1
|
Sargurupremraj M. Genetic Architecture of Neurological Disorders and Their Endophenotypes: Insights from Genetic Association Studies. Curr Top Behav Neurosci 2024; 68:109-128. [PMID: 39138743 DOI: 10.1007/7854_2024_513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Population-scale genetic association studies of complex neurologic diseases have identified the underlying genetic architecture as multifactorial. Despite the study sample sizes reaching the millions, the identified disease-related genes explain only a small fraction of the phenotypic variance. Notable advancements in statistical methods now enable researchers to gain insights even from genomic regions where genotype-phenotype associations do not reach statistical significance. Such studies confirm a highly interconnected molecular network comprising a core group of genes directly involved in the disease process, alongside an expanded peripheral network, each contributing a small but potentially important (modulatory) effect. Additionally, causal inference methods, utilizing genetic instruments, have shed light on putative causal links between risk factors and clinical endpoints. In light of the pervasive genetic overlap or pleiotropy, however, caution is warranted in interpreting causal relationships inferred from these analyses. In this chapter, I will introduce the genetic association model, provide insights into the current state of genetic association studies, and discuss potential future directions.
Collapse
Affiliation(s)
- Muralidharan Sargurupremraj
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA.
| |
Collapse
|
2
|
Granata A. Functional genomics in stroke: current and future applications of iPSCs and gene editing to dissect the function of risk variants. BMC Cardiovasc Disord 2023; 23:223. [PMID: 37120540 PMCID: PMC10148993 DOI: 10.1186/s12872-023-03227-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 04/04/2023] [Indexed: 05/01/2023] Open
Abstract
Stroke is an important disease with unmet clinical need. To uncover novel paths for treatment, it is of critical importance to develop relevant laboratory models that may help to shed light on the pathophysiological mechanisms of stroke. Induced pluripotent stem cells (iPSCs) technology has enormous potential to advance our knowledge into stroke by creating novel human models for research and therapeutic testing. iPSCs models generated from patients with specific stroke types and specific genetic predisposition in combination with other state of art technologies including genome editing, multi-omics, 3D system, libraries screening, offer the opportunity to investigate disease-related pathways and identify potential novel therapeutic targets that can then be tested in these models. Thus, iPSCs offer an unprecedented opportunity to make rapid progress in the field of stroke and vascular dementia research leading to clinical translation. This review paper summarizes some of the key areas in which patient-derived iPSCs technology has been applied to disease modelling and discusses the ongoing challenges and the future directions for the application of this technology in the field of stroke research.
Collapse
Affiliation(s)
- Alessandra Granata
- Department of Clinical Neurosciences, Victor Phillip Dahdaleh Heart & Lung Research Institute, Papworth Road, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0BB, UK.
| |
Collapse
|
3
|
Ryu JR, Ahuja S, Arnold CR, Potts KG, Mishra A, Yang Q, Sargurupremraj M, Mahoney DJ, Seshadri S, Debette S, Childs SJ. Stroke-associated intergenic variants modulate a human FOXF2 transcriptional enhancer. Proc Natl Acad Sci U S A 2022; 119:e2121333119. [PMID: 35994645 PMCID: PMC9436329 DOI: 10.1073/pnas.2121333119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 07/28/2022] [Indexed: 11/18/2022] Open
Abstract
SNPs associated with human stroke risk have been identified in the intergenic region between Forkhead family transcription factors FOXF2 and FOXQ1, but we lack a mechanism for the association. FoxF2 is expressed in vascular mural pericytes and is important for maintaining pericyte number and stabilizing small vessels in zebrafish. The stroke-associated SNPs are located in a previously unknown transcriptional enhancer for FOXF2, functional in human cells and zebrafish. We identify critical enhancer regions for FOXF2 gene expression, including binding sites occupied by transcription factors ETS1, RBPJ, and CTCF. rs74564934, a stroke-associated SNP adjacent to the ETS1 binding site, decreases enhancer function, as does mutation of RPBJ sites. rs74564934 is significantly associated with the increased risk of any stroke, ischemic stroke, small vessel stroke, and elevated white matter hyperintensity burden in humans. Foxf2 has a conserved function cross-species and is expressed in vascular mural pericytes of the vessel wall. Thus, stroke-associated SNPs modulate enhancer activity and expression of a regulator of vascular stabilization, FOXF2, thereby modulating stroke risk.
