1
|
Gém JB, Kovács KB, Barsi S, Hadadnejadtehrani S, Damouni A, Turu G, Tóth AD, Várnai P, Hunyady L, Balla A. Role of LMCD1 in the Long-Term Effects of Angiotensin II in Vascular Smooth Muscle Cells. Int J Mol Sci 2025; 26:4053. [PMID: 40362300 PMCID: PMC12071511 DOI: 10.3390/ijms26094053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/15/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025] Open
Abstract
Excessive activity of the hormone angiotensin II (AngII) is known to contribute to the pathogenesis of multiple cardiovascular diseases, including atherosclerosis, vascular remodeling, and hypertension, primarily through inducing gene expression changes. In this study, we identified LMCD1 (LIM and cysteine-rich domains 1, also known as Dyxin), primarily recognized as a transcription co-factor involved in various oncogenic processes, cardiac hypertrophy, and vascular remodeling, as a potential key factor in AngII-mediated effects in vascular smooth muscle cells (VSMCs). We demonstrated that AngII upregulates LMCD1 expression in primary rat VSMCs through type 1 angiotensin receptor (AT1-R) activation, leading to calcium signaling and p38 MAPK pathway activation. Additionally, we also demonstrated in A7r5 vascular smooth muscle cells that LMCD1 protein overexpression results in enhanced cell proliferation and cell migration. Our findings provide insights into the mechanisms by which AngII mediates changes in LMCD1 expression. The elevated expression of LMCD1 enhanced the cell proliferation and migration in VSMCs in vitro experiments, suggesting that LMCD1 may be an important factor in vascular remodeling and the pathogenesis of severe cardiovascular diseases. These results raise the possibility that LMCD1 could be a promising pharmacological target in the cardiovascular dysfunctions associated with AT1-R overactivation.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Angiotensin II/metabolism
- Animals
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Rats
- Cell Proliferation/drug effects
- Cell Movement/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Receptor, Angiotensin, Type 1/metabolism
- LIM Domain Proteins/metabolism
- LIM Domain Proteins/genetics
- Rats, Sprague-Dawley
- Cells, Cultured
- Male
- Vascular Remodeling
- Calcium Signaling/drug effects
Collapse
Affiliation(s)
- Janka Borbála Gém
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó utca 37-47, 1094 Budapest, Hungary; (J.B.G.); (K.B.K.); (S.H.); (A.D.); (G.T.); (P.V.); (L.H.)
| | - Kinga Bernadett Kovács
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó utca 37-47, 1094 Budapest, Hungary; (J.B.G.); (K.B.K.); (S.H.); (A.D.); (G.T.); (P.V.); (L.H.)
| | - Szilvia Barsi
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó utca 37-47, 1094 Budapest, Hungary; (J.B.G.); (K.B.K.); (S.H.); (A.D.); (G.T.); (P.V.); (L.H.)
| | - Saba Hadadnejadtehrani
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó utca 37-47, 1094 Budapest, Hungary; (J.B.G.); (K.B.K.); (S.H.); (A.D.); (G.T.); (P.V.); (L.H.)
| | - Amir Damouni
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó utca 37-47, 1094 Budapest, Hungary; (J.B.G.); (K.B.K.); (S.H.); (A.D.); (G.T.); (P.V.); (L.H.)
| | - Gábor Turu
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó utca 37-47, 1094 Budapest, Hungary; (J.B.G.); (K.B.K.); (S.H.); (A.D.); (G.T.); (P.V.); (L.H.)
- Institute of Molecular Life Sciences, Centre of Excellence of the Hungarian Academy of Sciences, HUN-REN-SU Research Centre of Natural Sciences, Magyar tudósok körútja 2, 1117 Budapest, Hungary;
| | - András Dávid Tóth
- Institute of Molecular Life Sciences, Centre of Excellence of the Hungarian Academy of Sciences, HUN-REN-SU Research Centre of Natural Sciences, Magyar tudósok körútja 2, 1117 Budapest, Hungary;
- Department of Internal Medicine and Haematology, Semmelweis University, 1088 Budapest, Hungary
| | - Péter Várnai
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó utca 37-47, 1094 Budapest, Hungary; (J.B.G.); (K.B.K.); (S.H.); (A.D.); (G.T.); (P.V.); (L.H.)
