1
|
Thal SC, Shityakov S, Salvador E, Förster CY. Heart Rate Variability, Microvascular Dysfunction, and Inflammation: Exploring the Potential of taVNS in Managing Heart Failure in Type 2 Diabetes Mellitus. Biomolecules 2025; 15:499. [PMID: 40305215 PMCID: PMC12024555 DOI: 10.3390/biom15040499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/19/2025] [Accepted: 03/27/2025] [Indexed: 05/02/2025] Open
Abstract
Patients with type 2 diabetes mellitus (T2DM) predominantly experience mortality due to cardiovascular diseases (CVD), particularly in low- and middle-income nations. Among these, heart failure (HF) is the most severe cardiovascular complication in terms of prognosis and management. Despite advancements in individualized glycemic control and cardiovascular risk management, including the development of novel glucose- and lipid-lowering agents, the prevalence of HF in T2DM patients remains persistently high. This indicates that factors beyond hyperglycemia significantly contribute to the heightened risk of HF associated with T2DM. This review examines critical factors influencing CVD risk in T2DM, particularly the roles of reduced heart rate variability (HRV), a marker of autonomic dysfunction, and chronic inflammation, both of which play pivotal roles in HF pathogenesis. Recent evidence highlights the potential of vagus nerve activation to modulate these risk factors, underscoring its capacity to reduce T2DM-related cardiovascular complications. Specifically, we discuss the therapeutic promise of transcutaneous auricular vagus nerve stimulation (taVNS) as a non-invasive intervention to enhance vagal tone, decrease systemic inflammation, and improve cardiovascular outcomes in T2DM. By addressing the interplay among HRV, microvascular disease, and inflammation, this review provides a comprehensive perspective on the potential utility of taVNS in managing HF in T2DM.
Collapse
Affiliation(s)
- Serge C. Thal
- Department of Anesthesiology, Helios University Hospital, Witten/Herdecke University, 42283 Wuppertal, Germany;
| | - Sergey Shityakov
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, 197101 Saint-Petersburg, Russia;
| | - Ellaine Salvador
- Section Experimental Neurosurgery, Department of Neurosurgery, University Hospital Würzburg, 97080 Würzburg, Germany;
| | - Carola Y. Förster
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, Section Cerebrovascular Sciences and Neuromodulation, University Hospital Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
2
|
SenthilKumar G, Hammond ST, Zirgibel Z, Cohen KE, Beyer AM, Freed JK. Is the peripheral microcirculation a window into the human coronary microvasculature? J Mol Cell Cardiol 2024; 193:67-77. [PMID: 38848808 PMCID: PMC11260236 DOI: 10.1016/j.yjmcc.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/13/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
An increasing body of evidence suggests a pivotal role for the microvasculature in the development of cardiovascular disease. A dysfunctional coronary microvascular network, specifically within endothelial cells-the inner most cell layer of vessels-is considered a strong, independent risk factor for future major adverse cardiac events. However, challenges exist with evaluating this critical vascular bed, as many of the currently available techniques are highly invasive and cost prohibitive. The more easily accessible peripheral microcirculation has surfaced as a potential surrogate in which to study mechanisms of coronary microvascular dysfunction and likewise may be used to predict poor cardiovascular outcomes. In this review, we critically evaluate a variety of prognostic, physiological, and mechanistic studies in humans to answer whether the peripheral microcirculation can add insight into coronary microvascular health. A conceptual framework is proposed that the health of the endothelium specifically may link the coronary and peripheral microvascular beds. This is supported by evidence showing a correlation between human coronary and peripheral endothelial function in vivo. Although not a replacement for investigating and understanding coronary microvascular function, the microvascular endothelium from the periphery responds similarly to (patho)physiological stress and may be leveraged to explore potential therapeutic pathways to mitigate stress-induced damage.
Collapse
Affiliation(s)
- Gopika SenthilKumar
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Stephen T Hammond
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States; Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Zachary Zirgibel
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Katie E Cohen
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States; Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Andreas M Beyer
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States; Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Julie K Freed
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States.
| |
Collapse
|
3
|
Fedorowski A, Fanciulli A, Raj SR, Sheldon R, Shibao CA, Sutton R. Cardiovascular autonomic dysfunction in post-COVID-19 syndrome: a major health-care burden. Nat Rev Cardiol 2024; 21:379-395. [PMID: 38163814 DOI: 10.1038/s41569-023-00962-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/13/2023] [Indexed: 01/03/2024]
Abstract
Cardiovascular autonomic dysfunction (CVAD) is a malfunction of the cardiovascular system caused by deranged autonomic control of circulatory homeostasis. CVAD is an important component of post-COVID-19 syndrome, also termed long COVID, and might affect one-third of highly symptomatic patients with COVID-19. The effects of CVAD can be seen at both the whole-body level, with impairment of heart rate and blood pressure control, and in specific body regions, typically manifesting as microvascular dysfunction. Many severely affected patients with long COVID meet the diagnostic criteria for two common presentations of CVAD: postural orthostatic tachycardia syndrome and inappropriate sinus tachycardia. CVAD can also manifest as disorders associated with hypotension, such as orthostatic or postprandial hypotension, and recurrent reflex syncope. Advances in research, accelerated by the COVID-19 pandemic, have identified new potential pathophysiological mechanisms, diagnostic methods and therapeutic targets in CVAD. For clinicians who daily see patients with CVAD, knowledge of its symptomatology, detection and appropriate management is more important than ever. In this Review, we define CVAD and its major forms that are encountered in post-COVID-19 syndrome, describe possible CVAD aetiologies, and discuss how CVAD, as a component of post-COVID-19 syndrome, can be diagnosed and managed. Moreover, we outline directions for future research to discover more efficient ways to cope with this prevalent and long-lasting condition.
