1
|
Li W, Huang Y, Liu J, Zhou Y, Sun H, Fan Y, Liu F. Defective macrophage efferocytosis in advanced atherosclerotic plaque and mitochondrial therapy. Life Sci 2024; 359:123204. [PMID: 39491771 DOI: 10.1016/j.lfs.2024.123204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/02/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease primarily affecting large and medium-sized arterial vessels, characterized by lipoprotein disorders, intimal thickening, smooth muscle cell proliferation, and the formation of vulnerable plaques. Macrophages (MΦs) play a vital role in the inflammatory response throughout all stages of atherosclerotic development and are considered significant therapeutic targets. In early lesions, macrophage efferocytosis rapidly eliminates harmful cells. However, impaired efferocytosis in advanced plaques perpetuates the inflammatory microenvironment of AS. Defective efferocytosis has emerged as a key factor in atherosclerotic pathogenesis and the progression to severe cardiovascular disease. Herein, this review probes into investigate the potential mechanisms at the cellular, molecular, and organelle levels underlying defective macrophage efferocytosis in advanced lesion plaques. In the inflammatory microenvironments of AS with interactions among diverse inflammatory immune cells, impaired macrophage efferocytosis is strongly linked to multiple factors, such as a lower absolute number of phagocytes, the aberrant expression of crucial molecules, and impaired mitochondrial energy provision in phagocytes. Thus, focusing on molecular targets to enhance macrophage efferocytosis or targeting mitochondrial therapy to restore macrophage metabolism homeostasis has emerged as a potential strategy to mitigate the progression of advanced atherosclerotic plaque, providing various treatment options.
Collapse
Affiliation(s)
- Wanling Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Yaqing Huang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Jun Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yue Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Hongyu Sun
- The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Yonghong Fan
- The General Hospital of Western Theater Command, Chengdu 610083, China.
| | - Feila Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China.
| |
Collapse
|
2
|
Abstract
Cardiovascular disease is the leading cause of death worldwide, and it commonly results from atherosclerotic plaque progression. One of the increasingly recognized drivers of atherosclerosis is dysfunctional efferocytosis, a homeostatic mechanism responsible for the clearance of dead cells and the resolution of inflammation. In atherosclerosis, the capacity of phagocytes to participate in efferocytosis is hampered, leading to the accumulation of apoptotic and necrotic tissue within the plaque, which results in enlargement of the necrotic core, increased luminal stenosis and plaque inflammation, and predisposition to plaque rupture or erosion. In this Review, we describe the different forms of programmed cell death that can occur in the atherosclerotic plaque and highlight the efferocytic machinery that is normally implicated in cardiovascular physiology. We then discuss the mechanisms by which efferocytosis fails in atherosclerosis and other cardiovascular and cardiometabolic diseases, including myocardial infarction and diabetes mellitus, and discuss therapeutic approaches that might reverse this pathological process.
Collapse
Affiliation(s)
- Shaunak S Adkar
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Nicholas J Leeper
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford, CA, USA.
| |
Collapse
|
3
|
Bamezai S, Zhang Y, Kumari M, Lotfi M, Alsaigh T, Luo L, Kumar GS, Wang F, Ye J, Puri M, Manchanda R, Paluri S, Adkar SS, Kojima Y, Ingelsson A, Bell CF, Lopez NG, Fu C, Choi RB, Miller Z, Barrios L, Walsh S, Ahmad F, Maegdefessel L, Smith BR, Leeper NJ. Pro-efferocytic nanotherapies reduce vascular inflammation without inducing anemia in a large animal model of atherosclerosis. Nat Commun 2024; 15:8034. [PMID: 39271657 PMCID: PMC11399336 DOI: 10.1038/s41467-024-52005-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Atherosclerosis is an inflammatory disorder responsible for cardiovascular disease. Reactivation of efferocytosis, the phagocytic removal of cells by macrophages, has emerged as a translational target for atherosclerosis. Systemic blockade of the key 'don't-eat-me' molecule, CD47, triggers the engulfment of apoptotic vascular tissue and potently reduces plaque burden. However, it also induces red blood cell clearance, leading to anemia. To overcome this, we previously developed a macrophage-specific nanotherapy loaded with a chemical inhibitor that promotes efferocytosis. Because it was found to be safe and effective in murine studies, we aimed to advance our nanoparticle into a porcine model of atherosclerosis. Here, we demonstrate that production can be scaled without impairing nanoparticle function. At an early stage of disease, we find our nanotherapy reduces apoptotic cell accumulation and inflammation in the atherosclerotic lesion. Notably, this therapy does not induce anemia, highlighting the translational potential of targeted macrophage checkpoint inhibitors.
