1
|
Abstract
The elastic properties of conductance arteries are one of the most important hemodynamic functions in the body, and data continue to emerge regarding the importance of their dysfunction in vascular aging and a range of cardiovascular diseases. Here, we provide new insight into the integrative physiology of arterial stiffening and its clinical consequence. We also comprehensively review progress made on pathways/molecules that appear today as important basic determinants of arterial stiffness, particularly those mediating the vascular smooth muscle cell (VSMC) contractility, plasticity and stiffness. We focus on membrane and nuclear mechanotransduction, clearance function of the vascular wall, phenotypic switching of VSMCs, immunoinflammatory stimuli and epigenetic mechanisms. Finally, we discuss the most important advances of the latest clinical studies that revisit the classical therapeutic concepts of arterial stiffness and lead to a patient-by-patient strategy according to cardiovascular risk exposure and underlying disease.
Collapse
|
2
|
Wang X, Shen Y, Shang M, Liu X, Munn LL. Endothelial mechanobiology in atherosclerosis. Cardiovasc Res 2023; 119:1656-1675. [PMID: 37163659 PMCID: PMC10325702 DOI: 10.1093/cvr/cvad076] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 02/11/2023] [Accepted: 02/21/2023] [Indexed: 05/12/2023] Open
Abstract
Cardiovascular disease (CVD) is a serious health challenge, causing more deaths worldwide than cancer. The vascular endothelium, which forms the inner lining of blood vessels, plays a central role in maintaining vascular integrity and homeostasis and is in direct contact with the blood flow. Research over the past century has shown that mechanical perturbations of the vascular wall contribute to the formation and progression of atherosclerosis. While the straight part of the artery is exposed to sustained laminar flow and physiological high shear stress, flow near branch points or in curved vessels can exhibit 'disturbed' flow. Clinical studies as well as carefully controlled in vitro analyses have confirmed that these regions of disturbed flow, which can include low shear stress, recirculation, oscillation, or lateral flow, are preferential sites of atherosclerotic lesion formation. Because of their critical role in blood flow homeostasis, vascular endothelial cells (ECs) have mechanosensory mechanisms that allow them to react rapidly to changes in mechanical forces, and to execute context-specific adaptive responses to modulate EC functions. This review summarizes the current understanding of endothelial mechanobiology, which can guide the identification of new therapeutic targets to slow or reverse the progression of atherosclerosis.
Collapse
Affiliation(s)
- Xiaoli Wang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310020, China
| | - Yang Shen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Min Shang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310020, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lance L Munn
- Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
3
|
Abstract
The cardiovascular system is hardwired to the brain via multilayered afferent and efferent polysynaptic axonal connections. Two major anatomically and functionally distinct though closely interacting subcircuits within the cardiovascular system have recently been defined: The artery-brain circuit and the heart-brain circuit. However, how the nervous system impacts cardiovascular disease progression remains poorly understood. Here, we review recent findings on the anatomy, structures, and inner workings of the lesser-known artery-brain circuit and the better-established heart-brain circuit. We explore the evidence that signals from arteries or the heart form a systemic and finely tuned cardiovascular brain circuit: afferent inputs originating in the arterial tree or the heart are conveyed to distinct sensory neurons in the brain. There, primary integration centers act as hubs that receive and integrate artery-brain circuit-derived and heart-brain circuit-derived signals and process them together with axonal connections and humoral cues from distant brain regions. To conclude the cardiovascular brain circuit, integration centers transmit the constantly modified signals to efferent neurons which transfer them back to the cardiovascular system. Importantly, primary integration centers are wired to and receive information from secondary brain centers that control a wide variety of brain traits encoded in engrams including immune memory, stress-regulating hormone release, pain, reward, emotions, and even motivated types of behavior. Finally, we explore the important possibility that brain effector neurons in the cardiovascular brain circuit network connect efferent signals to other peripheral organs including the immune system, the gut, the liver, and adipose tissue. The enormous recent progress vis-à-vis the cardiovascular brain circuit allows us to propose a novel neurobiology-centered cardiovascular disease hypothesis that we term the neuroimmune cardiovascular circuit hypothesis.
Collapse
Affiliation(s)
- Sarajo K Mohanta
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University (LMU), Munich, Germany (S.K.M., C.Y., C.W., A.J.R.H.)
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance (S.K.M., C.W., A.J.R.H.)
| | - Changjun Yin
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University (LMU), Munich, Germany (S.K.M., C.Y., C.W., A.J.R.H.)
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China (C.Y.)
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University (LMU), Munich, Germany (S.K.M., C.Y., C.W., A.J.R.H.)
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance (S.K.M., C.W., A.J.R.H.)
| | - Cristina Godinho-Silva
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal (C.G.-S., H.V.-F.)
| | | | - Qian J Xu
- Department of Neuroscience, Department of Cellular and Molecular Physiology, Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT (Q.J.X., R.B.C.)
| | - Rui B Chang
- Department of Neuroscience, Department of Cellular and Molecular Physiology, Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT (Q.J.X., R.B.C.)
| | - Andreas J R Habenicht
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University (LMU), Munich, Germany (S.K.M., C.Y., C.W., A.J.R.H.)