Collapse
Affiliation(s)
- Artur Fedorowski
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden.
- Department of Medicine, Karolinska Institute, Stockholm, Sweden.
- Department of Clinical Sciences, Lund University, Malmö, Sweden.
| | | | - Satish R Raj
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Autonomic Dysfunction Center, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert Sheldon
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Cyndya A Shibao
- Autonomic Dysfunction Center, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Richard Sutton
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- Department of Cardiology, Hammersmith Hospital, National Heart & Lung Institute, Imperial College, London, UK
| |
Collapse
|
4
|
Zhang NR, Wen Y, Li J, Zheng WJ, Jin SQ. Regular transient limb ischemia improves endothelial function and inhibits endothelial cell apoptosis to prevent atherosclerosis in rabbit. BMC Cardiovasc Disord 2024; 24:209. [PMID: 38627625 PMCID: PMC11020181 DOI: 10.1186/s12872-024-03869-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/30/2024] [Indexed: 04/19/2024] Open
Abstract
AIMS Regular transient limb ischemia (RTLI) can prevent atherosclerosis (AS) progression in hypercholesterolemic rabbits. This study aimed to investigate the minimum effective intensity and possible mechanisms of RTLI for preventing atherosclerosis. METHODS Eighty rabbits were divided into eight groups: normal (N), high cholesterol (H), three RTLI [three RTLI cycles every other day (R3qod), three RTLI cycles daily (R3qd), and six RTLI cycles daily (R6qd), each cycle of RTLI included 5 min of limb ischemia followed by 5 min limb reperfusion], and three correlated sham RTLI [sham ischemia for 30 min once every other day (S3qod), sham ischemia for 30 min once daily (S3qd), and sham ischemia for 60 min once daily (S6qd)]. Rabbits in group N were kept normally, while the others were fed 1% cholesterol diet for 12 weeks. The RTLI and sham RTLI groups were received RTLI or sham RTLI procedure, respectively. The plaque area in the thoracic aorta was determined by oil red O staining, and quantifying the ratio of plaque area to intimal area (PA/IA). Endothelium-dependent and -independent relaxation were also determined. Endothelial cell were isolated from abdominal aorta of rabbits, and the apoptosis ratio was detected using flow cytometry. RESULTS The PA/IA and early apoptotic cell ratio was significantly lower as well as the endothelium-dependent relaxation response was higher in group R6qd than those in groups H and S6qd, while those in the R3qod group was not significantly different from those in groups H and S3qod, as well as those in the R3qd group showed no significant difference compared to those in groups H and S3qd. CONCLUSIONS Six cycles of RTLI daily was the optimal effective intensity to prevent AS progression in rabbits. Endothelial function improvement and apoptosis inhibition might contribute to the anti-AS effects.
Collapse
Affiliation(s)
- Nan-Rong Zhang
- Department of Anesthesia, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510005, Guangdong, China
| | - Yi Wen
- Department of Anesthesia, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
| | - Jing Li
- Department of Anesthesia, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
| | - Wan-Jun Zheng
- Department of Anesthesia, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, Guangdong, China
| | - San-Qing Jin
- Department of Anesthesia, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510005, Guangdong, China.
| |
Collapse
|
5
|
Dai G, Yu S, Hu S, Luan X, Yan H, Wang X, Song P, Liu X, He X. A Novel Method for the Measurement of Retinal Arteriolar Bifurcation. Ophthalmol Ther 2024; 13:917-933. [PMID: 38294630 PMCID: PMC10912395 DOI: 10.1007/s40123-023-00881-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/21/2023] [Indexed: 02/01/2024] Open
Abstract
INTRODUCTION The purpose of this research was to develop protocols for evaluating the bifurcation parameters of retinal arteriole and establish a reference range of normal values. METHODS In this retrospective study, we measured a total of 1314 retinal arteriolar bifurcations from 100 fundus photographs. We selected 200 from these bifurcations for testing inter-measurer and inter-method agreement. Additionally, we calculated the normal reference range for retinal arteriolar bifurcation parameters and analyzed the effects of gender, age, and anatomical features on retinal arteriolar bifurcation. RESULTS The measurement method proposed in this study has demonstrated nearly perfect consistency among different measurers, with interclass correlation coefficient (ICC) for all bifurcation parameters of retinal arteriole exceeding 0.95. Among healthy individuals, the retinal arteriolar caliber was narrowest in young adults and increased in children, teenagers, and the elderly; retinal arteriolar caliber was greater in females than in males; and the diameter of the inferior temporal branch exceeded that of the superior temporal branch. The angle between the two branches of retinal arteriolar bifurcation was also greater in females than in males. When using the center of the optic disc as a reference point, the angle between the two branches of the retinal arteriole at the proximal or distal ends increased. In contrast, the estimated optimum theoretical values of retinal arteriolar bifurcation were not affected by these factors. CONCLUSIONS The method for the measurement of retinal arteriolar bifurcation in this study was highly accurate and reproducible. The diameter and branching angle of the retinal arteriolar bifurcation were more susceptible to the influence of gender, age, and anatomical features. In comparison, the estimated optimum theoretical values of retinal arteriolar bifurcation were relatively stable. Video available for this article.