Collapse
Affiliation(s)
- Sharika Bamezai
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Yapei Zhang
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, East Lansing, MI, USA
| | - Manisha Kumari
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, East Lansing, MI, USA
| | - Mozhgan Lotfi
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Tom Alsaigh
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Lingfeng Luo
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Gayatri Suresh Kumar
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Fudi Wang
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Jianqin Ye
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Madhu Puri
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, East Lansing, MI, USA
| | - Romila Manchanda
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, East Lansing, MI, USA
| | - Sesha Paluri
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, East Lansing, MI, USA
| | - Shaunak S Adkar
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Yoko Kojima
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Alice Ingelsson
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Caitlin F Bell
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicolas G Lopez
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Changhao Fu
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Ryan B Choi
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Zach Miller
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Leo Barrios
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Susan Walsh
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Ferhaan Ahmad
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University, Munich, Germany
- German Center for Cardiovascular Research, partner site Munich Heart Alliance, Berlin, Germany
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bryan Ronain Smith
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA.
- Institute for Quantitative Health Science and Engineering, East Lansing, MI, USA.
| | - Nicholas J Leeper
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford, CA, USA.
| |
Collapse
|
4
|
Raju S, Botts SR, Blaser MC, Abdul-Samad M, Prajapati K, Khosraviani N, Ho TWW, Breda LC, Ching C, Galant NJ, Fiddes L, Wu R, Clift CL, Pham T, Lee WL, Singh SA, Aikawa E, Fish JE, Howe KL. Directional Endothelial Communication by Polarized Extracellular Vesicle Release. Circ Res 2024; 134:269-289. [PMID: 38174557 PMCID: PMC10826926 DOI: 10.1161/circresaha.123.322993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Extracellular vesicles (EVs) contain bioactive cargo including miRNAs and proteins that are released by cells during cell-cell communication. Endothelial cells (ECs) form the innermost lining of all blood vessels, interfacing with cells in the circulation and vascular wall. It is unknown whether ECs release EVs capable of governing recipient cells within these 2 separate compartments. Given their boundary location, we propose ECs use bidirectional release of distinct EV cargo in quiescent (healthy) and activated (atheroprone) states to communicate with cells within the circulation and blood vessel wall. METHODS EVs were isolated from primary human aortic ECs (plate and transwell grown; ±IL [interleukin]-1β activation), quantified, visualized, and analyzed by miRNA transcriptomics and proteomics. Apical and basolateral EC-EV release was determined by miRNA transfer, total internal reflection fluorescence and electron microscopy. Vascular reprogramming (RNA sequencing) and functional assays were performed on primary human monocytes or smooth muscle cells±EC-EVs. RESULTS Activated ECs increased EV release, with miRNA and protein cargo related to atherosclerosis. EV-treated monocytes and smooth muscle cells revealed activated EC-EV altered pathways that were proinflammatory and atherogenic. ECs released more EVs apically, which increased with activation. Apical and basolateral EV cargo contained distinct transcriptomes and proteomes that were altered by EC activation. Notably, activated basolateral EC-EVs displayed greater changes in the EV secretome, with pathways specific to atherosclerosis. In silico analysis determined compartment-specific cargo released by the apical and basolateral surfaces of ECs can reprogram monocytes and smooth muscle cells, respectively, with functional assays and in vivo imaging supporting this concept. CONCLUSIONS Demonstrating that ECs are capable of polarized EV cargo loading and directional EV secretion reveals a novel paradigm for endothelial communication, which may ultimately enhance the design of endothelial-based therapeutics for cardiovascular diseases such as atherosclerosis where ECs are persistently activated.