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance (S.K.M., C.W., A.J.R.H.)
| |
Collapse
|
4
|
Belhoul-Fakir H, Wu J, Yeow YL, Musk GC, Kershaw H, Ingley E, Zhao BS, Reid CM, Lagat C, Evans B, Thompson PL, Brown ML, Hamzah J, Jansen S. Injury to the tunica media initiates atherogenesis in the presence of hyperlipidemia. Front Cardiovasc Med 2023; 10:1152124. [PMID: 37063951 PMCID: PMC10098105 DOI: 10.3389/fcvm.2023.1152124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/10/2023] [Indexed: 03/31/2023] Open
Abstract
Background and aims Fatty streaks initiating the formation of atheromatous plaque appear in the tunica intima. The tunica media is not known to be a nidus for lipid accumulation initiating atherogenesis. We assessed changes to the tunica media in response to a micro-injury produced in the pig aorta. In addition, we assessed human carotid endarterectomy plaques for indication of atheroma initiation in the tunica media. Methods Three healthy landrace female pigs underwent laparotomy to inject autologous blood and create micro-hematomas at 6 sites within the tunica media of the infrarenal abdominal aorta. These pigs were fed a high-fat diet (HFD) for 4-12 weeks. Post-mortem aortas from all pigs, including a control group of healthy pigs, were serially stained to detect lipid deposits, vasa vasora (VV), immune cell infiltration and inflammatory markers, as well as changes to the vascular smooth muscle cell (vSMC) compartment. Moreover, 25 human carotid endarterectomy (CEA) specimens were evaluated for their lipid composition in the tunica media and intima. Results High lipid clusters, VV density, and immune cell infiltrates were consistently observed at 5 out of 6 injection sites under prolonged hyperlipidemia. The hyperlipidemic diet also affected the vSMC compartment in the tunica media adjacent to the tunica adventitia, which correlated with VV invasion and immune cell infiltration. Analysis of human carotid specimens post-CEA indicated that 32% of patients had significantly greater atheroma in the tunica media than in the arterial intima. Conclusion The arterial intima is not the only site for atherosclerosis initiation. We show that injury to the media can trigger atherogenesis.
Collapse
Affiliation(s)
- Hanane Belhoul-Fakir
- Curtin Medical School, Curtin University, Bentley, Perth, WA, Australia
- Laboratory of Targeted Drug Delivery, Imaging & Therapy, Harry Perkins Institute of Medical Research, QEII MedicalCentre, Nedlands, WA, Australia
- Heart & Vascular Research Institute, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia
| | - Jiansha Wu
- Laboratory of Targeted Drug Delivery, Imaging & Therapy, Harry Perkins Institute of Medical Research, QEII MedicalCentre, Nedlands, WA, Australia
- Heart & Vascular Research Institute, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia
| | - Yen L. Yeow
- Laboratory of Targeted Drug Delivery, Imaging & Therapy, Harry Perkins Institute of Medical Research, QEII MedicalCentre, Nedlands, WA, Australia
| | - Gabrielle C. Musk
- Animal Care Services, The University of Western Australia, Crawley, Perth, WA, Australia
| | - Helen Kershaw
- Animal Care Services, The University of Western Australia, Crawley, Perth, WA, Australia
| | - Evan Ingley
- Discipline of Medical, Molecular, and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
- School of Biomedical Sciences, Pharmacology, and Toxicology, The University of Western Australia, Perth, WA, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Bichen Sophie Zhao
- Curtin Medical School, Curtin University, Bentley, Perth, WA, Australia
- Laboratory of Targeted Drug Delivery, Imaging & Therapy, Harry Perkins Institute of Medical Research, QEII MedicalCentre, Nedlands, WA, Australia
| | - Christopher M. Reid
- School of Public Health and Preventive Medicine, Monash University, Clayton, VIC, Australia
- School of Population Health, Curtin University, Bentley, Perth, WA, Australia
| | - Christopher Lagat
- Western Australia School of Mine: Minerals, Energy and Chemical Engineering, Curtin University, Kensington, Perth, WA, Australia
| | - Brian Evans
- Western Australia School of Mine: Minerals, Energy and Chemical Engineering, Curtin University, Kensington, Perth, WA, Australia
| | - Peter L. Thompson
- Laboratory of Targeted Drug Delivery, Imaging & Therapy, Harry Perkins Institute of Medical Research, QEII MedicalCentre, Nedlands, WA, Australia
- Heart & Vascular Research Institute, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia
| | - Michael L. Brown
- School of Population Health, Curtin University, Bentley, Perth, WA, Australia
| | - Juliana Hamzah
- Curtin Medical School, Curtin University, Bentley, Perth, WA, Australia
- Laboratory of Targeted Drug Delivery, Imaging & Therapy, Harry Perkins Institute of Medical Research, QEII MedicalCentre, Nedlands, WA, Australia
- Heart & Vascular Research Institute, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia
| | - Shirley Jansen
- Curtin Medical School, Curtin University, Bentley, Perth, WA, Australia
- Laboratory of Targeted Drug Delivery, Imaging & Therapy, Harry Perkins Institute of Medical Research, QEII MedicalCentre, Nedlands, WA, Australia
- Heart & Vascular Research Institute, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia
- Department of Vascular and Endovascular Surgery, Sir Charles Gairdner Hospital, Nedlands, Perth, WA, Australia
| |
Collapse
|