georgescu”, 700503 Iași, Romania; (A.T.); (A.Z.); (R.A.S.); (C.S.)
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iași, Romania;
| |
Collapse
|
2
|
Cao J, Martin-Lorenzo M, van Kuijk K, Wieland EB, Gijbels MJ, Claes BSR, Heredero A, Aldamiz-Echevarria G, Heeren RMA, Goossens P, Sluimer JC, Balluff B, Alvarez-Llamas G. Spatial Metabolomics Identifies LPC(18:0) and LPA(18:1) in Advanced Atheroma With Translation to Plasma for Cardiovascular Risk Estimation. Arterioscler Thromb Vasc Biol 2024; 44:741-754. [PMID: 38299357 DOI: 10.1161/atvbaha.123.320278] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND The metabolic alterations occurring within the arterial architecture during atherosclerosis development remain poorly understood, let alone those particular to each arterial tunica. We aimed first to identify, in a spatially resolved manner, the specific metabolic changes in plaque, media, adventitia, and cardiac tissue between control and atherosclerotic murine aortas. Second, we assessed their translatability to human tissue and plasma for cardiovascular risk estimation. METHODS In this observational study, mass spectrometry imaging (MSI) was applied to identify region-specific metabolic differences between atherosclerotic (n=11) and control (n=11) aortas from low-density lipoprotein receptor-deficient mice, via histology-guided virtual microdissection. Early and advanced plaques were compared within the same atherosclerotic animals. Progression metabolites were further analyzed by MSI in 9 human atherosclerotic carotids and by targeted mass spectrometry in human plasma from subjects with elective coronary artery bypass grafting (cardiovascular risk group, n=27) and a control group (n=27). RESULTS MSI identified 362 local metabolic alterations in atherosclerotic mice (log2 fold-change ≥1.5; P≤0.05). The lipid composition of cardiac tissue is altered during atherosclerosis development and presents a generalized accumulation of glycerophospholipids, except for lysolipids. Lysolipids (among other glycerophospholipids) were found at elevated levels in all 3 arterial layers of atherosclerotic aortas. LPC(18:0) (lysophosphatidylcholine; P=0.024) and LPA(18:1) (lysophosphatidic acid; P=0.025) were found to be significantly elevated in advanced plaques as compared with mouse-matched early plaques. Higher levels of both lipid species were also observed in fibrosis-rich areas of advanced- versus early-stage human samples. They were found to be significantly reduced in human plasma from subjects with elective coronary artery bypass grafting (P<0.001 and P=0.031, respectively), with LPC(18:0) showing significant association with cardiovascular risk (odds ratio, 0.479 [95% CI, 0.225-0.883]; P=0.032) and diagnostic potential (area under the curve, 0.778 [95% CI, 0.638-0.917]). CONCLUSIONS An altered phospholipid metabolism occurs in atherosclerosis, affecting both the aorta and the adjacent heart tissue. Plaque-progression lipids LPC(18:0) and LPA(18:1), as identified by MSI on tissue, reflect cardiovascular risk in human plasma.
Collapse
Affiliation(s)
- Jianhua Cao
- Maastricht MultiModal Molecular Imaging institute, M4i, Maastricht University, the Netherlands (J.C., B.S.R.C., R.M.A.H., B.B.)
| | - Marta Martin-Lorenzo
- Immunology Department, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain (M.M.-L., G.A.-L.)
| | - Kim van Kuijk
- Department of Pathology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, the Netherlands (K.v.K., E.B.W., M.J.G., P.G., J.C.S.)
| | - Elias B Wieland
- Department of Pathology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, the Netherlands (K.v.K., E.B.W., M.J.G., P.G., J.C.S.)
| | - Marion J Gijbels
- Department of Pathology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, the Netherlands (K.v.K., E.B.W., M.J.G., P.G., J.C.S.)
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, the Netherlands (M.J.G.)
| | - Britt S R Claes
- Maastricht MultiModal Molecular Imaging institute, M4i, Maastricht University, the Netherlands (J.C., B.S.R.C., R.M.A.H., B.B.)
| | - Angeles Heredero
- Cardiac Surgery Service, Fundación Jiménez Díaz University Hospital-UAM, Madrid, Spain (A.H., G.A.-E.)
| | | | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging institute, M4i, Maastricht University, the Netherlands (J.C., B.S.R.C., R.M.A.H., B.B.)
| | - Pieter Goossens
- Department of Pathology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, the Netherlands (K.v.K., E.B.W., M.J.G., P.G., J.C.S.)
| | - Judith C Sluimer
- Department of Pathology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, the Netherlands (K.v.K., E.B.W., M.J.G., P.G., J.C.S.)
- Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (J.C.S.)
| | - Benjamin Balluff
- Maastricht MultiModal Molecular Imaging institute, M4i, Maastricht University, the Netherlands (J.C., B.S.R.C., R.M.A.H., B.B.)
| | - Gloria Alvarez-Llamas
- Immunology Department, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain (M.M.-L., G.A.-L.)
- RICORS2040, IIS-Fundación Jiménez Díaz, Madrid, Spain (G.A.-L.)