Collapse
Affiliation(s)
- Sneha Raju
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada (S.R., S.R.B., M.A.-S., K.P., N.K., L.C.D.B., C.C., R.W., J.E.F., K.L.H.)
- Institute of Medical Science (S.R., S.R.B., C.C., J.E.F., K.L.H.), University of Toronto, Toronto, ON, Canada
- Faculty of Medicine (S.R., S.R.B., L.F., K.L.H.), University of Toronto, Toronto, ON, Canada
- Division of Vascular Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada (S.R., K.L.H.)
| | - Steven R. Botts
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada (S.R., S.R.B., M.A.-S., K.P., N.K., L.C.D.B., C.C., R.W., J.E.F., K.L.H.)
- Institute of Medical Science (S.R., S.R.B., C.C., J.E.F., K.L.H.), University of Toronto, Toronto, ON, Canada
- Faculty of Medicine (S.R., S.R.B., L.F., K.L.H.), University of Toronto, Toronto, ON, Canada
| | - Mark C. Blaser
- Cardiovascular Division, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences (M.C.B., C.L.C., T.P., S.A.S., E.A.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Majed Abdul-Samad
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada (S.R., S.R.B., M.A.-S., K.P., N.K., L.C.D.B., C.C., R.W., J.E.F., K.L.H.)
- Department of Laboratory Medicine and Pathobiology (M.A.-S., N.K., R.W., J.E.F.), University of Toronto, Toronto, ON, Canada
| | - Kamalben Prajapati
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada (S.R., S.R.B., M.A.-S., K.P., N.K., L.C.D.B., C.C., R.W., J.E.F., K.L.H.)
| | - Negar Khosraviani
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada (S.R., S.R.B., M.A.-S., K.P., N.K., L.C.D.B., C.C., R.W., J.E.F., K.L.H.)
- Department of Laboratory Medicine and Pathobiology (M.A.-S., N.K., R.W., J.E.F.), University of Toronto, Toronto, ON, Canada
| | - Tse Wing Winnie Ho
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada (T.W.W.H., W.L.L.)
| | - Leandro C.D. Breda
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada (S.R., S.R.B., M.A.-S., K.P., N.K., L.C.D.B., C.C., R.W., J.E.F., K.L.H.)
| | - Crizza Ching
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada (S.R., S.R.B., M.A.-S., K.P., N.K., L.C.D.B., C.C., R.W., J.E.F., K.L.H.)
- Institute of Medical Science (S.R., S.R.B., C.C., J.E.F., K.L.H.), University of Toronto, Toronto, ON, Canada
| | | | - Lindsey Fiddes
- Faculty of Medicine (S.R., S.R.B., L.F., K.L.H.), University of Toronto, Toronto, ON, Canada
| | - Ruilin Wu
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada (S.R., S.R.B., M.A.-S., K.P., N.K., L.C.D.B., C.C., R.W., J.E.F., K.L.H.)
- Department of Laboratory Medicine and Pathobiology (M.A.-S., N.K., R.W., J.E.F.), University of Toronto, Toronto, ON, Canada
| | - Cassandra L. Clift
- Cardiovascular Division, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences (M.C.B., C.L.C., T.P., S.A.S., E.A.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Tan Pham
- Cardiovascular Division, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences (M.C.B., C.L.C., T.P., S.A.S., E.A.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Warren L. Lee
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada (T.W.W.H., W.L.L.)
| | - Sasha A. Singh
- Cardiovascular Division, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences (M.C.B., C.L.C., T.P., S.A.S., E.A.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Center for Excellence in Vascular Biology, Cardiovascular Division, Department of Medicine (S.A.S., E.A.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Elena Aikawa
- Cardiovascular Division, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences (M.C.B., C.L.C., T.P., S.A.S., E.A.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Center for Excellence in Vascular Biology, Cardiovascular Division, Department of Medicine (S.A.S., E.A.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Jason E. Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada (S.R., S.R.B., M.A.-S., K.P., N.K., L.C.D.B., C.C., R.W., J.E.F., K.L.H.)