Collapse
Affiliation(s)
- Guangzheng Dai
- Dragonfleye Healthcare Technology LLC, Shenyang, China
- He Eye Specialist Hospital, Shenyang, China
| | - Sile Yu
- Department of Public Health, He University, Shenyang, 110034, China
| | - Shenming Hu
- Department of Public Health, He University, Shenyang, 110034, China
| | - Xinze Luan
- Department of Public Health, He University, Shenyang, 110034, China
| | - Hairu Yan
- Dragonfleye Healthcare Technology LLC, Shenyang, China
| | - Xiaoting Wang
- Department of Public Health, He University, Shenyang, 110034, China
| | | | - Xinying Liu
- Dragonfleye Healthcare Technology LLC, Shenyang, China
| | - Xingru He
- Department of Public Health, He University, Shenyang, 110034, China.
| |
Collapse
|
6
|
SenthilKumar G, Katunaric B, Zirgibel Z, Lindemer B, Jaramillo-Torres MJ, Bordas-Murphy H, Schulz ME, Pearson PJ, Freed JK. Necessary Role of Ceramides in the Human Microvascular Endothelium During Health and Disease. Circ Res 2024; 134:81-96. [PMID: 38037825 PMCID: PMC10766100 DOI: 10.1161/circresaha.123.323445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Elevated plasma ceramides and microvascular dysfunction both independently predict adverse cardiac events. Despite the known detrimental effects of ceramide on the microvasculature, evidence suggests that activation of the shear-sensitive, ceramide-forming enzyme NSmase (neutral sphingomyelinase) elicits formation of vasoprotective nitric oxide (NO). Here, we explore a novel hypothesis that acute ceramide formation through NSmase is necessary for maintaining NO signaling within the human microvascular endothelium. We further define the mechanism through which ceramide exerts beneficial effects and discern key mechanistic differences between arterioles from otherwise healthy adults (non-coronary artery disease [CAD]) and patients diagnosed with CAD. METHODS Human arterioles were dissected from discarded surgical adipose tissue (n=166), and vascular reactivity to flow and C2-ceramide was assessed. Shear-induced NO and mitochondrial hydrogen peroxide (H2O2) production were measured in arterioles using fluorescence microscopy. H2O2 fluorescence was assessed in isolated human umbilical vein endothelial cells. RESULTS Inhibition of NSmase in arterioles from otherwise healthy adults induced a switch from NO to NOX-2 (NADPH-oxidase 2)-dependent H2O2-mediated flow-induced dilation. Endothelial dysfunction was prevented by treatment with sphingosine-1-phosphate (S1P) and partially prevented by C2-ceramide and an agonist of S1P-receptor 1 (S1PR1); the inhibition of the S1P/S1PR1 signaling axis induced endothelial dysfunction via NOX-2. Ceramide increased NO production in arterioles from non-CAD adults, an effect that was diminished with inhibition of S1P/S1PR1/S1P-receptor 3 signaling. In arterioles from patients with CAD, inhibition of NSmase impaired the overall ability to induce mitochondrial H2O2 production and subsequently dilate to flow, an effect not restored with exogenous S1P. Acute ceramide administration to arterioles from patients with CAD promoted H2O2 as opposed to NO production, an effect dependent on S1P-receptor 3 signaling. CONCLUSION These data suggest that despite differential downstream signaling between health and disease, NSmase-mediated ceramide formation is necessary for proper functioning of the human microvascular endothelium. Therapeutic strategies that aim to significantly lower ceramide formation may prove detrimental to the microvasculature.
Collapse
Affiliation(s)
- Gopika SenthilKumar
- Department of Physiology (G.S., J.K.F.), Medical College of Wisconsin, Milwaukee, WI
- Cardiovascular Center (G.S., Z.Z., B.L., M.J.J.-T., H.B.-M., M.E.S., J.K.F.), Medical College of Wisconsin, Milwaukee, WI
- Department of Anesthesiology (G.S., B.K., Z.Z., B.L., M.J.J.-T., H.B.-M., M.E.S., J.K.F.), Medical College of Wisconsin, Milwaukee, WI
| | - Boran Katunaric
- Department of Anesthesiology (G.S., B.K., Z.Z., B.L., M.J.J.-T., H.B.-M., M.E.S., J.K.F.), Medical College of Wisconsin, Milwaukee, WI
| | - Zachary Zirgibel
- Cardiovascular Center (G.S., Z.Z., B.L., M.J.J.-T., H.B.-M., M.E.S., J.K.F.), Medical College of Wisconsin, Milwaukee, WI
- Department of Anesthesiology (G.S., B.K., Z.Z., B.L., M.J.J.-T., H.B.-M., M.E.S., J.K.F.), Medical College of Wisconsin, Milwaukee, WI
| | - Brian Lindemer
- Cardiovascular Center (G.S., Z.Z., B.L., M.J.J.-T., H.B.-M., M.E.S., J.K.F.), Medical College of Wisconsin, Milwaukee, WI
- Department of Anesthesiology (G.S., B.K., Z.Z., B.L., M.J.J.-T., H.B.-M., M.E.S., J.K.F.), Medical College of Wisconsin, Milwaukee, WI
| | - Maria J. Jaramillo-Torres
- Cardiovascular Center (G.S., Z.Z., B.L., M.J.J.-T., H.B.-M., M.E.S., J.K.F.), Medical College of Wisconsin, Milwaukee, WI
- Department of Anesthesiology (G.S., B.K., Z.Z., B.L., M.J.J.-T., H.B.-M., M.E.S., J.K.F.), Medical College of Wisconsin, Milwaukee, WI
| | - Henry Bordas-Murphy
- Cardiovascular Center (G.S., Z.Z., B.L., M.J.J.-T., H.B.-M., M.E.S., J.K.F.), Medical College of Wisconsin, Milwaukee, WI
- Department of Anesthesiology (G.S., B.K., Z.Z., B.L., M.J.J.-T., H.B.-M., M.E.S., J.K.F.), Medical College of Wisconsin, Milwaukee, WI
| | - Mary E. Schulz
- Cardiovascular Center (G.S., Z.Z., B.L., M.J.J.-T., H.B.-M., M.E.S., J.K.F.), Medical College of Wisconsin, Milwaukee, WI