- HUN-REN-SU Molecular Physiology Research Group, Hungarian Research Network and Semmelweis University, 1094 Budapest, Hungary
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó utca 37-47, 1094 Budapest, Hungary; (J.B.G.); (K.B.K.); (S.H.); (A.D.); (G.T.); (P.V.); (L.H.)
- Institute of Molecular Life Sciences, Centre of Excellence of the Hungarian Academy of Sciences, HUN-REN-SU Research Centre of Natural Sciences, Magyar tudósok körútja 2, 1117 Budapest, Hungary;
| | - András Balla
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó utca 37-47, 1094 Budapest, Hungary; (J.B.G.); (K.B.K.); (S.H.); (A.D.); (G.T.); (P.V.); (L.H.)
- HUN-REN-SU Molecular Physiology Research Group, Hungarian Research Network and Semmelweis University, 1094 Budapest, Hungary
| |
Collapse
|
2
|
Zhang S, Shen J, Zhu Y, Zheng Y, San W, Cao D, Chen Y, Meng G. Hydrogen sulfide promoted retinoic acid-related orphan receptor α transcription to alleviate diabetic cardiomyopathy. Biochem Pharmacol 2023; 215:115748. [PMID: 37591449 DOI: 10.1016/j.bcp.2023.115748] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/02/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Diabetic cardiomyopathy (DCM) is one serious and common complication in diabetes without effective treatments. Hydrogen sulfide (H2S) fights against a variety of cardiovascular diseases including DCM. Retinoic acid-related orphan receptor α (RORα) has protective effects on cardiovascular system. However, whether RORα mediates the protective effect of H2S against DCM remains unknown. The present research was to explore the roles and mechanisms of RORα in H2S against DCM. The study demonstrated that H2S donor sodium hydrosulfide (NaHS) alleviated cell injury but enhanced RORα expression in high glucose (HG)-stimulated cardiomyocytes. However, NaHS no longer had the protective effect on attenuating cell damage and oxidative stress, improving mitochondrial membrane potential, inhibiting necroptosis and enhanced signal transducer and activator of transcription 3 (STAT3) Ser727 phosphorylation in HG-stimulated cardiomyocytes after RORα siRNA transfection. Moreover, NaHS improved cardiac function, attenuated myocardial hypertrophy and fibrosis, alleviated oxidative stress, inhibited necroptosis, but increased STAT3 phosphorylation in wild type (WT) mice but not in RORα knockout mice (a spontaneous staggerer mice, sg/sg mice) with diabetes. Additionally, NaHS increased RORα promoter activity in cardiomyocytes with HG stimulation, which was related to the binding sites of E2F transcription factor 1 (E2F1) in the upstream region of RORα promoter. NaHS enhanced E2F1 expression and increased the binding of E2F1 to RORα promoter in cardiomyocytes with HG stimulation. In sum, H2S promoted RORα transcription via E2F1 to alleviate necroptosis and protect against DCM. It is helpful to propose a novel therapeutic implication for DCM.
