1
|
Niemelä A, Giorgi L, Nouri S, Yurttaş B, Rauniyar K, Jeltsch M, Koivuniemi A. Gliflozins, sucrose and flavonoids are allosteric activators of lecithin-cholesterol acyltransferase. Sci Rep 2024; 14:26085. [PMID: 39478139 PMCID: PMC11525561 DOI: 10.1038/s41598-024-77104-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
Lecithin-cholesterol acyltransferase (LCAT) serves as a pivotal enzyme in preserving cholesterol homeostasis via reverse cholesterol transport, a process closely associated with the onset of atherosclerosis. Impaired LCAT function can lead to severe LCAT deficiency disorders for which no pharmacological treatment exists. LCAT-based therapies, such as small molecule positive allosteric modulators (PAMs), against LCAT deficiencies and atherosclerosis hold promise, although their efficacy against atherosclerosis remains challenging. Herein we utilized a quantitative in silico metric to predict the activity of novel PAMs and tested their potencies with in vitro enzymatic assays. As predicted, sodium-glucose cotransporter 2 (SGLT2) inhibitors (gliflozins), sucrose and flavonoids activate LCAT. This has intriguing implications for the mechanism of action of gliflozins, which are commonly used in the treatment of type 2 diabetes, and for the endogenous activation of LCAT. Our results underscore the potential of molecular dynamics simulations in rational drug design.
Collapse
Affiliation(s)
- Akseli Niemelä
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| | - Laura Giorgi
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Sirine Nouri
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Betül Yurttaş
- Department of Biotechnology and Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - Khushbu Rauniyar
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Michael Jeltsch
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Artturi Koivuniemi
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
2
|
Stadler JT, Bärnthaler T, Borenich A, Emrich IE, Habisch H, Rani A, Holzer M, Madl T, Heine GH, Marsche G. Low LCAT activity is linked to acute decompensated heart failure and mortality in patients with CKD. J Lipid Res 2024; 65:100624. [PMID: 39154733 PMCID: PMC11416249 DOI: 10.1016/j.jlr.2024.100624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024] Open
Abstract
Chronic kidney disease (CKD) is often associated with decreased activity of lecithin-cholesterol acyltransferase (LCAT), an enzyme essential for HDL maturation. This reduction in LCAT activity may potentially contribute to an increased risk of cardiovascular mortality in patients with CKD. The objective of this study was to investigate the association between LCAT activity in patients with CKD and the risk of adverse outcomes. We measured serum LCAT activity and characterized lipoprotein profiles using nuclear magnetic resonance spectroscopy in 453 non-dialysis CKD patients from the CARE FOR HOMe study. LCAT activity correlated directly with smaller HDL particle size, a type of HDL potentially linked to greater cardiovascular protection. Over a mean follow-up of 5.0 ± 2.2 years, baseline LCAT activity was inversely associated with risk of death (standardized HR 0.62, 95% CI 0.50-0.76; P < 0.001) and acute decompensated heart failure (ADHF) (standardized HR 0.67, 95% CI 0.52-0.85; P = 0.001). These associations remained significant even after adjusting for other risk factors. Interestingly, LCAT activity was not associated with the incidence of atherosclerotic cardiovascular events or kidney function decline during the follow-up. To conclude, our findings demonstrate that low LCAT activity is independently associated with all-cause mortality and ADHF in patients with CKD, and is directly linked to smaller, potentially more protective HDL subclasses.
Collapse
Affiliation(s)
- Julia T Stadler
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Thomas Bärnthaler
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Andrea Borenich
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Insa E Emrich
- Saarland University, Faculty of Medicine, Homburg/Saarbrücken, Germany
| | - Hansjörg Habisch
- Division of Medical Chemistry, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Alankrita Rani
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Michael Holzer
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Tobias Madl
- Division of Medical Chemistry, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | - Gunnar H Heine
- Saarland University, Faculty of Medicine, Homburg/Saarbrücken, Germany; Department of Nephrology, Agaplesion Markus Krankenhaus, Frankfurt am Main, Germany.
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria.