- Department of Anesthesiology (G.S., B.K., Z.Z., B.L., M.J.J.-T., H.B.-M., M.E.S., J.K.F.), Medical College of Wisconsin, Milwaukee, WI
| | - Paul J. Pearson
- Department of Surgery, Division of Cardiothoracic Surgery (P.J.P.), Medical College of Wisconsin, Milwaukee, WI
| | - Julie K. Freed
- Department of Physiology (G.S., J.K.F.), Medical College of Wisconsin, Milwaukee, WI
- Cardiovascular Center (G.S., Z.Z., B.L., M.J.J.-T., H.B.-M., M.E.S., J.K.F.), Medical College of Wisconsin, Milwaukee, WI
- Department of Anesthesiology (G.S., B.K., Z.Z., B.L., M.J.J.-T., H.B.-M., M.E.S., J.K.F.), Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
7
|
Benitez-Albiter A, Anderson CP, Jones M, Park SS, Layec G, Park SY. Contributing Factors to Endothelial Dysfunction in Individuals with Spinal Cord Injuries. Pulse (Basel) 2024; 12:49-57. [PMID: 39022560 PMCID: PMC11250044 DOI: 10.1159/000539199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/27/2024] [Indexed: 07/20/2024] Open
Abstract
Background Patients with spinal cord injuries (SCIs) are at a greater risk for the development of cardiovascular diseases (CVDs) than able-bodied individuals due to the high risk of endothelial dysfunction. Summary For instance, patients with SCIs lose autonomic control of the heart and vasculature, which results in severe fluctuations in blood pressure. These oscillations between hypotension and hypertension have been shown to damage blood vessel endothelial cells and may contribute to the development of atherosclerosis. Furthermore, the loss of skeletal muscle control results in skeletal muscle atrophy and inward remodeling of the conduit arteries. It has been shown that blood vessels in the legs are chronically exposed to high shear, while the aorta experiences chronically low shear. These alterations to shear forces may adversely impact endothelial vasodilatory capacity and promote inflammatory signaling and leukocyte adherence. Additionally, microvascular endothelial vasodilatory capacity is impaired in patients with an SCI, and this may precede changes in conduit artery endothelial function. Finally, due to immobility and a loss of skeletal muscle mass, patients with SCIs have a higher risk of metabolic disorders, inflammation, and oxidative stress. Key Messages Collectively, these factors may impair endothelium-dependent vasodilatory capacity, promote leukocyte adhesion and infiltration, promote the peroxidation of lipids, and ultimately support the development of atherosclerosis. Therefore, future interventions to prevent CVDs in patients with SCIs should focus on the management of endothelial health to prevent endothelial dysfunction and atherosclerosis.
Collapse
Affiliation(s)
| | - Cody P. Anderson
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Matthew Jones
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Sang-Seo Park
- Department of Physiology, Kyung Hee University, Seoul, Republic of Korea
| | - Gwenael Layec
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE, USA
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Song-Young Park
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE, USA
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
8
|
Mengozzi A, de Ciuceis C, Dell'oro R, Georgiopoulos G, Lazaridis A, Nosalski R, Pavlidis G, Tual-Chalot S, Agabiti-Rosei C, Anyfanti P, Camargo LL, Dąbrowska E, Quarti-Trevano F, Hellmann M, Masi S, Mavraganis G, Montezano AC, Rios FJ, Winklewski PJ, Wolf J, Costantino S, Gkaliagkousi E, Grassi G, Guzik TJ, Ikonomidis I, Narkiewicz K, Paneni F, Rizzoni D, Stamatelopoulos K, Stellos K, Taddei S, Touyz RM, Triantafyllou A, Virdis A. The importance of microvascular inflammation in ageing and age-related diseases: a position paper from the ESH working group on small arteries, section of microvascular inflammation. J Hypertens 2023; 41:1521-1543. [PMID: 37382158 DOI: 10.1097/hjh.0000000000003503] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Microcirculation is pervasive and orchestrates a profound regulatory cross-talk with the surrounding tissue and organs. Similarly, it is one of the earliest biological systems targeted by environmental stressors and consequently involved in the development and progression of ageing and age-related disease. Microvascular dysfunction, if not targeted, leads to a steady derangement of the phenotype, which cumulates comorbidities and eventually results in a nonrescuable, very high-cardiovascular risk. Along the broad spectrum of pathologies, both shared and distinct molecular pathways and pathophysiological alteration are involved in the disruption of microvascular homeostasis, all pointing to microvascular inflammation as the putative primary culprit. This position paper explores the presence and the detrimental contribution of microvascular inflammation across the whole spectrum of chronic age-related diseases, which characterise the 21st-century healthcare landscape. The manuscript aims to strongly affirm the centrality of microvascular inflammation by recapitulating the current evidence and providing a clear synoptic view of the whole cardiometabolic derangement. Indeed, there is an urgent need for further mechanistic exploration to identify clear, very early or disease-specific molecular targets to provide an effective therapeutic strategy against the otherwise unstoppable rising prevalence of age-related diseases.