- Institute of Medical Science (S.R., S.R.B., C.C., J.E.F., K.L.H.), University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology (M.A.-S., N.K., R.W., J.E.F.), University of Toronto, Toronto, ON, Canada
- Peter Munk Cardiac Centre, Toronto General Hospital, Toronto, ON, Canada (J.E.F., K.L.H.)
| | - Kathryn L. Howe
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada (S.R., S.R.B., M.A.-S., K.P., N.K., L.C.D.B., C.C., R.W., J.E.F., K.L.H.)
- Institute of Medical Science (S.R., S.R.B., C.C., J.E.F., K.L.H.), University of Toronto, Toronto, ON, Canada
- Faculty of Medicine (S.R., S.R.B., L.F., K.L.H.), University of Toronto, Toronto, ON, Canada
- Division of Vascular Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada (S.R., K.L.H.)
- Peter Munk Cardiac Centre, Toronto General Hospital, Toronto, ON, Canada (J.E.F., K.L.H.)
| |
Collapse
|
5
|
Wang C, Feng Y, Patel D, Xie H, Lv Y, Zhao H. The role of CD47 in non-neoplastic diseases. Heliyon 2023; 9:e22905. [PMID: 38125492 PMCID: PMC10731077 DOI: 10.1016/j.heliyon.2023.e22905] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
CD47 is a 50 kDa five-spanning membrane receptor that plays a crucial role in multiple cellular processes, including myeloid cell activation, neutrophils transmigration, vascular remodeling, leukocyte adhesion and trans-endothelial migration. Recent studies have revealed that CD47 is a highly expressed anti-phagocytic signal in several types of cancer, and therefore, blocking of CD47 has shown an effective therapeutic potential in cancer immunotherapy. In addition, CD47 has been found to be involved in a complex interplay with microglia and other types of cells, and increasing evidence indicates that CD47 can be targeted as part of immune modulatory strategies for non-neoplastic diseases as well. In this review, we focus on CD47 and its role in non-neoplastic diseases, including neurological disorders, atherosclerosis and autoimmune diseases. In addition, we discuss the major challenges and potential remedies associated with CD47-SIRPα-based immunotherapies.
Collapse
Affiliation(s)
- Chao Wang
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| | - Ying Feng
- Department of Emergency, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| | - Deepali Patel
- School of Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao, Shandong, 266071, China
| | - Hongwei Xie
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| | - Yaqing Lv
- Department of Outpatient, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| | - Hai Zhao
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| |
Collapse
|
6
|
Luo L, Fu C, Bell CF, Wang Y, Leeper NJ. Role of vascular smooth muscle cell clonality in atherosclerosis. Front Cardiovasc Med 2023; 10:1273596. [PMID: 38089777 PMCID: PMC10713728 DOI: 10.3389/fcvm.2023.1273596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/24/2023] [Indexed: 02/01/2024] Open
Abstract
Atherosclerotic cardiovascular disease remains the leading cause of death worldwide. While many cell types contribute to the growing atherosclerotic plaque, the vascular smooth muscle cell (SMC) is a major contributor due in part to its remarkable plasticity and ability to undergo phenotype switching in response to injury. SMCs can migrate into the fibrous cap, presumably stabilizing the plaque, or accumulate within the lesional core, possibly accelerating vascular inflammation. How SMCs expand and react to disease stimuli has been a controversial topic for many decades. While early studies relying on X-chromosome inactivation were inconclusive due to low resolution and sensitivity, recent advances in multi-color lineage tracing models have revitalized the concept that SMCs likely expand in an oligoclonal fashion during atherogenesis. Current efforts are focused on determining whether all SMCs have equal capacity for clonal expansion or if a "stem-like" progenitor cell may exist, and to understand how constituents of the clone decide which phenotype they will ultimately adopt as the disease progresses. Mechanistic studies are also beginning to dissect the processes which confer cells with their overall survival advantage, test whether these properties are attributable to intrinsic features of the expanding clone, and define the role of cross-talk between proliferating SMCs and other plaque constituents such as neighboring macrophages. In this review, we aim to summarize the historical perspectives on SMC clonality, highlight unanswered questions, and identify translational issues which may need to be considered as therapeutics directed against SMC clonality are developed as a novel approach to targeting atherosclerosis.
