1
|
Yang M, Hancco Zirena I, Kennedy QP, Patel A, Merrill-Skoloff G, Sack KD, Fulcidor E, Scartelli C, Guo S, Bekendam RH, Owegie OC, Xie H, Ghiran IC, Levy O, Lin L, Flaumenhaft R. Galloylated polyphenols represent a new class of antithrombotic agents with broad activity against thiol isomerases. J Thromb Haemost 2025; 23:1850-1863. [PMID: 39952360 DOI: 10.1016/j.jtha.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Both protein disulfide isomerase (PDI) and SARS-CoV-2 main protease (Mpro) are reliant on active-site cysteines stabilized by adjacent amino acids. We reasoned that redox-active compounds might interfere with both enzymes by acting in the vicinity of these reactive sites thus interfering with viral replication and thrombus formation. Our previous screen of 1019 flavonoids identified several compounds that inhibit SARS-CoV-2 Mpro. OBJECTIVES Our goal was to identify phytochemical inhibitors of SARS-CoV-2 Mpro that block thiol isomerases and are antithrombotic. METHODS PDI, ERp57, ERp5, ERp46, isolated domains of PDI, and PDI mutants were used to evaluate the effects of galloylated polyphenols and their analogs on thiol isomerase reductase activity. Laser-injury and ferric chloride models of thrombus formation and a tail snip assay were used to assess the effects on thrombosis and hemostasis. RESULTS Pinocembrin 7-O-(3''-galloyl-4'',6''-(S)-hexahydroxydiphenoyl)-β-D-glucose (PGHG) inhibited both PDI and SARS-CoV-2 Mpro. Evaluation of isolated PDI fragments and active-site cysteine mutants showed that PGHG acts at the catalytic domains. Structure-function studies showed that PGHG interacts with histidines within the Cys53-Gly54-His55-Cys56 motifs of PDI. PGHG was equally active against other thiol isomerases, including ERp57, ERp5, ERp72, and ERp46. Screening numerous galloylated polyphenols demonstrated a class effect on thiol isomerase inhibition. Structure-activity relationships indicated that the galloyl moieties within large galloylated polyphenols were important for their inhibitory activity. PGHG and punicalagin were antithrombotic in murine models of thrombus formation. CONCLUSIONS Galloylated polyphenols represent a large class of antithrombotic compounds with broad activity against thiol isomerases. Many of these compounds also inhibit SARS-CoV-2 Mpro and viral replication.
Collapse
Affiliation(s)
- Moua Yang
- Bloodworks Northwest Research Institute, Seattle, Washington, USA; Division of Hematology and Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA; Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.
| | - Ivan Hancco Zirena
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA; Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Quinn P Kennedy
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Anika Patel
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Glenn Merrill-Skoloff
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Kelsey D Sack
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Emmy Fulcidor
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Christina Scartelli
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Shihui Guo
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Roelof H Bekendam
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Osamede C Owegie
- Bloodworks Northwest Research Institute, Seattle, Washington, USA
| | - Huanzhang Xie
- College of Materials and Chemical Engineering, Minjiang University, Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Fuzhou, China
| | - Ionita C Ghiran
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Oren Levy
- Department of Anesthesia, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lin Lin
- College of Materials and Chemical Engineering, Minjiang University, Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Fuzhou, China
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
2
|
Kiouptsi K, Casari M, Mandel J, Gao Z, Deppermann C. Intravital Imaging of Thrombosis Models in Mice. Hamostaseologie 2023; 43:348-359. [PMID: 37857297 DOI: 10.1055/a-2118-2932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
Intravital microscopy is a powerful tool to study thrombosis in real time. The kinetics of thrombus formation and progression in vivo is studied after inflicting damage to the endothelium through mechanical, chemical, or laser injury. Mouse models of atherosclerosis are also used to induce thrombus formation. Vessels of different sizes and from different vascular beds such as carotid artery or vena cava, mesenteric or cremaster arterioles, can be targeted. Using fluorescent dyes, antibodies, or reporter mouse strains allows to visualize key cells and factors mediating the thrombotic processes. Here, we review the latest literature on using intravital microscopy to study thrombosis as well as thromboinflammation following transient middle cerebral artery occlusion, infection-induced immunothrombosis, and liver ischemia reperfusion.
Collapse
Affiliation(s)
- Klytaimnistra Kiouptsi
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Martina Casari
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Jonathan Mandel
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Zhenling Gao
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Carsten Deppermann
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
3
|
Ma H, Yan X, Liu J, Lu Y, Feng Y, Lai J. Secondary ferroptosis promotes thrombogenesis after venous injury in rats. Thromb Res 2022; 216:59-73. [DOI: 10.1016/j.thromres.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 11/27/2022]
|