| |
Collapse
|
3
|
Chao X, Guo L, Ye C, Liu A, Wang X, Ye M, Fan Z, Luan K, Chen J, Zhang C, Liu M, Zhou B, Zhang X, Li Z, Luo Q. ALKBH5 regulates chicken adipogenesis by mediating LCAT mRNA stability depending on m 6A modification. BMC Genomics 2024; 25:634. [PMID: 38918701 PMCID: PMC11197345 DOI: 10.1186/s12864-024-10537-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Previous studies have demonstrated the role of N6-methyladenosine (m6A) RNA methylation in various biological processes, our research is the first to elucidate its specific impact on LCAT mRNA stability and adipogenesis in poultry. RESULTS The 6 100-day-old female chickens were categorized into high (n = 3) and low-fat chickens (n = 3) based on their abdominal fat ratios, and their abdominal fat tissues were processed for MeRIP-seq and RNA-seq. An integrated analysis of MeRIP-seq and RNA-seq omics data revealed 16 differentially expressed genes associated with to differential m6A modifications. Among them, ELOVL fatty acid elongase 2 (ELOVL2), pyruvate dehydrogenase kinase 4 (PDK4), fatty acid binding protein 9 (PMP2), fatty acid binding protein 1 (FABP1), lysosomal associated membrane protein 3 (LAMP3), lecithin-cholesterol acyltransferase (LCAT) and solute carrier family 2 member 1 (SLC2A1) have ever been reported to be associated with adipogenesis. Interestingly, LCAT was down-regulated and expressed along with decreased levels of mRNA methylation methylation in the low-fat group. Mechanistically, the highly expressed ALKBH5 gene regulates LCAT RNA demethylation and affects LCAT mRNA stability. In addition, LCAT inhibits preadipocyte proliferation and promotes preadipocyte differentiation, and plays a key role in adipogenesis. CONCLUSIONS In conclusion, ALKBH5 mediates RNA stability of LCAT through demethylation and affects chicken adipogenesis. This study provides a theoretical basis for further understanding of RNA methylation regulation in chicken adipogenesis.
Collapse
Affiliation(s)
- Xiaohuan Chao
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Lijin Guo
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Chutian Ye
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Aijun Liu
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaomeng Wang
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Mao Ye
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhexia Fan
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Kang Luan
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiahao Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chunlei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Manqing Liu
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Bo Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiquan Zhang
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhenhui Li
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China.
- College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Qingbin Luo
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China.
- College of Animal Science, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
4
|
Wang B, Wang H, Huang J, Zhao T. Association between Unsaturated Fatty Acid-Type Diet and Systemic Lupus Erythematosus: A Systematic Review with Meta-Analyses. Nutrients 2024; 16:1974. [PMID: 38931327 PMCID: PMC11206385 DOI: 10.3390/nu16121974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a complex autoimmune disorder that affects multiple organ systems, with a higher prevalence among women in their reproductive years. The disease's multifactorial etiology involves genetic, environmental, and hormonal components. Recent studies have highlighted the potential impact of dietary factors, particularly unsaturated fatty acids, on the modulation of SLE due to their anti-inflammatory properties. This meta-analysis aims to evaluate the association between unsaturated fatty acid consumption and the risk, progression, and clinical manifestations of SLE, providing evidence-based guidance for dietary management. METHODS We conducted a comprehensive search across major medical databases up to January 2024, focusing on studies that examined the intake of unsaturated fatty acids and the impact of such intake on SLE. Using the PICOS (population, intervention, comparator, outcomes, study design) framework, we included randomized controlled trials and case-control studies, assessing outcomes such as SLE activity, measured by SLE Disease Activity Index (SLEDAI) or the British Isles Lupus Assessment Group (BILAG) index, inflammation biomarkers. Studies were analyzed using either a fixed- or random-effects model based on heterogeneity (I2 statistic), with sensitivity analyses performed to assess the robustness of the findings. RESULTS Our search included 10 studies, encompassing a wide variety of designs and populations. The meta-analysis showed that a diet rich in unsaturated fatty acids is significantly associated with a reduction in SLEDAI scores (pooled SMD) of -0.36, 95% CI: -0.61 to -0.11, p = 0.007, indicating a beneficial effect on disease activity. Additionally, we found that unsaturated fatty acid intake has a significant impact on HDL levels, suggesting a positive effect on lipid profiles. However, no significant effects were observed on levels of the inflammatory marker IL-6 or other lipid components (LDL and cholesterol). With minimal heterogeneity among studies (I2 ≤ 15%), sensitivity analysis confirmed the stability and reliability of these results, highlighting the potential role of unsaturated fatty acids in SLE management. CONCLUSIONS This meta-analysis suggests that dietary intake of unsaturated fatty acids may play a positive role in reducing SLE activity and may significantly affect HDL levels without having significant effects on inflammation markers or other lipid profiles. These findings support the inclusion of unsaturated fatty acids in the dietary management of SLE patients, although further research is required to refine dietary recommendations and explore the mechanisms underlying these associations.