Collapse
Affiliation(s)
- Jae-Ryeon Ryu
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Suchit Ahuja
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Corey R. Arnold
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Kyle G. Potts
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary AB T2N 4N1, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Aniket Mishra
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, 33000 Bordeaux, France
| | - Qiong Yang
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118
| | - Muralidharan Sargurupremraj
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX 78229
- Boston University and the NHLBI’s Framingham Heart Study, Boston, MA 02215
| | - Douglas J. Mahoney
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary AB T2N 4N1, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Sudha Seshadri
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX 78229
- Boston University and the NHLBI’s Framingham Heart Study, Boston, MA 02215
| | - Stéphanie Debette
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, 33000 Bordeaux, France
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118
- Department of Neurology, CHU de Bordeaux, 33000 Bordeaux, France
| | - Sarah J. Childs
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary AB T2N 4N1, Canada
| |
Collapse
|
4
|
Ekkert A, Šliachtenko A, Utkus A, Jatužis D. Intracerebral Hemorrhage Genetics. Genes (Basel) 2022; 13:genes13071250. [PMID: 35886033 PMCID: PMC9322856 DOI: 10.3390/genes13071250] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a devastating type of stroke, frequently resulting in unfavorable functional outcomes. Up to 15% of stroke patients experience ICH and approximately half of those have a lethal outcome within a year. Considering the huge burden of ICH, timely prevention and optimized treatment strategies are particularly relevant. Nevertheless, ICH management options are quite limited, despite thorough research. More and more trials highlight the importance of the genetic component in the pathogenesis of ICH. Apart from distinct monogenic disorders of familial character, mostly occurring in younger subjects, there are numerous polygenic risk factors, such as hypertension, neurovascular inflammation, disorders of lipid metabolism and coagulation cascade, and small vessel disease. In this paper we describe gene-related ICH types and underlying mechanisms. We also briefly discuss the emerging treatment options and possible clinical relevance of the genetic findings in ICH management. Although existing data seems of more theoretical and scientific value so far, a growing body of evidence, combined with rapidly evolving experimental research, will probably serve clinicians in the future.
Collapse
Affiliation(s)
- Aleksandra Ekkert
- Center of Neurology, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania;
- Correspondence:
| | | | - Algirdas Utkus
- Center for Medical Genetics, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania;
| | - Dalius Jatužis
- Center of Neurology, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania;
| |
Collapse
|
5
|
Abstract
This review summarizes the available data about genetic factors which can link ischemic stroke and sleep. Sleep patterns (subjective and objective measures) are characterized by heritability and comprise up to 38-46%. According to Mendelian randomization analysis, genetic liability for short sleep duration and frequent insomnia symptoms is associated with ischemic stroke (predominantly of large artery subtype). The potential genetic links include variants of circadian genes, genes encoding components of neurotransmitter systems, common cardiovascular risk factors, as well as specific genetic factors related to certain sleep disorders.
Collapse
Affiliation(s)
- Lyudmila Korostovtseva
- Sleep Laboratory, Research Department for Hypertension, Department for Cardiology, Almazov National Medical Research Centre, 2 Akkuratov Str., Saint Petersburg, 197341, Russia.
| |
Collapse
|
6
|
Franks PW, Melén E, Friedman M, Sundström J, Kockum I, Klareskog L, Almqvist C, Bergen SE, Czene K, Hägg S, Hall P, Johnell K, Malarstig A, Catrina A, Hagström H, Benson M, Gustav Smith J, Gomez MF, Orho-Melander M, Jacobsson B, Halfvarson J, Repsilber D, Oresic M, Jern C, Melin B, Ohlsson C, Fall T, Rönnblom L, Wadelius M, Nordmark G, Johansson Å, Rosenquist R, Sullivan PF. Technological readiness and implementation of genomic-driven precision medicine for complex diseases. J Intern Med 2021; 290:602-620. [PMID: 34213793 DOI: 10.1111/joim.13330] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 03/21/2021] [Accepted: 04/12/2021] [Indexed: 12/20/2022]
Abstract
The fields of human genetics and genomics have generated considerable knowledge about the mechanistic basis of many diseases. Genomic approaches to diagnosis, prognostication, prevention and treatment - genomic-driven precision medicine (GDPM) - may help optimize medical practice. Here, we provide a comprehensive review of GDPM of complex diseases across major medical specialties. We focus on technological readiness: how rapidly a test can be implemented into health care. Although these areas of medicine are diverse, key similarities exist across almost all areas. Many medical areas have, within their standards of care, at least one GDPM test for a genetic variant of strong effect that aids the identification/diagnosis of a more homogeneous subset within a larger disease group or identifies a subset with different therapeutic requirements. However, for almost all complex diseases, the majority of patients do not carry established single-gene mutations with large effects. Thus, research is underway that seeks to determine the polygenic basis of many complex diseases. Nevertheless, most complex diseases are caused by the interplay of genetic, behavioural and environmental risk factors, which will likely necessitate models for prediction and diagnosis that incorporate genetic and non-genetic data.