Collapse
Affiliation(s)
- Alessandro Mengozzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa
| | - Carolina de Ciuceis
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia
| | - Raffaella Dell'oro
- Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Georgios Georgiopoulos
- Angiology and Endothelial Pathophysiology Unit, Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, Athens
| | - Antonios Lazaridis
- Third Department of Internal Medicine, Aristotle University of Thessaloniki, Papageorgiou Hospital, Thessaloniki, Greece
| | - Ryszard Nosalski
- Centre for Cardiovascular Sciences; Queen's Medical Research Institute; University of Edinburgh, University of Edinburgh, Edinburgh, UK
- Department of Internal Medicine
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - George Pavlidis
- Preventive Cardiology Laboratory and Clinic of Cardiometabolic Diseases, 2 Cardiology Department, Attikon Hospital, Athens
- Medical School, National and Kapodistrian University of Athens, Greece
| | - Simon Tual-Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | | | - Panagiota Anyfanti
- Second Medical Department, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Livia L Camargo
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, Canada
| | - Edyta Dąbrowska
- Department of Hypertension and Diabetology, Center of Translational Medicine
- Center of Translational Medicine
| | - Fosca Quarti-Trevano
- Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Marcin Hellmann
- Department of Cardiac Diagnostics, Medical University, Gdansk, Poland
| | - Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Institute of Cardiovascular Science, University College London, London, UK
| | - Georgios Mavraganis
- Angiology and Endothelial Pathophysiology Unit, Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, Athens
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, Canada
| | - Francesco J Rios
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, Canada
| | | | - Jacek Wolf
- Department of Hypertension and Diabetology, Center of Translational Medicine
| | - Sarah Costantino
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- University Heart Center, Cardiology, University Hospital Zurich
| | - Eugenia Gkaliagkousi
- Third Department of Internal Medicine, Aristotle University of Thessaloniki, Papageorgiou Hospital, Thessaloniki, Greece
| | - Guido Grassi
- Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Tomasz J Guzik
- Centre for Cardiovascular Sciences; Queen's Medical Research Institute; University of Edinburgh, University of Edinburgh, Edinburgh, UK
- Department of Internal Medicine
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - Ignatios Ikonomidis
- Preventive Cardiology Laboratory and Clinic of Cardiometabolic Diseases, 2 Cardiology Department, Attikon Hospital, Athens
- Medical School, National and Kapodistrian University of Athens, Greece
| | | | - Francesco Paneni
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- University Heart Center, Cardiology, University Hospital Zurich
- Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| | - Damiano Rizzoni
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia
- Division of Medicine, Spedali Civili di Brescia, Montichiari, Brescia, Italy
| | - Kimon Stamatelopoulos
- Angiology and Endothelial Pathophysiology Unit, Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, Athens
| | - Konstantinos Stellos
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz-Kreislauf-Forschung, DZHK), Heidelberg/Mannheim Partner Site
- Department of Cardiology, University Hospital Mannheim, Heidelberg University, Manheim, Germany
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, Canada
| | - Areti Triantafyllou
- Third Department of Internal Medicine, Aristotle University of Thessaloniki, Papageorgiou Hospital, Thessaloniki, Greece
| | - Agostino Virdis
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
9
|
SenthilKumar G, Katunaric B, Zirgibel Z, Lindemer B, Jaramillo-Torres MJ, Bordas-Murphy H, Schulz ME, Pearson PJ, Freed JK. Necessary Role of Acute Ceramide Formation in The Human Microvascular Endothelium During Health and Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543341. [PMID: 37333082 PMCID: PMC10274701 DOI: 10.1101/2023.06.02.543341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Background Elevated plasma ceramides independently predict adverse cardiac events and we have previously shown that exposure to exogenous ceramide induces microvascular endothelial dysfunction in arterioles from otherwise healthy adults (0-1 risk factors for heart disease). However, evidence also suggests that activation of the shear-sensitive, ceramide forming enzyme neutral sphingomyelinase (NSmase) enhances vasoprotective nitric oxide (NO) production. Here we explore a novel hypothesis that acute ceramide formation through NSmase is necessary for maintaining NO signaling within the human microvascular endothelium. We further define the mechanism through which ceramide exerts beneficial effects and discern key mechanistic differences between arterioles from otherwise healthy adults and patients with coronary artery disease (CAD). Methods Human arterioles were dissected from otherwise discarded surgical adipose tissue (n=123), and vascular reactivity to flow and C2-ceramide was assessed. Shear-induced NO production was measured in arterioles using fluorescence microscopy. Hydrogen peroxide (H2O2) fluorescence was assessed in isolated human umbilical vein endothelial cells. Results Inhibition of NSmase in arterioles from otherwise healthy adults induced a switch from NO to H2O2-mediated flow-induced dilation within 30 minutes. In endothelial cells, NSmase inhibition acutely increased H2O2 production. Endothelial dysfunction in both models was prevented by treatment with C2-ceramide, S1P, and an agonist of S1P-receptor 1 (S1PR1), while the inhibition of S1P/S1PR1 signaling axis induced endothelial dysfunction. Ceramide increased NO production in arterioles from healthy adults, an effect that was diminished with inhibition of S1P/S1PR1/S1PR3 signaling. In arterioles from patients with CAD, inhibition of NSmase impaired dilation to flow. This effect was not restored with exogenous S1P. Although, inhibition of S1P/S1PR3 signaling impaired normal dilation to flow. Acute ceramide administration to arterioles from patients with CAD also promoted H2O2 as opposed to NO production, an effect dependent on S1PR3 signaling. Conclusion These data suggest that despite key differences in downstream signaling between health and disease, acute NSmase-mediated ceramide formation and its subsequent conversion to S1P is necessary for proper functioning of the human microvascular endothelium. As such, therapeutic strategies that aim to significantly lower ceramide formation may prove detrimental to the microvasculature.