Collapse
Affiliation(s)
- Bozhou Wang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; (B.W.); (H.W.); (J.H.)
| | - Hanzheng Wang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; (B.W.); (H.W.); (J.H.)
| | - Jinge Huang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; (B.W.); (H.W.); (J.H.)
| | - Ting Zhao
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
5
|
Konaklieva MI, Plotkin BJ. Targeting host-specific metabolic pathways-opportunities and challenges for anti-infective therapy. Front Mol Biosci 2024; 11:1338567. [PMID: 38455763 PMCID: PMC10918472 DOI: 10.3389/fmolb.2024.1338567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/24/2024] [Indexed: 03/09/2024] Open
Abstract
Microorganisms can takeover critical metabolic pathways in host cells to fuel their replication. This interaction provides an opportunity to target host metabolic pathways, in addition to the pathogen-specific ones, in the development of antimicrobials. Host-directed therapy (HDT) is an emerging strategy of anti-infective therapy, which targets host cell metabolism utilized by facultative and obligate intracellular pathogens for entry, replication, egress or persistence of infected host cells. This review provides an overview of the host lipid metabolism and links it to the challenges in the development of HDTs for viral and bacterial infections, where pathogens are using important for the host lipid enzymes, or producing their own analogous of lecithin-cholesterol acyltransferase (LCAT) and lipoprotein lipase (LPL) thus interfering with the human host's lipid metabolism.
Collapse
Affiliation(s)
| | - Balbina J. Plotkin
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, United States
| |
Collapse
|
6
|
Abstract
Epidemiologic studies detected an inverse relationship between HDL (high-density lipoprotein) cholesterol (HDL-C) levels and atherosclerotic cardiovascular disease (ASCVD), identifying HDL-C as a major risk factor for ASCVD and suggesting atheroprotective functions of HDL. However, the role of HDL-C as a mediator of risk for ASCVD has been called into question by the failure of HDL-C-raising drugs to reduce cardiovascular events in clinical trials. Progress in understanding the heterogeneous nature of HDL particles in terms of their protein, lipid, and small RNA composition has contributed to the realization that HDL-C levels do not necessarily reflect HDL function. The most examined atheroprotective function of HDL is reverse cholesterol transport, whereby HDL removes cholesterol from plaque macrophage foam cells and delivers it to the liver for processing and excretion into bile. Indeed, in several studies, HDL has shown inverse associations between HDL cholesterol efflux capacity and ASCVD in humans. Inflammation plays a key role in the pathogenesis of atherosclerosis and vulnerable plaque formation, and a fundamental function of HDL is suppression of inflammatory signaling in macrophages and other cells. Oxidation is also a critical process to ASCVD in promoting atherogenic oxidative modifications of LDL (low-density lipoprotein) and cellular inflammation. HDL and its proteins including apoAI (apolipoprotein AI) and PON1 (paraoxonase 1) prevent cellular oxidative stress and LDL modifications. Importantly, HDL in humans with ASCVD is oxidatively modified rendering HDL dysfunctional and proinflammatory. Modification of HDL with reactive carbonyl species, such as malondialdehyde and isolevuglandins, dramatically impairs the antiatherogenic functions of HDL. Importantly, treatment of murine models of atherosclerosis with scavengers of reactive dicarbonyls improves HDL function and reduces systemic inflammation, atherosclerosis development, and features of plaque instability. Here, we discuss the HDL antiatherogenic functions in relation to oxidative modifications and the potential of reactive dicarbonyl scavengers as a therapeutic approach for ASCVD.
Collapse
Affiliation(s)
- MacRae F. Linton
- 1. Department of Medicine, Division of Cardiovascular Medicine, Atherosclerosis Research Unit, Vanderbilt University School of Medicine, Nashville, TN 37232
- 2. Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Patricia G. Yancey
- 1. Department of Medicine, Division of Cardiovascular Medicine, Atherosclerosis Research Unit, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Huan Tao
- 1. Department of Medicine, Division of Cardiovascular Medicine, Atherosclerosis Research Unit, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Sean S. Davies
- 2. Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
7
|
Vyletelová V, Nováková M, Pašková Ľ. Alterations of HDL's to piHDL's Proteome in Patients with Chronic Inflammatory Diseases, and HDL-Targeted Therapies. Pharmaceuticals (Basel) 2022; 15:1278. [PMID: 36297390 PMCID: PMC9611871 DOI: 10.3390/ph15101278] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/03/2022] [Accepted: 10/14/2022] [Indexed: 09/10/2023] Open
Abstract
Chronic inflammatory diseases, such as rheumatoid arthritis, steatohepatitis, periodontitis, chronic kidney disease, and others are associated with an increased risk of atherosclerotic cardiovascular disease, which persists even after accounting for traditional cardiac risk factors. The common factor linking these diseases to accelerated atherosclerosis is chronic systemic low-grade inflammation triggering changes in lipoprotein structure and metabolism. HDL, an independent marker of cardiovascular risk, is a lipoprotein particle with numerous important anti-atherogenic properties. Besides the essential role in reverse cholesterol transport, HDL possesses antioxidative, anti-inflammatory, antiapoptotic, and antithrombotic properties. Inflammation and inflammation-associated pathologies can cause modifications in HDL's proteome and lipidome, transforming HDL from atheroprotective into a pro-atherosclerotic lipoprotein. Therefore, a simple increase in HDL concentration in patients with inflammatory diseases has not led to the desired anti-atherogenic outcome. In this review, the functions of individual protein components of HDL, rendering them either anti-inflammatory or pro-inflammatory are described in detail. Alterations of HDL proteome (such as replacing atheroprotective proteins by pro-inflammatory proteins, or posttranslational modifications) in patients with chronic inflammatory diseases and their impact on cardiovascular health are discussed. Finally, molecular, and clinical aspects of HDL-targeted therapies, including those used in therapeutical practice, drugs in clinical trials, and experimental drugs are comprehensively summarised.