Collapse
Affiliation(s)
- P W Franks
- From the, Department of Clinical Sciences, Lund University Diabetes Center, Lund University, Malmö, Sweden.,Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
| | - E Melén
- Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - M Friedman
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - J Sundström
- Department of Cardiology, Akademiska Sjukhuset, Uppsala, Sweden.,George Institute for Global Health, Camperdown, NSW, Australia.,Medical Sciences, Uppsala University, Uppsala, Sweden
| | - I Kockum
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - L Klareskog
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Rheumatology, Karolinska Institutet, Stockholm, Sweden
| | - C Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - S E Bergen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - K Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - S Hägg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - P Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | - K Johnell
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - A Malarstig
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Pfizer, Worldwide Research and Development, Stockholm, Sweden
| | - A Catrina
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - H Hagström
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Division of Hepatology, Department of Upper GI, Karolinska University Hospital, Stockholm, Sweden
| | - M Benson
- Department of Pediatrics, Linkopings Universitet, Linkoping, Sweden.,Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - J Gustav Smith
- Department of Cardiology and Wallenberg Center for Molecular Medicine, Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden.,Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - M F Gomez
- From the, Department of Clinical Sciences, Lund University Diabetes Center, Lund University, Malmö, Sweden
| | - M Orho-Melander
- From the, Department of Clinical Sciences, Lund University Diabetes Center, Lund University, Malmö, Sweden
| | - B Jacobsson
- Division of Health Data and Digitalisation, Norwegian Institute of Public Health, Genetics and Bioinformatics, Oslo, Norway.,Department of Obstetrics and Gynecology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - J Halfvarson
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - D Repsilber
- Functional Bioinformatics, Örebro University, Örebro, Sweden
| | - M Oresic
- School of Medical Sciences, Örebro University, Örebro, Sweden.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, FI, Finland
| | - C Jern
- Department of Clinical Genetics and Genomics, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - B Melin
- Department of Radiation Sciences, Oncology, Umeå Universitet, Umeå, Sweden
| | - C Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, CBAR, University of Gothenburg, Gothenburg, Sweden.,Department of Drug Treatment, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - T Fall
- Department of Medical Sciences, Molecular Epidemiology, Uppsala University, Uppsala, Sweden
| | - L Rönnblom
- Department of Medical Sciences, Rheumatology & Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - M Wadelius
- Department of Medical Sciences, Clinical Pharmacogenomics & Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - G Nordmark
- Department of Medical Sciences, Rheumatology & Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Å Johansson
- Institute for Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - R Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - P F Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
7
|
Abraham G, Rutten-Jacobs L, Inouye M. Risk Prediction Using Polygenic Risk Scores for Prevention of Stroke and Other Cardiovascular Diseases. Stroke 2021; 52:2983-2991. [PMID: 34399584 PMCID: PMC7611731 DOI: 10.1161/strokeaha.120.032619] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Early prediction of risk of cardiovascular disease (CVD), including stroke, is a cornerstone of disease prevention. Clinical risk scores have been widely used for predicting CVD risk from known risk factors. Most CVDs have a substantial genetic component, which also has been confirmed for stroke in recent gene discovery efforts. However, the role of genetics in prediction of risk of CVD, including stroke, has been limited to testing for highly penetrant monogenic disorders. In contrast, the importance of polygenic variation, the aggregated effect of many common genetic variants across the genome with individually small effects, has become more apparent in the last 5 to 10 years, and powerful polygenic risk scores for CVD have been developed. Here we review the current state of the field of polygenic risk scores for CVD including stroke, and their potential to improve CVD risk prediction. We present findings and lessons from diseases such as coronary artery disease as these will likely be useful to inform future research in stroke polygenic risk prediction.