Collapse
Affiliation(s)
- Shuping Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China; Department of Pharmacy, Nantong Third People's Hospital; Department of Pharmacy, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226001, Jiangsu, China
| | - Jieru Shen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Yu Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Yangyang Zheng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Wenqing San
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Danyi Cao
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Yun Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China.
| | - Guoliang Meng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
3
|
Bai Y, Tian M, He P, Zhang Y, Chen J, Zhao Z, Lan J, Zhang B. LMCD1 is involved in tubulointerstitial inflammation in the early phase of renal fibrosis by promoting NFATc1-mediated NLRP3 activation. Int Immunopharmacol 2023; 121:110362. [PMID: 37311356 DOI: 10.1016/j.intimp.2023.110362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/06/2023] [Accepted: 05/17/2023] [Indexed: 06/15/2023]
Abstract
Prolonged renal inflammation contributes to fibrosis, which may eventually lead to irreversible chronic kidney disease. Our previous work demonstrated that LIM and cysteine-rich domain 1 (LMCD1) are associated with renal interstitial fibrosis in a 21-day unilateral ureteral obstruction (21UUO) mouse model. Interestingly, based on the gene expression omnibus database, we found that LMCD1 is enhanced in the mouse kidney as early as 5, 7, and 10 days following unilateral ureteral obstruction (UUO), suggesting that LMCD1 may exert its function in an earlier phase. To validate this conjecture, a 7UUO mouse model and a tumor necrosis factor-α (TNF-α)-stimulated HK-2 cell model were established, followed by injection of adenovirus vectors carrying short hairpin RNA targeting LMCD1. LMCD1 silencing ameliorated renal collagen deposition and reduced the expression of profibrotic factors in the 7UUO model. LMCD1 silencing alleviated tubulointerstitial inflammation by mitigating F4/80+ cell infiltration, monocyte chemoattractant protein-1 release and nuclear factor-κB activation. In addition, LMCD1 silencing suppressed NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation and nuclear factor of activated T cells 1 (NFATc1) nuclear translocation. Consistent results were obtained in TNF-α-stimulated HK-2 cells in vitro. Mechanistically, the transcriptional coactivator LMCD1 cooperates with the transcription factor NFATc1 to increase NLRP3 expression. Collectively, these findings suggest that LMCD1 participates in tubulointerstitial inflammation via an LMCD1-NFATc1/NLRP3 mechanism. LMCD1 may therefore become a potential target for the control of renal inflammation and fibrosis.
Collapse
Affiliation(s)
- Yu Bai
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, People's Republic of China
| | - Mi Tian
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, People's Republic of China
| | - Ping He
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, People's Republic of China
| | - Yongzhe Zhang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, People's Republic of China
| | - Jie Chen
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, People's Republic of China
| | - Zixia Zhao
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, People's Republic of China
| | - Jingsi Lan
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, People's Republic of China
| | - Beiru Zhang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, People's Republic of China.
| |
Collapse
|
4
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
5
|
Wu X, Xu M, Geng M, Chen S, Little PJ, Xu S, Weng J. Targeting protein modifications in metabolic diseases: molecular mechanisms and targeted therapies. Signal Transduct Target Ther 2023; 8:220. [PMID: 37244925 PMCID: PMC10224996 DOI: 10.1038/s41392-023-01439-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/01/2023] [Accepted: 04/06/2023] [Indexed: 05/29/2023] Open
Abstract
The ever-increasing prevalence of noncommunicable diseases (NCDs) represents a major public health burden worldwide. The most common form of NCD is metabolic diseases, which affect people of all ages and usually manifest their pathobiology through life-threatening cardiovascular complications. A comprehensive understanding of the pathobiology of metabolic diseases will generate novel targets for improved therapies across the common metabolic spectrum. Protein posttranslational modification (PTM) is an important term that refers to biochemical modification of specific amino acid residues in target proteins, which immensely increases the functional diversity of the proteome. The range of PTMs includes phosphorylation, acetylation, methylation, ubiquitination, SUMOylation, neddylation, glycosylation, palmitoylation, myristoylation, prenylation, cholesterylation, glutathionylation, S-nitrosylation, sulfhydration, citrullination, ADP ribosylation, and several novel PTMs. Here, we offer a comprehensive review of PTMs and their roles in common metabolic diseases and pathological consequences, including diabetes, obesity, fatty liver diseases, hyperlipidemia, and atherosclerosis. Building upon this framework, we afford a through description of proteins and pathways involved in metabolic diseases by focusing on PTM-based protein modifications, showcase the pharmaceutical intervention of PTMs in preclinical studies and clinical trials, and offer future perspectives. Fundamental research defining the mechanisms whereby PTMs of proteins regulate metabolic diseases will open new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Xiumei Wu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, China
| | - Mengyun Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Mengya Geng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Shuo Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Peter J Little
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, 4102, Australia
- Sunshine Coast Health Institute and School of Health and Behavioural Sciences, University of the Sunshine Coast, Birtinya, QLD, 4575, Australia
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, China.