Collapse
Affiliation(s)
- Lingfeng Luo
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford, CA, United States
| | - Changhao Fu
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford, CA, United States
| | - Caitlin F. Bell
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford, CA, United States
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Ying Wang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Nicholas J. Leeper
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford, CA, United States
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
7
|
Raju S, Botts SR, Blaser M, Prajapati K, Ho TWW, Ching C, Galant NJ, Fiddes L, Wu R, Clift CL, Pham T, Lee WL, Singh SA, Aikawa E, Fish JE, Howe KL. Endothelial cells secrete small extracellular vesicles bidirectionally containing distinct cargo to uniquely reprogram vascular cells in the circulation and vessel wall. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.28.538787. [PMID: 37162986 PMCID: PMC10168399 DOI: 10.1101/2023.04.28.538787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Rationale Extracellular vesicles (EVs) contain bioactive cargo including microRNAs (miRNAs) and proteins that are released by cells as a form of cell-cell communication. Endothelial cells (ECs) form the innermost lining of all blood vessels and thereby interface with cells in the circulation as well as cells residing in the vascular wall. It is unknown whether ECs have the capacity to release EVs capable of governing recipient cells within two separate compartments, and how this is affected by endothelial activation commonly seen in atheroprone regions. Objective Given their boundary location, we propose that ECs utilize bidirectional release of distinct EV cargo in quiescent and activated states to communicate with cells within the circulation and blood vessel wall. Methods and Results EVs were isolated from primary human aortic endothelial cells (ECs) (+/-IL-1β activation), quantified, and analysed by miRNA transcriptomics and proteomics. Compared to quiescent ECs, activated ECs increased EV release, with miRNA and protein cargo that were related to atherosclerosis. RNA sequencing of EV-treated monocytes and smooth muscle cells (SMCs) revealed that EVs from activated ECs altered pathways that were pro-inflammatory and atherogenic. Apical and basolateral EV release was assessed using ECs on transwells. ECs released more EVs apically, which increased with activation. Apical and basolateral EV cargo contained distinct transcriptomes and proteomes that were altered by EC activation. Notably, basolateral EC-EVs displayed greater changes in the EV secretome, with pathways specific to atherosclerosis. In silico analysis determined that compartment-specific cargo released by the apical and basolateral surfaces of ECs can reprogram monocytes and SMCs, respectively. Conclusions The demonstration that ECs are capable of polarized EV cargo loading and directional EV secretion reveals a novel paradigm for endothelial communication, which may ultimately enhance our ability to design endothelial-based therapeutics for cardiovascular diseases such as atherosclerosis where ECs are persistently activated.