Collapse
Affiliation(s)
- Gad Abraham
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Clinical Pathology, University of Melbourne, Parkville, VIC, Australia
| | - Loes Rutten-Jacobs
- Personalized Health Care Data Science, Real World Data, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Clinical Pathology, University of Melbourne, Parkville, VIC, Australia
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- The Alan Turing Institute, London, UK
| |
Collapse
|
8
|
Dykstra-Aiello C, Sharp FR, Jickling GC, Hull H, Hamade F, Shroff N, Durocher M, Cheng X, Zhan X, Liu D, Ander BP, Stamova BS. Alternative Splicing of Putative Stroke/Vascular Risk Factor Genes Expressed in Blood Following Ischemic Stroke Is Sexually Dimorphic and Cause-Specific. Front Neurol 2020; 11:584695. [PMID: 33193047 PMCID: PMC7642687 DOI: 10.3389/fneur.2020.584695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/22/2020] [Indexed: 12/20/2022] Open
Abstract
Genome-wide association studies have identified putative ischemic stroke risk genes, yet, their expression after stroke is unexplored in spite of growing interest in elucidating their specific role and identifying candidate genes for stroke treatment. Thus, we took an exploratory approach to investigate sexual dimorphism, alternative splicing, and etiology in putative risk gene expression in blood following cardioembolic, atherosclerotic large vessel disease and small vessel disease/lacunar causes of ischemic stroke in each sex compared to controls. Whole transcriptome arrays assessed 71 putative stroke/vascular risk factor genes for blood RNA expression at gene-, exon-, and alternative splicing-levels. Male (n = 122) and female (n = 123) stroke and control volunteers from three university medical centers were matched for race, age, vascular risk factors, and blood draw time since stroke onset. Exclusion criteria included: previous stroke, drug abuse, subarachnoid or intracerebral hemorrhage, hemorrhagic transformation, infection, dialysis, cancer, hematological abnormalities, thrombolytics, anticoagulants or immunosuppressants. Significant differential gene expression (fold change > |1.2|, p < 0.05, partial correlation > |0.4|) and alternative splicing (false discovery rate p < 0.3) were assessed. At gene level, few were differentially expressed: ALDH2, ALOX5AP, F13A1, and IMPA2 (males, all stroke); ITGB3 (females, cardioembolic); ADD1 (males, atherosclerotic); F13A1, IMPA2 (males, lacunar); and WNK1 (females, lacunar). GP1BA and ITGA2B were alternatively spliced in both sexes (all patients vs. controls). Six genes in males, five in females, were alternatively spliced in all stroke compared to controls. Alternative splicing and exon-level analyses associated many genes with specific etiology in either sex. Of 71 genes, 70 had differential exon-level expression in stroke patients compared to control subjects. Among stroke patients, 24 genes represented by differentially expressed exons were male-specific, six were common between sexes, and two were female-specific. In lacunar stroke, expression of 19 differentially expressed exons representing six genes (ADD1, NINJ2, PCSK9, PEMT, SMARCA4, WNK1) decreased in males and increased in females. Results demonstrate alternative splicing and sexually dimorphic expression of most putative risk genes in stroke patients' blood. Since expression was also often cause-specific, sex, and etiology are factors to consider in stroke treatment trials and genetic association studies as society trends toward more personalized medicine.
Collapse
Affiliation(s)
- Cheryl Dykstra-Aiello
- Department of Neurology, Medical Investigation of Neurodevelopmental Disorders (MIND) Institute Biosciences Building, University of California, Davis, Sacramento, CA, United States
| | - Frank R Sharp
- Department of Neurology, Medical Investigation of Neurodevelopmental Disorders (MIND) Institute Biosciences Building, University of California, Davis, Sacramento, CA, United States
| | - Glen C Jickling
- Department of Neurology, Medical Investigation of Neurodevelopmental Disorders (MIND) Institute Biosciences Building, University of California, Davis, Sacramento, CA, United States
| | - Heather Hull
- Department of Neurology, Medical Investigation of Neurodevelopmental Disorders (MIND) Institute Biosciences Building, University of California, Davis, Sacramento, CA, United States
| | - Farah Hamade
- Department of Neurology, Medical Investigation of Neurodevelopmental Disorders (MIND) Institute Biosciences Building, University of California, Davis, Sacramento, CA, United States
| | - Natasha Shroff
- Department of Neurology, Medical Investigation of Neurodevelopmental Disorders (MIND) Institute Biosciences Building, University of California, Davis, Sacramento, CA, United States
| | - Marc Durocher
- Department of Neurology, Medical Investigation of Neurodevelopmental Disorders (MIND) Institute Biosciences Building, University of California, Davis, Sacramento, CA, United States
| | - Xiyuan Cheng
- Department of Neurology, Medical Investigation of Neurodevelopmental Disorders (MIND) Institute Biosciences Building, University of California, Davis, Sacramento, CA, United States
| | - Xinhua Zhan
