1
|
Rohun J, Dudzik D, Raczak-Gutknecht J, Wabich E, Młodziński K, Markuszewski MJ, Daniłowicz-Szymanowicz L. Metabolomics in Atrial Fibrillation: Unlocking Novel Biomarkers and Pathways for Diagnosis, Prognosis, and Personalized Treatment. J Clin Med 2024; 14:34. [PMID: 39797116 PMCID: PMC11722095 DOI: 10.3390/jcm14010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND/OBJECTIVES Atrial fibrillation (AF) is the most frequent arrhythmia in the adult population associated with a high rate of severe consequences leading to significant morbidity and mortality worldwide. Therefore, its prompt recognition is of high clinical importance. AF detection often remains challenging due to unspecific symptoms and a lack of reliable biomarkers for its prediction. Herein, novel bioanalytical methodologies, such as metabolomics, offer new opportunities for a better understanding of the underlying pathological mechanisms of cardiovascular diseases, including AF. The metabolome, considered a complete set of small molecules present in the organism, directly reflects the current phenotype of the studied system and is highly sensitive to any changes, including arrhythmia's onset. A growing body of evidence suggests that metabolite profiling has prognostic value in AF prediction, highlighting its potential role not only in early diagnosis but also in guiding therapeutic interventions. By identifying specific metabolites as a disease biomarker or recognising particular metabolomic pathways involved in the AF pathomechanisms, metabolomics could be of great clinical value for further clinical decision-making, risk stratification, and an individual personalised approach. The presented narrative review aims to summarise the current state of knowledge on metabolomics in AF with a special emphasis on its implications for clinical practice and personalised medicine.
Collapse
Affiliation(s)
- Justyna Rohun
- Department of Cardiology and Electrotherapy, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdańsk, Poland; (J.R.); (E.W.); (K.M.)
| | - Danuta Dudzik
- Department of Biopharmaceutics and Pharmacodynamics, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdańsk, Poland; (D.D.); (J.R.-G.); (M.J.M.)
| | - Joanna Raczak-Gutknecht
- Department of Biopharmaceutics and Pharmacodynamics, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdańsk, Poland; (D.D.); (J.R.-G.); (M.J.M.)
| | - Elżbieta Wabich
- Department of Cardiology and Electrotherapy, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdańsk, Poland; (J.R.); (E.W.); (K.M.)
| | - Krzysztof Młodziński
- Department of Cardiology and Electrotherapy, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdańsk, Poland; (J.R.); (E.W.); (K.M.)
| | - Michał J. Markuszewski
- Department of Biopharmaceutics and Pharmacodynamics, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdańsk, Poland; (D.D.); (J.R.-G.); (M.J.M.)
| | - Ludmiła Daniłowicz-Szymanowicz
- Department of Cardiology and Electrotherapy, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdańsk, Poland; (J.R.); (E.W.); (K.M.)
| |
Collapse
|
2
|
Roberts JD, Chalazan B, Andrade JG, Macle L, Nattel S, Tadros R. Clinical Genetic Testing for Atrial Fibrillation: Are We There Yet? Can J Cardiol 2024; 40:540-553. [PMID: 38551553 DOI: 10.1016/j.cjca.2023.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/17/2023] [Accepted: 11/19/2023] [Indexed: 04/13/2024] Open
Abstract
Important progress has been made toward unravelling the complex genetics underlying atrial fibrillation (AF). Initial studies were aimed to identify monogenic causes; however, it has become increasingly clear that the most common predisposing genetic substrate for AF is polygenic. Despite intensive investigations, there is robust evidence for rare variants for only a limited number of genes and cases. Although the current yield for genetic testing in early onset AF might be modest, there is an increasing appreciation that genetic culprits for potentially life-threatening ventricular cardiomyopathies and channelopathies might initially present with AF. The potential clinical significance of this recognition is highlighted by evidence that suggests that identification of a pathogenic or likely pathogenic rare variant in a patient with early onset AF is associated with an increased risk of death. These findings suggest that it might be warranted to screen patients with early onset AF for these potentially more sinister cardiac conditions. Beyond facilitating the early identification of genetic culprits associated with potentially malignant phenotypes, insight into underlying AF genetic substrates might improve the selection of patients for existing therapies and guide the development of novel ones. Herein, we review the evidence that links genetic factors to AF, then discuss an approach to using genetic testing for early onset AF patients in the present context, and finally consider the potential value of genetic testing in the foreseeable future. Although further work might be necessary before recommending uniform integration of genetic testing in cases of early onset AF, ongoing research increasingly highlights its potential contributions to clinical care.