- Bengbu Medical College, Bengbu, 233000, China.
| |
Collapse
|
6
|
Zhang Y, Sun L, Wang X, Zhou Q. Integrative analysis of HASMCs gene expression profile revealed the role of thrombin in the pathogenesis of atherosclerosis. BMC Cardiovasc Disord 2023; 23:191. [PMID: 37046189 PMCID: PMC10091598 DOI: 10.1186/s12872-023-03211-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
We explored the effect of thrombin on human aortic smooth muscle cells (HASMCs) and further analyzed its role in the pathogenesis of atherosclerosis (AS). Thrombin-induced differentially expressed genes (DEGs) in HASMCs were identified by analyzing expression profiles from the GEO. Subsequently, enrichment analysis, GSEA, PPI network, and gene-microRNAs networks were interrogated to identify hub genes and associated pathways. Enrichment analysis results indicated that thrombin causes HASMCs to secrete various pro-inflammatory cytokines and chemokines, exacerbating local inflammatory response in AS. Moreover, we identified 9 HUB genes in the PPI network, which are closely related to the inflammatory response and the promotion of the cell cycle. Additionally, we found that thrombin inhibits lipid metabolism and autophagy of HASMCs, potentially contributing to smooth muscle-derived foam cell formation. Our study deepens a mechanistic understanding of the effect of thrombin on HASMCs and provides new insight into treating AS.
Collapse
Affiliation(s)
- Yichen Zhang
- The Second Hospital of Shandong University, Jinan, Shandong Province, China
- Jinan Central Hospital, Shandong University, Jinan, Shandong Province, China
| | - Lin Sun
- Jinan Central Hospital, Shandong University, Jinan, Shandong Province, China
| | - Xingsheng Wang
- Jinan Central Hospital, Shandong University, Jinan, Shandong Province, China
| | - Qingbo Zhou
- The Second Hospital of Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
7
|
Govatati S, Pichavaram P, Kumar R, Rao GN. Blockade of CD47 function attenuates restenosis by promoting smooth muscle cell efferocytosis and inhibiting their migration and proliferation. J Biol Chem 2023; 299:104594. [PMID: 36898577 PMCID: PMC10124914 DOI: 10.1016/j.jbc.2023.104594] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/10/2023] Open
Abstract
Cluster of differentiation 47 (CD47) plays an important role in the pathophysiology of various diseases including atherosclerosis, but its role in neointimal hyperplasia which contributes to restenosis, has not been studied. Using molecular approaches in combination with a mouse vascular endothelial denudation model, we studied the role of CD47 in injury-induced neointimal hyperplasia. We determined that thrombin induced CD47 expression both in human and mouse aortic smooth muscle cells (HASMCs and MASMCs). In exploring the mechanisms, we found that the protease-activated receptor 1 (PAR1)-Gα protein q/11 (Gαq/11)-phospholipase Cβ3 (PLCβ3)-nuclear factor of activated T cells c1 (NFATc1) signaling axis regulates thrombin-induced CD47 expression in HASMCs. Depletion of CD47 levels using its siRNA or interference of its function by its blocking antibody (bAb) blunted thrombin-induced migration and proliferation of HASMCs and MASMCs. In addition, we found that thrombin-induced HASMC migration requires CD47 interaction with integrin β3. On the other hand, thrombin-induced HASMC proliferation was dependent on CD47's role in nuclear export and degradation of CDK-interacting protein 1 (p21Cip1). In addition, suppression of CD47 function by its bAb rescued HASMC efferocytosis from inhibition by thrombin. We also found that vascular injury induces CD47 expression in intimal SMCs and that inhibition of CD47 function by its bAb, while alleviating injury-induced inhibition of SMC efferocytosis, attenuated SMC migration and proliferation resulting in reduced neointima formation. Thus, these findings reveal a pathological role for CD47 in neointimal hyperplasia.