- Biochemistry and Molecular Biology Department, Complutense University, Madrid, Spain (G.A.-L.)
| |
Collapse
|
3
|
The impact of the PCSK-9/VLDL-Receptor axis on inflammatory cell polarization. Cytokine 2023; 161:156077. [PMID: 36356495 DOI: 10.1016/j.cyto.2022.156077] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/26/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Studies have shown that lipoproteins, such as LDL and VLDL, as well as its major protein component ApoE2 impact on macrophage polarization important in atherosclerosis. Proprotein convertase subtilisin/kexin 9 (PCSK9) is a key regulator of lipoprotein receptor expression. The present study investigated the effect of the VLDL/VLDL-receptor (VLDL-R) axis on mononuclear cell polarization, as well as the role of PCSK9 and PCSK9 inhibitors (PCSK9i) within this network. METHODS Human monocytic THP-1 cells and human monocyte-derived macrophages isolated from peripheral blood mononuclear cells (PBMC) were treated with either LPS/IFN-γ to induce a pro-inflammatory phenotype, or with IL-4/IL-13 to induce an anti-inflammatory phenotype. Cells were then subjected to further treatments by lipoproteins, PCSK9, PCSK9i and lipoprotein receptor blockers. RESULTS LPS/IFN-γ treatment promoted a pro-inflammatory state with an increased expression of pro-inflammatory mediators such as TNF-α, CD80 and IL-1β. VLDL co-treatment induced a switch of this pro-inflammatory phenotype to an anti-inflammatory phenotype. In pro-inflammatory cells, VLDL significantly decreased the expression of pro-inflammatory markers e.g., TNF-α, CD80, and IL-1β. These effects were eliminated by PCSK9 and restored by co-incubation with a specific anti-PCSK9 monoclonal antibody (PCSK9i). Migration assays demonstrated that pro-inflammatory cells displayed a significantly higher invasive capacity when compared to untreated cells or anti-inflammatory cells. Moreover, pro-inflammatory cell chemotaxis was significantly decreased by VLDL-mediated acquisition of the anti-inflammatory phenotype. PCSK9 significantly lessened this VLDL-mediated migration inhibition, which was reversed by the PCSK9i. CONCLUSION VLDL promotes mononuclear cell differentiation towards an anti-inflammatory phenotype. PCSK9, via its capacity to inhibit VLDL-R expression, reverses the VLDL-mediated anti-inflammatory action, thereby promoting a pro-inflammatory phenotype. Thus, PCSK9 targeting therapies may exert anti-inflammatory properties within the vessel wall.
Collapse
|
4
|
Kotlyarov S, Kotlyarova A. Molecular Pharmacology of Inflammation Resolution in Atherosclerosis. Int J Mol Sci 2022; 23:4808. [PMID: 35563200 PMCID: PMC9104781 DOI: 10.3390/ijms23094808] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Atherosclerosis is one of the most important problems of modern medicine as it is the leading cause of hospitalizations, disability, and mortality. The key role in the development and progression of atherosclerosis is the imbalance between the activation of inflammation in the vascular wall and the mechanisms of its control. The resolution of inflammation is the most important physiological mechanism that is impaired in atherosclerosis. The resolution of inflammation has complex, not fully known mechanisms, in which lipid mediators derived from polyunsaturated fatty acids (PUFAs) play an important role. Specialized pro-resolving mediators (SPMs) represent a group of substances that carry out inflammation resolution and may play an important role in the pathogenesis of atherosclerosis. SPMs include lipoxins, resolvins, maresins, and protectins, which are formed from PUFAs and regulate many processes related to the active resolution of inflammation. Given the physiological importance of these substances, studies examining the possibility of pharmacological effects on inflammation resolution are of interest.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
5
|
Zhang G, Ma L, Bai L, Li M, Guo T, Tian B, He Z, Fu Q. Inflammatory microenvironment-targeted nanotherapies. J Control Release 2021; 334:114-126. [PMID: 33887284 DOI: 10.1016/j.jconrel.2021.04.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/14/2022]
Abstract
Inflammatory microenvironments (IMEs) are common pathological characteristics and drive the development of multiple chronic diseases. Thus, IME-targeted therapies exhibit potential for the treatment of inflammatory diseases. Nanoplatforms have significant advantages in improving the efficiency of anti-inflammatory treatments. Owing to their improved therapeutic effects and reduced side effects, IME-targeted nanotherapies have recently drawn interest from the research community. This review introduces IMEs and discusses the application of IME-targeted nanotherapies for inflammatory diseases. The development of rational targeting strategies tailored to IMEs in damaged tissues can help promote therapies for chronic diseases.
Collapse
Affiliation(s)
- Guangshuai Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Lixue Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Lijun Bai
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Mo Li
- Liaoning Institute for Drug Control, No. 7 Chongshan West Road, Shenyang 110016, China
| | - Tiange Guo
- Laboratory Animal Department, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenyang 110016, China
| | - Baocheng Tian
- School of Pharmacy, Binzhou Medical University, No. 346, Guanhai Road, Yantai 264003, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
6
|
Godo S, Suda A, Takahashi J, Yasuda S, Shimokawa H. Coronary Microvascular Dysfunction. Arterioscler Thromb Vasc Biol 2021; 41:1625-1637. [PMID: 33761763 DOI: 10.1161/atvbaha.121.316025] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Shigeo Godo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (S.G., A.S., J.T., S.Y., H.S.)
| | - Akira Suda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (S.G., A.S., J.T., S.Y., H.S.)
| | - Jun Takahashi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (S.G., A.S., J.T., S.Y., H.S.)
| | - Satoshi Yasuda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (S.G., A.S., J.T., S.Y., H.S.)
| | - Hiroaki Shimokawa
- Graduate School, International University of Health and Welfare, Narita, Japan (H.S.)
| |
Collapse
|