Collapse
Affiliation(s)
- Jason D Roberts
- Population Health Research Institute, McMaster University, and Hamilton Health Sciences, Hamilton, Ontario, Canada.
| | - Brandon Chalazan
- Division of Biochemical Genetics, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jason G Andrade
- Centre for Cardiovascular Innovation and Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Laurent Macle
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
| | - Stanley Nattel
- Department of Medicine and Research Center, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
| | - Rafik Tadros
- Cardiovascular Genetics Center, Montreal Heart Institute, Faculty of Medicine, Université de Montréal, Montreal, Québec, Canada
| |
Collapse
|
3
|
Abstract
Background Atrial fibrillation (AF) is a common arrhythmia seen in clinical practice. Occasionally, no common risk factors are present in patients with this arrhythmia. This suggests the potential underlying role of genetic factors associated with predisposition to developing AF. Methods and Results We conducted a comprehensive review of the literature through large online libraries, including PubMed. Many different potassium and sodium channel mutations have been discussed in their relation to AF. There have also been non–ion channel mutations that have been linked to AF. Genome‐wide association studies have helped in identifying potential links between single‐nucleotide polymorphisms and AF. Ancestry studies have also highlighted a role of genetics in AF. Blacks with a higher percentage of European ancestry are at higher risk of developing AF. The emerging field of ablatogenomics involves the use of genetic profiles in their relation to recurrence of AF after catheter ablation. Conclusions The evidence for the underlying role of genetics in AF continues to expand. Ultimately, the role of genetics in risk stratification of AF and its recurrence is of significant interest. No established risk scores that are useful in clinical practice are present to date.
Collapse
Affiliation(s)
- Julien Feghaly
- 1 Department of Internal Medicine St Louis University Hospital St Louis MO
| | - Patrick Zakka
- 2 Department of Internal Medicine Emory University Hospital Atlanta GA
| | - Barry London
- 3 Department of Cardiovascular Medicine University of Iowa Carver College of Medicine Iowa City IA
| | - Calum A MacRae
- 4 Department of Cardiovascular Medicine Brigham and Women's Hospital Boston MA
| | - Marwan M Refaat
- 5 Department of Cardiovascular Medicine American University of Beirut Medical Center Beirut Lebanon
| |
Collapse
|
4
|
Sapelnikov OV, Kulikov AA, Favorova OO, Matveeva NA, Cherkashin DI, Nikolaeva OA, Akchurin RS. Genetic, Epigenetic and Transcription Factors in Atrial Fibrillation. RATIONAL PHARMACOTHERAPY IN CARDIOLOGY 2019. [DOI: 10.20996/1819-6446-2019-15-3-407-415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Atrial fibrillation (AF) is one of the most common arrhythmia that occurs in patients with cardiovascular diseases. Congenital forms of AF are quite rare. Many studies have shown that genetic, epigenetic and transcription factors may play an important role in the development and the progression of AF. In our review, studies have been conducted on the identification of mutations in ionic and non-ionic channels, possibly associated with AF. These mutations were found only in isolated groups of patients with AF, and in general, monogenic forms of AF are a rare subtype of the disease. Genomic association studies have helped to identify potential links between single nucleotide polymorphisms and AF. The risk of AF in the general population is likely to be determined by the interaction between environmental factors and many alleles. In recent years, the emergence of a genome-wide associative studies has significantly expanded the understanding of the genetic basis for the inheritance of AF and has led to the emergence of new evidence of the important role of genetic factors in the development of AF, in the risk stratification of AF and the recurrence of AF. Epigenetic factors are also important in AF. Epigenetic therapy aimed at treating a disease through exposure to epigenome is currently under development. A newly emerged area of ablatogenomics includes the use of genetic profiles that allow assessing the likelihood of recurrence of AF after catheter ablation. The results of genetic studies in AF show that, in addition to their role in the appearance of congenital heart pathologies, transcription factors play an important role in the pathogenesis of AF.