Collapse
Affiliation(s)
- Suresh Govatati
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Prahalathan Pichavaram
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Raj Kumar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
8
|
Yu R, Wu Y, He P, Bai Y, Zhang Y, Bian X, Sun G, Zhang B. LIM and Cysteine-Rich Domains 1 Promotes Transforming Growth Factor β1–Induced Epithelial–Mesenchymal Transition in Human Kidney 2 Cells. J Transl Med 2023; 103:100016. [PMID: 37039151 DOI: 10.1016/j.labinv.2022.100016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 08/30/2022] [Accepted: 09/19/2022] [Indexed: 01/11/2023] Open
Abstract
Renal fibrosis is the major pathologic manifestation of chronic kidney disease (CKD). LIM and cysteine-rich domains 1 (LMCD1) is upregulated in the kidney tissue from patients with CKD and the transforming growth factor β1 (TGF-β1)-treated human renal tubular epithelial cell line human kidney 2 (HK-2) (Gene Expression Omnibus: GSE66494 and GSE23338). Previously, we have demonstrated that the knockdown of LMCD1 ameliorated renal fibrosis in mice by blocking the activation of the extracellular signal-regulated kinase pathway. In this study, we sought to further investigate whether LMCD1 affects TGF-β1-induced epithelial-mesenchymal transition (EMT) of kidney tubular epithelial cells and its potential role in the TGF-β1/Smad signaling pathway. First, we confirmed that LMCD1 expression was increased in the fibrotic kidneys of patients with CKD compared with that in normal kidneys and that LMCD1 was predominantly localized in the renal tubules. LMCD1 and mesenchymal markers were upregulated in obstructed kidney tissues of mice at 21 days after unilateral ureteral obstruction surgery compared with the tissues in sham mice. Next, we demonstrated that TGF-β1 significantly increased LMCD1 expression through Smad-mediated transcription in HK-2 cells in vitro. In turn, LMCD1 acted as a transcriptional coactivator of E2F transcription factor 1 to promote the transcription of TGF-β1. Moreover, TGF-β1 increased the interaction between LMCD1 and Smad ubiquitination regulatory factor 2 (Smurf2) and accelerated Smurf2-mediated LMCD1 degradation via the ubiquitination system. The knockdown of LMCD1 inhibited TGF-β1-induced EMT in both HK-2 cells and unilateral ureteral obstruction mice. Our results indicate a positive feedback loop between TGF-β1 and LMCD1 for EMT induction in HK-2 cells and that Smurf2 acts as a negative regulator in this process by accelerating LMCD1 degradation.