Collapse
Affiliation(s)
- Gopika SenthilKumar
- Department of Physiology, Medical College of Wisconsin
- Cardiovasular Center, Medical College of Wisconsin
- Department of Anesthesiology, Medical College of Wisconsin
| | | | - Zachary Zirgibel
- Cardiovasular Center, Medical College of Wisconsin
- Department of Anesthesiology, Medical College of Wisconsin
| | - Brian Lindemer
- Cardiovasular Center, Medical College of Wisconsin
- Department of Anesthesiology, Medical College of Wisconsin
| | - Maria J. Jaramillo-Torres
- Cardiovasular Center, Medical College of Wisconsin
- Department of Anesthesiology, Medical College of Wisconsin
| | - Henry Bordas-Murphy
- Cardiovasular Center, Medical College of Wisconsin
- Department of Anesthesiology, Medical College of Wisconsin
| | - Mary E. Schulz
- Cardiovasular Center, Medical College of Wisconsin
- Department of Anesthesiology, Medical College of Wisconsin
| | - Paul J. Pearson
- Department of Surgery, Division of Cardiothoracic Surgery, Medical College of Wisconsin
| | - Julie K. Freed
- Department of Physiology, Medical College of Wisconsin
- Cardiovasular Center, Medical College of Wisconsin
- Department of Anesthesiology, Medical College of Wisconsin
| |
Collapse
|
10
|
Sullivan S, Young A, Garcia M, Almuwaqqat Z, Moazzami K, Hammadah M, Lima BB, Hu Y, Jajeh MN, Alkhoder A, Elon L, Lewis TT, Shah AJ, Mehta PK, Bremner JD, Quyyumi AA, Vaccarino V. Sex Differences in Vascular Response to Mental Stress and Adverse Cardiovascular Events Among Patients With Ischemic Heart Disease. Arterioscler Thromb Vasc Biol 2023; 43:e112-e120. [PMID: 36857628 PMCID: PMC10164352 DOI: 10.1161/atvbaha.122.318576] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/06/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND Microvascular measures of vascular dysfunction during acute mental stress may be important determinants of major adverse cardiovascular events (MACE), especially among younger and middle-aged women survivors of an acute myocardial infarction. METHODS In the MIMS2 study (Myocardial Infarction and Mental Stress 2), individuals who had been hospitalized for a myocardial infarction in the past 8 months were prospectively followed for 5 years. MACE was defined as a composite index of cardiovascular death and first/recurring events for nonfatal myocardial infarction and hospitalizations for heart failure. Reactive hyperemia index and flow-mediated dilation were used to measure microvascular and endothelial function, respectively, before and 30 minutes after a public-speaking mental stress task. Survival models for recurrent events were used to examine the association between vascular response to stress (difference between poststress and resting values) and MACE. Reactive hyperemia index and flow-mediated dilation were standardized in analyses. RESULTS Of 263 patients (the mean age was 51 years; range, 25-61), 48% were women, and 65% were Black. During a median follow-up of 4.3 years, 64 patients had 141 adverse cardiovascular events (first and repeated). Worse microvascular response to stress (for each SD decrease in the reactive hyperemia index) was associated with 50% greater risk of MACE (hazard ratio, 1.50 [95% CI, 1.05-2.13]; P=0.03) among women only (sex interaction: P=0.03). Worse transient endothelial dysfunction in response to stress (for each SD decrease in flow-mediated dilation) was associated with a 35% greater risk of MACE (hazard ratio, 1.35 [95% CI, 1.07-1.71]; P=0.01), and the association was similar in women and men. CONCLUSIONS Peripheral microvascular dysfunction with mental stress was associated with adverse events among women but not men. In contrast, endothelial dysfunction was similarly related to MACE among both men and women. These results suggest a female-specific mechanism linking psychological stress to adverse outcomes.
Collapse
Affiliation(s)
- Samaah Sullivan
- Department of Epidemiology, Human Genetics and
Environmental Sciences, The University of Texas Health Science Center at Houston,
Dallas, TX
- Department of Epidemiology, Emory University, Atlanta,
GA
| | - An Young
- Department of Epidemiology, Emory University, Atlanta,
GA
- Department of Medicine, Emory University, Atlanta, GA
| | - Mariana Garcia
- Department of Epidemiology, Emory University, Atlanta,
GA
- Department of Medicine, Emory University, Atlanta, GA
| | - Zakaria Almuwaqqat
- Department of Epidemiology, Emory University, Atlanta,
GA
- Department of Medicine, Emory University, Atlanta, GA
| | - Kasra Moazzami
- Department of Epidemiology, Emory University, Atlanta,
GA
- Department of Medicine, Emory University, Atlanta, GA
| | | | - Bruno B. Lima
- Department of Medicine, Emory University, Atlanta, GA
| | - Yingtian Hu
- Department of Biostatistics and Bioinformatics, Emory
University, Atlanta, GA
| | | | | | - Lisa Elon
- Department of Biostatistics and Bioinformatics, Emory
University, Atlanta, GA
| | - Tené T. Lewis
- Department of Epidemiology, Emory University, Atlanta,
GA
| | - Amit J. Shah
- Department of Epidemiology, Emory University, Atlanta,
GA
- Department of Medicine, Emory University, Atlanta, GA
- Atlanta VA Medical Center, Atlanta, GA
| | - Puja K. Mehta
- Department of Medicine, Emory University, Atlanta, GA
| | - J. Douglas Bremner
- Department of Psychiatry and Behavioral Sciences, Emory
University, Atlanta, GA
- Atlanta VA Medical Center, Atlanta, GA
| | | | - Viola Vaccarino
- Department of Epidemiology, Emory University, Atlanta,
GA
- Department of Medicine, Emory University, Atlanta, GA
| |
Collapse
|
11
|
Associations of Biopterins and ADMA with Vascular Function in Peripheral Microcirculation from Patients with Chronic Kidney Disease. Int J Mol Sci 2023; 24:ijms24065582. [PMID: 36982658 PMCID: PMC10056709 DOI: 10.3390/ijms24065582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
We hypothesized that patients with chronic kidney disease (CKD) display an altered plasma amino acid (AA) metabolomic profile that could contribute to abnormal vascular maintenance of peripheral circulation in uremia. The relationships between plasma AAs and endothelial and vascular smooth muscle function in the microcirculation of CKD patients are not well understood. The objective of this study is to investigate to what extent the levels of AAs and its metabolites are changed in CKD patients and to test their relationship with endothelial and vascular smooth muscle function. Patients with CKD stages 3 and 5 and non-CKD controls are included in this study. We report that there was a significant reduction of the biopterin (BH4/BH2) ratio, which was accompanied by increased plasma levels of BH2, asymmetric dimethylarginine (ADMA) and citrulline in patients with CKD-5 vs. CKD-3 vs. controls. In vivo augmentation index measurement showed a positive association with ADMA in all participants. The contribution of nitric oxide, assessed by ex vivo assay, showed a negative association with creatinine, ADMA and citrulline in all participants. In CKD-5, BH4 negatively correlated with ADMA and ornithine levels, and the ex vivo endothelium-mediated dilatation positively correlated with phenylalanine levels. In conclusion, uremia is associated with alterations in AA metabolism that may affect endothelium-dependent dilatation and vascular stiffness in microcirculation. Interventional strategies aiming to normalize the AA metabolism could be of interest as treatment options.