Collapse
Affiliation(s)
| | | | - O. O. Favorova
- National Medical Research Center of Cardiology
Pirogov Russian National Research Medical University
| | - N. A. Matveeva
- National Medical Research Center of Cardiology
Pirogov Russian National Research Medical University
| | | | | | | |
Collapse
|
5
|
Roberts JD, Soliman EZ, Alonso A, Vittinghoff E, Chen LY, Loehr L, Marcus GM. Electrocardiographic intervals associated with incident atrial fibrillation: Dissecting the QT interval. Heart Rhythm 2017; 14:654-660. [PMID: 28189824 DOI: 10.1016/j.hrthm.2017.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Indexed: 02/02/2023]
Abstract
BACKGROUND Prolongation of the QT interval has been associated with an increased risk of developing atrial fibrillation (AF), but the responsible mechanism remains unknown. OBJECTIVES The aims of this study were to subdivide the QT interval into its components and identify the resultant electrocardiographic interval(s) responsible for the association with AF. METHODS Predefined QT-interval components were assessed for association with incident AF in the Atherosclerosis Risk in Communities study using Cox proportional hazards models. Hazard ratios (HRs) were calculated per 1-SD increase in each component. Among QT-interval components exhibiting significant associations, additional analyses evaluating long extremes, defined as greater than the 95th percentile, were performed. RESULTS Of the 14,625 individuals, 1505 (10.3%) were diagnosed with incident AF during a mean follow-up period of 17.6 years. After multivariable adjustment, QT-interval components involved in repolarization, but not depolarization, exhibited significant associations with incident AF, including a longer ST segment (HR 1.27; 95% confidence interval [CI] 1.14-1.41; P < .001) and a prolonged T-wave onset to T-wave peak (T-onset to T-peak) (HR 1.13; 95% CI 1.07-1.20; P < .001). Marked prolongation of the ST segment (HR 1.31; 95% CI 1.04-1.64; P = .022) and T-onset to T-peak (HR 1.36; 95% CI 1.09-1.69; P = .006) was also associated with an increased risk of incident AF. CONCLUSION The association between a prolonged QT interval and incident AF is primarily explained by components involved in ventricular repolarization: prolongation of the ST segment and T-onset to T-peak. These observations suggest that prolongation of phases 2 and 3 of the cardiac action potential drives the association between the QT interval and AF risk.
Collapse
Affiliation(s)
- Jason D Roberts
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, Ontario, Canada.
| | - Elsayed Z Soliman
- Epidemiological Cardiology Research Center, Wake Forest University School of Medicine, Winston Salem, North Carolina
| | - Alvaro Alonso
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Eric Vittinghoff
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Lin Y Chen
- Cardiovascular Division, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Laura Loehr
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Gregory M Marcus
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
6
|
Roberts JD, Marcus GM. Ablatogenomics: can genotype guide catheter ablation for cardiac arrhythmias? Pharmacogenomics 2016; 17:1931-1940. [PMID: 27790939 DOI: 10.2217/pgs-2016-0114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Previously confined to the management of rare inherited arrhythmia syndromes, a role for genetics within cardiac electrophysiology has begun to emerge for more common arrhythmias, including atrial fibrillation (AF). Catheter ablation for AF is an invasive procedure effective for restoring normal rhythm, however, fails in up to 40% of those undergoing their first procedure and carries a risk for serious adverse events. Recent studies have suggested that a common genetic variant within chromosome 4q25 may be a powerful predictor of procedural success, highlighting the potential of an 'ablatogenomic' strategy. Although still in its infancy, an ablatogenomic approach for AF may facilitate delivery of ablation to those most likely to benefit, while sparing those prone to fail from its risks.
