1
|
Lu C, Liu C, Mei D, Yu M, Bai J, Bao X, Wang M, Fu K, Yi X, Ge W, Shen J, Peng Y, Xu W. Comprehensive metabolomic characterization of atrial fibrillation. Front Cardiovasc Med 2022; 9:911845. [PMID: 36003904 PMCID: PMC9393302 DOI: 10.3389/fcvm.2022.911845] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundUsing human humoral metabolomic profiling, we can discover the diagnostic biomarkers and pathogenesis of disease. The specific characterization of atrial fibrillation (AF) subtypes with metabolomics may facilitate effective and targeted treatment, especially in early stages.ObjectivesBy investigating disturbed metabolic pathways, we could evaluate the diagnostic value of biomarkers based on metabolomics for different types of AF.MethodsA cohort of 363 patients was enrolled and divided into a discovery and validation set. Patients underwent an electrocardiogram (ECG) for suspected AF. Groups were divided as follows: healthy individuals (Control), suspected AF (Sus-AF), first diagnosed AF (Fir-AF), paroxysmal AF (Par-AF), persistent AF (Per-AF), and AF causing a cardiogenic ischemic stroke (Car-AF). Serum metabolomic profiles were determined by gas chromatography–mass spectrometry (GC-MS) and liquid chromatography–quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). Metabolomic variables were analyzed with clinical information to identify relevant diagnostic biomarkers.ResultsThe metabolic disorders were characterized by 16 cross-comparisons. We focused on comparing all of the types of AF (All-AFs) plus Car-AF vs. Control, All-AFs vs. Car-AF, Par-AF vs. Control, and Par-AF vs. Per-AF. Then, 117 and 94 metabolites were identified by GC/MS and LC-QTOF-MS, respectively. The essential altered metabolic pathways during AF progression included D-glutamine and D-glutamate metabolism, glycerophospholipid metabolism, etc. For differential diagnosis, the area under the curve (AUC) of specific metabolomic biomarkers ranged from 0.8237 to 0.9890 during the discovery phase, and the predictive values in the validation cohort were 78.8–90.2%.ConclusionsSerum metabolomics is a powerful way to identify metabolic disturbances. Differences in small–molecule metabolites may serve as biomarkers for AF onset, progression, and differential diagnosis.
Collapse
|
2
|
Scholz B, Schulte JS, Hamer S, Himmler K, Pluteanu F, Seidl MD, Stein J, Wardelmann E, Hammer E, Völker U, Müller FU. HDAC (Histone Deacetylase) Inhibitor Valproic Acid Attenuates Atrial Remodeling and Delays the Onset of Atrial Fibrillation in Mice. Circ Arrhythm Electrophysiol 2019; 12:e007071. [PMID: 30879335 PMCID: PMC6426346 DOI: 10.1161/circep.118.007071] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Supplemental Digital Content is available in the text. Background: A structural, electrical and metabolic atrial remodeling is central in the development of atrial fibrillation (AF) contributing to its initiation and perpetuation. In the heart, HDACs (histone deacetylases) control remodeling associated processes like hypertrophy, fibrosis, and energy metabolism. Here, we analyzed, whether the HDAC class I/IIa inhibitor valproic acid (VPA) is able to attenuate atrial remodeling in CREM-IbΔC-X (cAMP responsive element modulator isoform IbΔC-X) transgenic mice, a mouse model of extensive atrial remodeling with age-dependent progression from spontaneous atrial ectopy to paroxysmal and finally long-lasting AF. Methods: VPA was administered for 7 or 25 weeks to transgenic and control mice. Atria were analyzed macroscopically and using widefield and electron microscopy. Action potentials were recorded from atrial cardiomyocytes using patch-clamp technique. ECG recordings documented the onset of AF. A proteome analysis with consecutive pathway mapping identified VPA-mediated proteomic changes and related pathways. Results: VPA attenuated many components of atrial remodeling that are present in transgenic mice, animal AF models, and human AF. VPA significantly (P<0.05) reduced atrial dilatation, cardiomyocyte enlargement, atrial fibrosis, and the disorganization of myocyte’s ultrastructure. It significantly reduced the occurrence of atrial thrombi, reversed action potential alterations, and finally delayed the onset of AF by 4 to 8 weeks. Increased histone H4-acetylation in atria from VPA-treated transgenic mice verified effective in vivo HDAC inhibition. Cardiomyocyte-specific genetic inactivation of HDAC2 in transgenic mice attenuated the ultrastructural disorganization of myocytes comparable to VPA. Finally, VPA restrained dysregulation of proteins in transgenic mice that are involved in a multitude of AF relevant pathways like oxidative phosphorylation or RhoA (Ras homolog gene family, member A) signaling and disease functions like cardiac fibrosis and apoptosis of muscle cells. Conclusions: Our results suggest that VPA, clinically available, well-tolerated, and prescribed to many patients for years, has the therapeutic potential to delay the development of atrial remodeling and the onset of AF in patients at risk.