Collapse
|
12
|
Hobson S, Arefin S, Rahman A, Hernandez L, Ebert T, de Loor H, Evenepoel P, Stenvinkel P, Kublickiene K. Indoxyl Sulphate Retention Is Associated with Microvascular Endothelial Dysfunction after Kidney Transplantation. Int J Mol Sci 2023; 24:ijms24043640. [PMID: 36835051 PMCID: PMC9960432 DOI: 10.3390/ijms24043640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Kidney transplantation (KTx) is the preferred form of renal replacement therapy in chronic kidney disease (CKD) patients, owing to increased quality of life and reduced mortality when compared to chronic dialysis. Risk of cardiovascular disease is reduced after KTx; however, it is still a leading cause of death in this patient population. Thus, we aimed to investigate whether functional properties of the vasculature differed two years post-KTx (postKTx) compared to baseline (time of KTx). Using the EndoPAT device in 27 CKD patients undergoing living-donor KTx, we found that vessel stiffness significantly improved while endothelial function worsened postKTx vs. baseline. Furthermore, baseline serum indoxyl sulphate (IS), but not p-cresyl sulphate, was independently negatively associated with reactive hyperemia index, a marker of endothelial function, and independently positively associated with P-selectin postKTx. Finally, to better understand the functional effects of IS in vessels, we incubated human resistance arteries with IS overnight and performed wire myography experiments ex vivo. IS-incubated arteries showed reduced bradykinin-mediated endothelium-dependent relaxation compared to controls via reduced nitric oxide (NO) contribution. Endothelium-independent relaxation in response to NO donor sodium nitroprusside was similar between IS and control groups. Together, our data suggest that IS promotes worsened endothelial dysfunction postKTx, which may contribute to the sustained CVD risk.
Collapse
Affiliation(s)
- Sam Hobson
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska, Institutet, 141 52 Stockholm, Sweden
| | - Samsul Arefin
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska, Institutet, 141 52 Stockholm, Sweden
| | - Awahan Rahman
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska, Institutet, 141 52 Stockholm, Sweden
| | - Leah Hernandez
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska, Institutet, 141 52 Stockholm, Sweden
| | - Thomas Ebert
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska, Institutet, 141 52 Stockholm, Sweden
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, D-04103 Leipzig, Germany
| | - Henriette de Loor
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven, BE-3000 Leuven, Belgium
| | - Pieter Evenepoel
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven, BE-3000 Leuven, Belgium
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, BE-3000 Leuven, Belgium
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska, Institutet, 141 52 Stockholm, Sweden
| | - Karolina Kublickiene
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska, Institutet, 141 52 Stockholm, Sweden
- Correspondence:
| |
Collapse
|
13
|
Schipper HS, de Ferranti S. Cardiovascular Risk Assessment and Management for Pediatricians. Pediatrics 2022; 150:189891. [PMID: 36321395 DOI: 10.1542/peds.2022-057957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2022] [Indexed: 12/05/2022] Open
Abstract
Childhood and adolescence provide a unique window of opportunity to prevent atherosclerotic cardiovascular disease later in life, especially for pediatric groups at risk. The growing list of pediatric groups at risk includes individuals with chronic inflammatory disorders, organ transplants, familial hypercholesterolemia, endocrine disorders, childhood cancer, chronic kidney diseases, congenital heart diseases, and premature birth, as well as increasing numbers of children and adolescents with traditional risk factors such as obesity, hypertension, hyperlipidemia, and hyperglycemia. Here, we focus on recent advances in cardiovascular risk assessment and management and their implications for pediatric practice. First, hyperlipidemia and hyperglycemia are highly prevalent in the young, with hyperlipidemia occurring in 14.6% and hyperglycemia in 16.4% of children and adolescents with a normal weight. Implementation of nonfasting lipid and glycated hemoglobin screening in youth at risk is emerging as a promising avenue to improve testing compliance and lipid and glucose management. Second, blood pressure, lipid, and glucose management in youth at risk are reviewed in depth. Third, multisite and multimodal assessment of early atherosclerosis is discussed as a way to capture the complexity of atherosclerosis as a systemic disease. In addition to conventional carotid intima-media thickness measurements, the measurement of aortic pulse wave velocity and peripheral arterial tonometry can advance the assessment of early atherosclerosis in pediatrics. Finally, we make a plea for lifetime atherosclerotic cardiovascular disease risk stratification that integrates disease-associated risk factors and traditional risk factors and could facilitate tailored cardiovascular risk management in growing numbers of children and adolescents at risk.