Collapse
Affiliation(s)
- Jason D Roberts
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON N6A 4A5, Canada
| | - Gregory M Marcus
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, CA 94143-1354, USA
| |
Collapse
|
7
|
Roberts JD, Yang J, Gladstone RA, Longoria J, Whitman IR, Dewland TA, Miller C, Robles A, Poon A, Seiler B, Laframboise WA, Olgin JE, Kwok PY, Marcus GM. Atrial Fibrillation Associated Genetic Variants and Left Atrial Histology: Evaluation for Molecular Sub-Phenotypes. J Cardiovasc Electrophysiol 2016; 27:1264-1270. [PMID: 27574037 DOI: 10.1111/jce.13083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 07/26/2016] [Accepted: 07/29/2016] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Genome wide association studies have identified several single nucleotide polymorphisms (SNPs) associated with atrial fibrillation (AF), but the mechanisms underlying these relationships have not yet been elucidated. Inflammation and fibrosis have been posited as important mechanisms responsible for AF. We sought to investigate the impact of SNP carrier status on inflammation and fibrosis in left atrial appendage tissue. METHODS AND RESULTS Carrier status of 10 AF-associated SNPs was evaluated on DNA extracted from left atrial appendage tissue in 176 individuals (120 with AF). The presence of inflammation was evaluated through visual quantification of leukocyte infiltration following hematoxylin and eosin staining, while fibrosis was quantified using picrosirius red with fast green staining. Unadjusted and adjusted linear and logistic regression models were utilized to evaluate for an association between SNP carrier status and inflammation and fibrosis. On adjusted logistic regression analysis, the rs7164883 SNP (intronic within HCN4) was associated with a reduced odds of inflammation (odds ratio: 0.42; 95% CI: 0.22-0.81, P = 0.01), and was not associated with fibrosis on adjusted linear regression analysis (β-coefficient: -0.31; 95% CI: -1.03-0.40, P = 0.40). None of the remaining SNPs exhibited significant associations with left atrial inflammation or fibrosis. CONCLUSIONS Among 10 AF-associated SNPs, a single genetic variant was associated with reduced left atrial inflammation, while no histologic differences were observed in the remaining 9. The known AF-associated SNPs do not appear to predispose to the development of pro-inflammatory or pro-fibrotic AF sub-phenotypes.
Collapse
Affiliation(s)
- Jason D Roberts
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Jingkun Yang
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Rachel A Gladstone
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - James Longoria
- Division of Cardiovascular Surgery, Sutter Health, Sacramento, California, USA
| | - Isaac R Whitman
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Thomas A Dewland
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Caroline Miller
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Anatalia Robles
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Annie Poon
- Cardiovascular, Research Institute, University of California San Francisco, San Francisco, California, USA
| | - Beverly Seiler
- Division of Cardiovascular Surgery, Sutter Health, Sacramento, California, USA
| | - William A Laframboise
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jeffrey E Olgin
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Pui-Yan Kwok
- Cardiovascular, Research Institute, University of California San Francisco, San Francisco, California, USA
| | - Gregory M Marcus
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
8
|
Gene-guided therapy for catheter-ablation of atrial fibrillation: are we there yet? J Interv Card Electrophysiol 2015; 45:3-5. [PMID: 26660272 DOI: 10.1007/s10840-015-0086-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022]
|