- Department of Neurology, Medical Investigation of Neurodevelopmental Disorders (MIND) Institute Biosciences Building, University of California, Davis, Sacramento, CA, United States
| | - DaZhi Liu
- Department of Neurology, Medical Investigation of Neurodevelopmental Disorders (MIND) Institute Biosciences Building, University of California, Davis, Sacramento, CA, United States
| | - Bradley P Ander
- Department of Neurology, Medical Investigation of Neurodevelopmental Disorders (MIND) Institute Biosciences Building, University of California, Davis, Sacramento, CA, United States
| | - Boryana S Stamova
- Department of Neurology, Medical Investigation of Neurodevelopmental Disorders (MIND) Institute Biosciences Building, University of California, Davis, Sacramento, CA, United States
| |
Collapse
|
9
|
Kelly DM, Li L, Rothwell PM. Etiological Subtypes of Transient Ischemic Attack and Ischemic Stroke in Chronic Kidney Disease: Population-Based Study. Stroke 2020; 51:2786-2794. [PMID: 32811384 PMCID: PMC7447187 DOI: 10.1161/strokeaha.120.030045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/03/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND PURPOSE Chronic kidney disease (CKD) is strongly associated with stroke risk, but the mechanisms underlying this association are unclear and might be informed by subtype-specific analyses. However, few studies have reported stroke subtypes in CKD according to established classification systems, such as the TOAST (Trial of ORG 10172 in Acute Stroke Treatment) criteria. We, therefore, aimed to determine which transient ischemic attack and ischemic stroke subtypes using the TOAST classification occur most frequently in patients with CKD. METHODS In a population-based study of all transient ischemic attack and stroke (OXVASC [Oxford Vascular Study]; 2002-2017), all ischemic events were classified by TOAST subtypes (cardioembolism, large artery disease, small vessel disease, undetermined, multiple, other etiology, or incompletely investigated). Logistic regression was used to determine the relationship between CKD (defined as an estimated glomerular filtration rate <60 mL/min per 1.73 m2) and transient ischemic attack/stroke subtypes adjusted for age, sex, and hypertension and then stratified by age and estimated glomerular filtration rate category. RESULTS Among 3178 patients with transient ischemic attack (n=1167), ischemic stroke (n=1802), and intracerebral hemorrhage (n=209), 1267 (40%) had CKD. Although there was a greater prevalence of cardioembolic events (31.8% versus 21.2%; P<0.001) in patients with CKD, this association was lost after adjustment for age, sex, and hypertension (adjusted odds ratio=1.20 [95% CI, 0.99-1.45]; P=0.07). Similarly, although patients with CKD had a lower prevalence of small vessel disease (8.8% versus 13.6%; P<0.001), undetermined (26.1% versus 39.4%; P<0.001), and other etiology (1.0% versus 3.6%; P<0.001) subtypes, these associations were also lost after adjustment (adjusted odds ratio=0.86 [0.65-1.13]; P=0.27 and 0.73 [0.36-1.43]; P=0.37 for small vessel disease and other defined etiology, respectively) for all but undetermined (adjusted odds ratio=0.81 [0.67-0.98]; P=0.03). CONCLUSIONS There were no independent positive associations between CKD and specific TOAST subtypes, which suggest that renal-specific risk factors are unlikely to play an important role in the etiology of particular subtypes. Future studies of stroke and CKD should report subtype-specific analyses to gain further insights into potential mechanisms.
Collapse
Affiliation(s)
- Dearbhla M. Kelly
- Wolfson Center for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, United Kingdom
| | - Linxin Li
- Wolfson Center for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, United Kingdom
| | - Peter M. Rothwell
- Wolfson Center for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, United Kingdom
| |
Collapse
|
10
|
Rutten-Jacobs LCA, Rost NS. Emerging insights from the genetics of cerebral small-vessel disease. Ann N Y Acad Sci 2020; 1471:5-17. [PMID: 30618052 PMCID: PMC6614021 DOI: 10.1111/nyas.13998] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/04/2018] [Accepted: 12/12/2018] [Indexed: 01/09/2023]
Abstract
Cerebral small-vessel disease (cSVD) is a common cause of stroke, functional decline, vascular cognitive impairment, and dementia. Pathological processes in the brain's microcirculation are tightly interwoven with pathology in the brain parenchyma, and this interaction has been conceptualized as the neurovascular unit (NVU). Despite intensive research efforts to decipher the NVU's structure and function to date, molecular mechanisms underlying cSVD remain poorly understood, which hampers the development of cSVD-specific therapies. Important steps forward in understanding the disease mechanisms underlying cSVD have been made using genetic approaches in studies of both monogenic and sporadic SVD. We provide an overview of the NVU's structure and function, the implications for cSVD, and the underlying molecular mechanisms of dysfunction that have emerged from recent genetic studies of both monogenic and sporadic diseases of the small cerebral vasculature.
Collapse
Affiliation(s)
- Loes C A Rutten-Jacobs
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Natalia S Rost
- Department of Neurology, J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|