Collapse
Affiliation(s)
- Henk S Schipper
- Department of Pediatric Cardiology, Wilhelmina Children's Hospital and University Medical Center Utrecht, The Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, The Netherlands
| | - Sarah de Ferranti
- Department of Cardiology, Boston Children's Hospital, and Harvard University Medical School, Boston, Massachusetts
| |
Collapse
|
14
|
Rizzoni D, Mengozzi A, Masi S, Agabiti Rosei C, De Ciuceis C, Virdis A. New Noninvasive Methods to Evaluate Microvascular Structure and Function. Hypertension 2022; 79:874-886. [PMID: 35114816 DOI: 10.1161/hypertensionaha.121.17954] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The structural and functional alterations of microvessels are detected because of physiological aging and in several cardiometabolic diseases, including hypertension, diabetes, and obesity. The small resistance arteries of these patients show an increase in the media or total wall thickness to internal lumen diameter ratio (MLR or WLR), often accompanied by endothelial dysfunction. For decades, micromyography has been considered as a gold standard method for evaluating microvascular structural alterations through the measurement of MLR or WLR of subcutaneous small vessels dissected from tissue biopsies. Micromyography is the most common and reliable method for assessing microcirculatory endothelial function ex vivo, while strain-gauge venous plethysmography is considered the reference technique for in vivo studies. Recently, several noninvasive methods have been proposed to extend the microvasculature evaluation to a broader range of patients and clinical settings. Scanning laser Doppler flowmetry and adaptive optics are increasingly used to estimate the WLR of retinal arterioles. Microvascular endothelial function may be evaluated in the retina by flicker light stimulus, in the finger by tonometric approaches, or in the cutaneous or sublingual tissues by laser Doppler flowmetry or intravital microscopy. The main limitation of these techniques is the lack of robust evidence on their prognostic value, which currently reduces their widespread use in daily clinical practice. Ongoing and future studies will overcome this issue, hopefully moving the noninvasive assessment of the microvascular function and structure from bench to bedside.
Collapse
Affiliation(s)
- Damiano Rizzoni
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Italy (D.R., C.A., C.D.C.).,Division of Medicine, Spedali Civili di Brescia, Montichiari (Brescia), Italy (D.R.)
| | - Alessandro Mengozzi
- Department of Clinical and Experimental Medicine, University of Pisa, Italy (A.M., S.M., A.V.).,Institute of Life Science, Sant'Anna School of Advanced Studies, Pisa, Italy (A.M.)
| | - Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, Italy (A.M., S.M., A.V.).,Institute of Cardiovascular Science, University College London, United Kingdom (S.M.)
| | - Claudia Agabiti Rosei
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Italy (D.R., C.A., C.D.C.)
| | - Carolina De Ciuceis
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Italy (D.R., C.A., C.D.C.)
| | - Agostino Virdis
- Department of Clinical and Experimental Medicine, University of Pisa, Italy (A.M., S.M., A.V.)
| |
Collapse
|
15
|
Broberg O, Øra I, Wiebe T, Weismann CG, Liuba P. Characterization of Cardiac, Vascular, and Metabolic Changes in Young Childhood Cancer Survivors. Front Pediatr 2021; 9:764679. [PMID: 34956978 PMCID: PMC8692667 DOI: 10.3389/fped.2021.764679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/22/2021] [Indexed: 01/05/2023] Open
Abstract
Background: Childhood cancer survivors (CCS) are at an increased risk for cardiovascular diseases (CVD). It was the primary aim of this study to determine different measures of cardiac, carotid, lipid, and apolipoprotein status in young adult CCS and in healthy controls. Methods: Cardiac and common carotid artery (CCA) structure and function were measured by ultrasonography. Lipids and apolipoproteins were measured in the blood. Peripheral arterial endothelial vasomotor function was assessed by measuring digital reactive hyperemia index (PAT-RHI) using the Endo-PAT 2000. Results: Fifty-three CCS (20-30 years, 35 men) and 53 sex-matched controls were studied. The CCS cohort was divided by the median dose of anthracyclines into a low anthracycline dose (LAD) group (50-197 mg/m2, n = 26) and a high anthracycline dose (HAD) group (200-486 mg/m2, n = 27). Carotid distensibility index (DI) and endothelial function determined by PAT-RHI were both lower in the CCS groups compared with controls (p < 0.05 and p = 0.02). There was no difference in carotid intima media thickness. Atherogenic apolipoprotein-B (Apo-B) and the ratio between Apo-B and Apoliprotein-A1 (Apo-A1) were higher in the HAD group compared with controls (p < 0.01). Apo-B/Apo-A1-ratio was over reference limit in 29.6% of the HAD group, in 15.4% of LAD group, and in 7.5% of controls (p = 0.03). Measured lipid markers (low density lipoprotein and total cholesterol and triglycerides) were higher in both CCS groups compared with controls (p < 0.05). Systolic and diastolic function were measurably decreased in the HAD group, as evidenced by lower EF (p < 0.001) and lower é-wave (p < 0.005) compared with controls. CCA DI correlated with Apo-B/Apo-A1-ratio and Apo-A1. Follow-up time after treatment correlated with decreased left ventricular ejection fraction (p = 0.001). Conclusion: Young asymptomatic CCS exhibit cardiac, vascular, lipid, and apolipoprotein changes that could account for increased risk for CVD later in life. These findings emphasize the importance of cardiometabolic monitoring even in young CCS.
Collapse
Affiliation(s)
- Olof Broberg
- Pediatric Heart Center, Skåne University Hospital, Lund, Sweden.,Clinical Sciences, Department of Pediatrics, Lund University, Lund, Sweden
| | - Ingrid Øra
- Clinical Sciences, Department of Pediatrics, Lund University, Lund, Sweden.,Pediatric Oncology, Skåne University Hospital, Lund, Sweden
| | - Thomas Wiebe
- Pediatric Oncology, Skåne University Hospital, Lund, Sweden
| | - Constance G Weismann
- Pediatric Heart Center, Skåne University Hospital, Lund, Sweden.,Clinical Sciences, Department of Pediatrics, Lund University, Lund, Sweden
| | - Petru Liuba
- Pediatric Heart Center, Skåne University Hospital, Lund, Sweden.,Clinical Sciences, Department of Pediatrics, Lund University, Lund, Sweden
| |
Collapse
|