Collapse
|
9
|
Chen X, Deng C, Wang H, Tang X. Acylations in cardiovascular diseases: advances and perspectives. Chin Med J (Engl) 2022; 135:00029330-990000000-00072. [PMID: 35861291 PMCID: PMC9532046 DOI: 10.1097/cm9.0000000000001941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Indexed: 12/02/2022] Open
Affiliation(s)
- Xiaofeng Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Cechuan Deng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Medical Genetics, Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Sichuan Chengdu, 610041, China
| | - Han Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
10
|
Kumar R, Rao GN. Novel Role of Prereplication Complex Component Cell Division Cycle 6 in Retinal Neovascularization. Arterioscler Thromb Vasc Biol 2022; 42:407-427. [PMID: 35236105 PMCID: PMC8957605 DOI: 10.1161/atvbaha.121.317182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The major aim of this study is to investigate whether CDC6 (cell division cycle 6), a replication origin recognition complex component, plays a role in retinal neovascularization, and if so, to explore the underlying mechanisms. METHODS In this study, we used a variety of approaches including cellular and moleculer biological methodologies as well as global and tissue-specific knockout mice in combination with an oxygen-induced retinopathy model to study the role of CDC6 in retinal neovascularization. RESULTS VEGFA (vascular endothelial growth factor A)-induced CDC6 expression in a time-dependent manner in human retinal microvascular endothelial cells. In addition, VEGFA-induced CDC6 expression was dependent on PLCβ3 (phospholipase Cβ3)-mediated NFATc1 (nuclear factor of activated T cells c1) activation. Furthermore, while siRNA-mediated depletion of PLCβ3, NFATc1, or CDC6 levels blunted VEGFA-induced human retinal microvascular endothelial cell angiogenic events such as proliferation, migration, sprouting, and tube formation, CDC6 overexpression rescued these effects in NFATc1-deficient mouse retinal microvascular endothelial cells. In accordance with these observations, global knockdown of PLCβ3 or endothelial cell-specific deletion of NFATc1 or siRNA-mediated depletion of CDC6 levels substantially inhibited oxygen-induced retinopathy-induced retinal sprouting and neovascularization. In addition, retroviral-mediated overexpression of CDC6 rescued oxygen-induced retinopathy-induced retinal neovascularization from inhibition in PLCβ3 knockout mice and in endothelial cell-specific NFATc1-deficient mice. CONCLUSIONS The above observations clearly reveal that PLCβ3-mediated NFATc1 activation-dependent CDC6 expression plays a crucial role in VEGFA/oxygen-induced retinopathy-induced retinal neovascularization.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Physiology, University of Tennessee Health Science Center, Memphis
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis
| |
Collapse
|
11
|
Yu R, Tian M, He P, Chen J, Zhao Z, Zhang Y, Zhang B. Suppression of LMCD1 ameliorates renal fibrosis by blocking the activation of ERK pathway. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119200. [PMID: 34968577 DOI: 10.1016/j.bbamcr.2021.119200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 12/10/2021] [Accepted: 12/18/2021] [Indexed: 12/29/2022]
Abstract
Tubulointerstitial fibrosis is a common pathway of chronic kidney disease (CKD) and is closely related to the progression of CKD. LMCD1, acting as an intermediary, has been reported to play a role in cardiac fibrosis. However, its role in renal fibrosis is yet to be deciphered. Based on the GEO database, we found the expression of LMCD1 is increased in kidney tissues of CKD patients and in human proximal tubular epithelial (HK-2) cells treated with transforming growth factor-β1 (TGF-β1), suggesting that LMCD1 may be involved in tubulointerstitial fibrosis. Herein, we investigated the role of LMCD1 in mice with unilateral ureteral obstruction (UUO) and in TGF-β1-stimulated HK-2 cells. In the UUO model, the expression of LMCD1 was upregulated. UUO-induced renal histopathological changes were mitigated by knockdown of LMCD1. LMCD1 silence alleviated renal interstitial fibrosis in UUO mice by decreasing the expression of TGF-β1, fibronectin, collagen I, and collagen III. LMCD1 deficiency suppressed cell apoptosis in kidney to prevent UUO-triggered renal injury. Furthermore, LMCD1 deficiency blocked the activation of ERK signaling in UUO mice. In vitro, LMCD1 was upregulated in HK-2 cells after TGF-β1 stimulation. LMCD1 silence abrogated TGF-β1-mediated upregulation of fibrotic genes. Treatment of HK-2 cells with ERK-specific inhibitor SCH772984 and agonist TPA validated LMCD1 exerted its function via activating ERK signaling. Together, our findings suggest that inhibition of LMCD1 protects against renal interstitial fibrosis by impeding ERK activation.