Collapse
Affiliation(s)
- Beatrix Scholz
- Institute of Pharmacology and Toxicology, University of Münster, Germany (B.S., J.S.S., S.H., K.H., F.P., M.D.S., J.S., F.U.M.)
| | - Jan Sebastian Schulte
- Institute of Pharmacology and Toxicology, University of Münster, Germany (B.S., J.S.S., S.H., K.H., F.P., M.D.S., J.S., F.U.M.)
| | - Sabine Hamer
- Institute of Pharmacology and Toxicology, University of Münster, Germany (B.S., J.S.S., S.H., K.H., F.P., M.D.S., J.S., F.U.M.)
| | - Kirsten Himmler
- Institute of Pharmacology and Toxicology, University of Münster, Germany (B.S., J.S.S., S.H., K.H., F.P., M.D.S., J.S., F.U.M.)
| | - Florentina Pluteanu
- Institute of Pharmacology and Toxicology, University of Münster, Germany (B.S., J.S.S., S.H., K.H., F.P., M.D.S., J.S., F.U.M.)
| | - Matthias Dodo Seidl
- Institute of Pharmacology and Toxicology, University of Münster, Germany (B.S., J.S.S., S.H., K.H., F.P., M.D.S., J.S., F.U.M.)
| | - Juliane Stein
- Institute of Pharmacology and Toxicology, University of Münster, Germany (B.S., J.S.S., S.H., K.H., F.P., M.D.S., J.S., F.U.M.)
| | - Eva Wardelmann
- Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Germany (E.W.)
| | - Elke Hammer
- Interfaculty Institute of Genetics und Functional Genomics, University Medicine Greifswald, Germany (E.H., U.V.).,DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Germany (E.H., U.V.)
| | - Uwe Völker
- Interfaculty Institute of Genetics und Functional Genomics, University Medicine Greifswald, Germany (E.H., U.V.).,DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Germany (E.H., U.V.)
| | - Frank Ulrich Müller
- Institute of Pharmacology and Toxicology, University of Münster, Germany (B.S., J.S.S., S.H., K.H., F.P., M.D.S., J.S., F.U.M.)
| |
Collapse
|
3
|
Targeting amino acids metabolic profile to identify novel metabolic characteristics in atrial fibrillation. Clin Sci (Lond) 2018; 132:2135-2146. [PMID: 30190284 PMCID: PMC6365628 DOI: 10.1042/cs20180247] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 08/31/2018] [Accepted: 09/05/2018] [Indexed: 01/06/2023]
Abstract
Background: Atrial fibrillation (AF) is the most common cardiac arrhythmia whose incidence is on the rise globally. However, the pathophysiologic mechanism of AF remains poorly understood and there has been a lack of circulatory markers to diagnose and predict prognosis of AF. In the present study, by measuring metabolic profile and analyzing plasma amino acid levels in AF patients, we sought to determine whether amino acid metabolism was correlated to the occurrence of AF. Methods: Consecutive patients admitted to hospital for AF were enrolled. Plasma samples were obtained after overnight fast and a profile of 61 amino acids was then measured using gas chromatography/mass spectrometry (GC/MS). Results: Twenty-three AF and thirty-seven control patients were enrolled in the study. A number of plasma amino acids were altered in AF, which showed significant prediction value for AF. Intriguingly, circulating 4-hydroxypyrrolidine-2-carboxylic was gradually lowered with the persistence of AF. Plasma amino acid levels were more strongly correlated with each other in AF as compared with control. Conclusion: By utilizing non-target metabolic profile surveys, we have found a number of altered amino acids, which exhibit diagnostic value for AF. Enhanced amino acids correlation network further identified AF as a metabolism disorder.
Collapse
|
4
|
Wiedmann F, Schulte JS, Gomes B, Zafeiriou MP, Ratte A, Rathjens F, Fehrmann E, Scholz B, Voigt N, Müller FU, Thomas D, Katus HA, Schmidt C. Atrial fibrillation and heart failure-associated remodeling of two-pore-domain potassium (K2P) channels in murine disease models: focus on TASK-1. Basic Res Cardiol 2018; 113:27. [DOI: 10.1007/s00395-018-0687-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 06/04/2018] [Indexed: 12/27/2022]
|