Collapse
Affiliation(s)
| | | | - Ľudmila Pašková
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University, 83232 Bratislava, Slovakia
| |
Collapse
|
8
|
Effects of Elaidic Acid on HDL Cholesterol Uptake Capacity. Nutrients 2021; 13:nu13093112. [PMID: 34578988 PMCID: PMC8464738 DOI: 10.3390/nu13093112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022] Open
Abstract
Recently we established a cell-free assay to evaluate “cholesterol uptake capacity (CUC)” as a novel concept for high-density lipoprotein (HDL) functionality and demonstrated the feasibility of CUC for coronary risk stratification, although its regulatory mechanism remains unclear. HDL fluidity affects cholesterol efflux, and trans fatty acids (TFA) reduce lipid membrane fluidity when incorporated into phospholipids (PL). This study aimed to clarify the effect of TFA in HDL-PL on CUC. Serum was collected from 264 patients after coronary angiography or percutaneous coronary intervention to measure CUC and elaidic acid levels in HDL-PL, and in vitro analysis using reconstituted HDL (rHDL) was used to determine the HDL-PL mechanism affecting CUC. CUC was positively associated with HDL-PL levels but negatively associated with the proportion of elaidic acid in HDL-PL (elaidic acid in HDL-PL/HDL-PL ratio). Increased elaidic acid-phosphatidylcholine (PC) content in rHDL exhibited no change in particle size or CUC compared to rHDL containing oleic acid in PC. Recombinant human lecithin-cholesterol acyltransferase (LCAT) enhanced CUC, and LCAT-dependent enhancement of CUC and LCAT-dependent cholesterol esterification were suppressed in rHDL containing elaidic acid in PC. Therefore, CUC is affected by HDL-PL concentration, HDL-PL acyl group composition, and LCAT-dependent cholesterol esterification. Elaidic acid precipitated an inhibition of cholesterol uptake and maturation of HDL; therefore, modulation of HDL-PL acyl groups could improve CUC.
Collapse
|
9
|
Guo M, Ma S, Xu Y, Huang W, Gao M, Wu X, Dong X, Wang Y, Liu G, Xian X. Correction of Familial LCAT Deficiency by AAV-hLCAT Prevents Renal Injury and Atherosclerosis in Hamsters-Brief Report. Arterioscler Thromb Vasc Biol 2021; 41:2141-2148. [PMID: 33980035 DOI: 10.1161/atvbaha.120.315719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Mengmeng Guo
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University, Beijing, China (M.G., W.H., Y.W., G.L., X.X.).,Beijing GeneCradle Pharmaceutical Co, Ltd, Beijing, China (M.G., S.M., X.W.)
| | - Sisi Ma
- Beijing GeneCradle Pharmaceutical Co, Ltd, Beijing, China (M.G., S.M., X.W.)
| | - Yitong Xu
- Laboratory of Lipid Metabolism, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China (Y.X., M.G.)
| | - Wei Huang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University, Beijing, China (M.G., W.H., Y.W., G.L., X.X.)
| | - Mingming Gao
- Laboratory of Lipid Metabolism, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China (Y.X., M.G.)
| | - Xiaobing Wu
- Beijing GeneCradle Pharmaceutical Co, Ltd, Beijing, China (M.G., S.M., X.W.)
| | - Xiaoyan Dong
- Beijing FivePlus Molecular Medicine Institute Co, Ltd, Beijing, China (X.D.)
| | - Yuhui Wang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University, Beijing, China (M.G., W.H., Y.W., G.L., X.X.)
| | - George Liu
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University, Beijing, China (M.G., W.H., Y.W., G.L., X.X.)
| | - Xunde Xian
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University, Beijing, China (M.G., W.H., Y.W., G.L., X.X.)
| |
Collapse
|
10
|
Vitali C, Cuchel M. Controversial Role of Lecithin:Cholesterol Acyltransferase in the Development of Atherosclerosis: New Insights From an LCAT Activator. Arterioscler Thromb Vasc Biol 2021; 41:377-379. [PMID: 33356367 PMCID: PMC7901727 DOI: 10.1161/atvbaha.120.315496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Cecilia Vitali
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marina Cuchel
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|