Collapse
Affiliation(s)
- Rui Yu
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Mi Tian
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Ping He
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Jie Chen
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Zixia Zhao
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Yongzhe Zhang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Beiru Zhang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China.
| |
Collapse
|
12
|
Demyanets S, Stojkovic S, Huber K, Wojta J. The Paradigm Change of IL-33 in Vascular Biology. Int J Mol Sci 2021; 22:ijms222413288. [PMID: 34948083 PMCID: PMC8707059 DOI: 10.3390/ijms222413288] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 12/30/2022] Open
Abstract
In this review, we focus on the actual understanding of the role of IL-33 in vascular biology in the context of the historical development since the description of IL-33 as a member of IL-1 superfamily and the ligand for ST2 receptor in 2005. We summarize recent data on the biology, structure and signaling of this dual-function factor with both nuclear and extracellular cytokine properties. We describe cellular sources of IL-33, particularly within vascular wall, changes in its expression in different cardio-vascular conditions and mechanisms of IL-33 release. Additionally, we summarize the regulators of IL-33 expression as well as the effects of IL-33 itself in cells of the vasculature and in monocytes/macrophages in vitro combined with the consequences of IL-33 modulation in models of vascular diseases in vivo. Described in murine atherosclerosis models as well as in macrophages as an atheroprotective cytokine, extracellular IL-33 induces proinflammatory, prothrombotic and proangiogenic activation of human endothelial cells, which are processes known to be involved in the development and progression of atherosclerosis. We, therefore, discuss that IL-33 can possess both protective and harmful effects in experimental models of vascular pathologies depending on experimental conditions, type and dose of administration or method of modulation.
Collapse
Affiliation(s)
- Svitlana Demyanets
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria;
| | - Stefan Stojkovic
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Kurt Huber
- 3rd Medical Department with Cardiology and Intensive Care Medicine, Clinic Ottakring, 1160 Vienna, Austria;
- Medical School, Sigmund Freud University, 1020 Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, 1090 Vienna, Austria
| | - Johann Wojta
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria;
- Ludwig Boltzmann Institute for Cardiovascular Research, 1090 Vienna, Austria
- Core Facilities, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence: ; Tel.: +43-1-40400-73500; Fax: +43-1-40400-73586
| |
Collapse
|
13
|
Xie B, Bai X, Sun P, Zhang L, Wei S, Bai H. A Novel Plant Leaf Patch Absorbed With IL-33 Antibody Decreases Venous Neointimal hyperplasia. Front Bioeng Biotechnol 2021; 9:742285. [PMID: 34778224 PMCID: PMC8585764 DOI: 10.3389/fbioe.2021.742285] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/12/2021] [Indexed: 01/11/2023] Open
Abstract
Introduction: We recently showed that a decellularized leaf scaffold can be loaded with polylactic-co-glycolic acid (PLGA)-based rapamycin nanoparticles, this leaf patch can then inhibit venous neointimal hyperplasia in a rat inferior vena cava (IVC) venoplasty model. IL-33 plays a role in the neointimal formation after vascular injury. We hypothesized that plant leaves can absorb therapeutic drug solution and can be used as a patch with drug delivery capability, and plant leaves absorbed with IL-33 antibody can decrease venous neointimal hyperplasia in the rat IVC venoplasty model. Method: A human spiral saphenous vein (SVG) graft implanted in the popliteal vein was harvested from a patient with trauma and analyzed by immunofluorescence. Male Sprague-Dawley rats (aged 6-8 weeks) were used to create the IVC patch venoplasty model. Plant leaves absorbed with rhodamine, distilled water (control), rapamycin, IL-33, and IL-33 antibody were cut into patches (3 × 1.5 mm2) and implanted into the rat IVC. Patches were explanted at day 14 for analysis. Result: At day 14, in the patch absorbed with rhodamine group, immunofluorescence showed rhodamine fluorescence in the neointima, inside the patch, and in the adventitia. There was a significantly thinner neointima in the plant patch absorbed with rapamycin (p = 0.0231) compared to the patch absorbed with distilled water. There was a significantly large number of IL-33 (p = 0.006) and IL-1β (p = 0.012) positive cells in the human SVG neointima compared to the human great saphenous vein. In rats, there was a significantly thinner neointima, a smaller number of IL-33 (p = 0.0006) and IL-1β (p = 0.0008) positive cells in the IL-33 antibody-absorbed patch group compared to the IL-33-absorbed patch group. Conclusion: We found that the natural absorption capability of plant leaves means they can absorb drug solution efficiently and can also be used as a novel drug delivery system and venous patch. IL-33 plays a role in venous neointimal hyperplasia both in humans and rats; neutralization of IL-33 by IL-33 antibody can be a therapeutic method to decrease venous neointimal hyperplasia.