Collapse
Affiliation(s)
- Sneha Raju
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Division of Vascular Surgery, Toronto General Hospital, Toronto, Canada
- Faculty of Medicine, University of Toronto, Toronto ON, Canada
| | - Steven R. Botts
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Faculty of Medicine, University of Toronto, Toronto ON, Canada
| | - Mark Blaser
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Kamalben Prajapati
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Tse Wing Winnie Ho
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
| | - Crizza Ching
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | | | - Lindsey Fiddes
- Faculty of Medicine, University of Toronto, Toronto ON, Canada
| | - Ruilin Wu
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Cassandra L. Clift
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Tan Pham
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Warren L Lee
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
| | - Sasha A Singh
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Center for Excellence in Vascular Biology, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Center for Excellence in Vascular Biology, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Jason E Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Peter Munk Cardiac Centre, Toronto General Hospital, Toronto, Canada
| | - Kathryn L Howe
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Division of Vascular Surgery, Toronto General Hospital, Toronto, Canada
- Faculty of Medicine, University of Toronto, Toronto ON, Canada
- Peter Munk Cardiac Centre, Toronto General Hospital, Toronto, Canada
| |
Collapse
|
8
|
Lv H, Hua Q, Wang Y, Gao Z, Liu P, Qin D, Xu Y. Mapping the knowledge structure and emerging trends of efferocytosis research: a bibliometric analysis. Am J Transl Res 2023; 15:1386-1402. [PMID: 36915780 PMCID: PMC10006791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/06/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND Efferocytosis refers to the physiological clearance process of apoptotic cells by specialized and non-phagocytes and it is essential in human health and disease. However, there is a lack of comprehensive and objective reports on the current status of efferocytosis research. Here, we visually analyzed the hotspots and trending issues of efferocytosis research with bibliometric analysis. METHODS Relevant publications were obtained from the Web of Science Core Collection on February 18, 2022. We performed bibliometric and visual analysis using CiteSpace, VOSviewer, Microsoft Excel 2019, and the online Bibliometric platform. RESULTS A total of 1007 publications on efferocytosis were retrieved. The number of efferocytosis studies increased rapidly from 2006 to 2021. The country that published the most efferocytosis related articles was the USA and the most productive institutions were Harvard University and Brigham and Women's Hospital. The most prolific and influential author was I. Tabas of Columbia University. Frontiers in Immunology published the most research papers on efferocytosis, the while Journal of Immunology had the highest co-citation frequency. The high-frequency keywords were "efferocytosis", "inflammation", "apoptotic cells", "macrophages", and "apoptosis". The analysis of keywords with the strongest citation bursts identified "cell" and "resolution" as emerging hotspots. CONCLUSION Our results demonstrated that efferocytosis research increased steadily within the past decade. Current efferocytosis studies focus on three main aspects: mechanisms, basic biology, and potential role in disease. The research trends included the cellular players of the efferocytosis process and the role of efferocytosis in inflammation resolution. This bibliometric analysis presented a comprehensive overview of efferocytosis research and provided valuable references and ideas for scholars interested in this field.
Collapse
Affiliation(s)
- Hao Lv
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University Wuhan, Hubei, China
| | - Qingquan Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University Wuhan, Hubei, China.,Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University Wuhan, Hubei, China
| | - Yunfei Wang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University Wuhan, Hubei, China
| | - Ziang Gao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University Wuhan, Hubei, China
| | - Peiqiang Liu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University Wuhan, Hubei, China
| | - Danxue Qin
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University Wuhan, Hubei, China
| | - Yu Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University Wuhan, Hubei, China.,Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University Wuhan, Hubei, China.,Department of Rhinology and Allergy, Renmin Hospital of Wuhan University Wuhan, Hubei, China.,Hubei Province Key Laboratory of Allergy and Immunology Wuhan, Hubei, China
| |
Collapse
|
9
|
The Role of Hydrogen Sulfide in Plaque Stability. Antioxidants (Basel) 2022; 11:antiox11122356. [PMID: 36552564 PMCID: PMC9774534 DOI: 10.3390/antiox11122356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/11/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Atherosclerosis is the greatest contributor to cardiovascular events and is involved in the majority of deaths worldwide. Plaque rapture or erosion precipitates life-threatening thrombi, resulting in the obstruction blood flow to the heart (acute coronary syndrome), brain (ischemic stroke) or low extremities (peripheral vascular diseases). Among these events, major causation dues to the plaque rupture. Although the initiation, procession, and precise time of controlling plaque rupture are unclear, foam cell formation and apoptosis, cell death, extracellular matrix components, protease expression and activity, local inflammation, intraplaque hemorrhage, and calcification contribute to the plaque instability. These alterations tightly associate with the function regulation of intraplaque various cell populations. Hydrogen sulfide (H2S) is gasotransmitter derived from methionine metabolism and exerts a protective role in the genesis of atherosclerosis. Recent progress also showed H2S mediated the plaque stability. In this review, we discuss the progress of endogenous H2S modulation on functions of vascular smooth muscle cells, monocytes/macrophages, and T cells, and the molecular mechanism in plaque stability.
Collapse
|