Collapse
Affiliation(s)
- Boao Xie
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Zhengzhou, China
| | - Xiche Bai
- Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Zhengzhou, China.,The First Zhongyuan Middle School, Zhengzhou, China
| | - Peng Sun
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liwei Zhang
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shunbo Wei
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hualong Bai
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Zhengzhou, China
| |
Collapse
|
14
|
Suazo KF, Park KY, Distefano MD. A Not-So-Ancient Grease History: Click Chemistry and Protein Lipid Modifications. Chem Rev 2021; 121:7178-7248. [PMID: 33821625 PMCID: PMC8820976 DOI: 10.1021/acs.chemrev.0c01108] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein lipid modification involves the attachment of hydrophobic groups to proteins via ester, thioester, amide, or thioether linkages. In this review, the specific click chemical reactions that have been employed to study protein lipid modification and their use for specific labeling applications are first described. This is followed by an introduction to the different types of protein lipid modifications that occur in biology. Next, the roles of click chemistry in elucidating specific biological features including the identification of lipid-modified proteins, studies of their regulation, and their role in diseases are presented. A description of the use of protein-lipid modifying enzymes for specific labeling applications including protein immobilization, fluorescent labeling, nanostructure assembly, and the construction of protein-drug conjugates is presented next. Concluding remarks and future directions are presented in the final section.
Collapse
Affiliation(s)
- Kiall F. Suazo
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| | - Keun-Young Park
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| | - Mark D. Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
15
|
An autophagy-related prognostic signature associated with immune microenvironment features of uveal melanoma. Biosci Rep 2021; 41:228037. [PMID: 33682883 PMCID: PMC7982771 DOI: 10.1042/bsr20203812] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/02/2021] [Accepted: 03/04/2021] [Indexed: 12/22/2022] Open
Abstract
Autophagy is involved in cancer initiation and progression but its role in uveal melanoma (UM) was rarely investigated. Herein, we built an autophagy-related gene (ARG) risk model of UM patients by univariate Cox regression and least absolute shrinkage and selection operator (Lasso) regression model and filtrated out nine prognostic ARGs in The Cancer Genome Atlas (TCGA) cohort. Survival and Receiver Operating Characteristic (ROC) Curve analysis in the TCGA and other four independent UM cohorts (GSE22138, GSE27831, GSE44295 and GSE84976) proved that the ARG-signature possessed robust and steady prognosis predictive ability. We calculated risk scores for patients included in our study and patients with higher risk scores showed worse clinical outcomes. We found the expressions of the nine ARGs were significantly associated with clinical and molecular features (including risk score) and overall survival (OS) of UM patients. Furthermore, we utilized univariate and multivariate Cox regression analyses to determine the independent prognostic ability of the ARG-signature. Functional enrichment analysis showed the ARG-signature was correlated with several immune-related processes and pathways like T-cell activation and T-cell receptor signaling pathway. Gene set enrichment analysis (GSEA) found tumor hallmarks including angiogenesis, IL6-JAK-STAT3-signaling, reactive oxygen species pathway and oxidative phosphorylation were enriched in high-risk UM patients. Finally, infiltrations of several immune cells and immune-related scores were found significantly associated with the ARG-signature. In conclusion, the ARG-signature might be a strong predictor for evaluating the prognosis and immune infiltration of UM patients.
Collapse
|