1
|
Farag A, Hendawy H, Emam MH, Hasegawa M, Mandour AS, Tanaka R. Stem Cell Therapies in Canine Cardiology: Comparative Efficacy, Emerging Trends, and Clinical Integration. Biomolecules 2025; 15:371. [PMID: 40149907 PMCID: PMC11940628 DOI: 10.3390/biom15030371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
Cardiovascular diseases are a leading cause of morbidity and mortality in dogs, with limited options available for reversing myocardial damage. Stem cell therapies have shown significant potential for cardiac repair, owing to their immunomodulatory, antifibrotic, and regenerative properties. This review evaluates the therapeutic applications of mesenchymal stem cells (MSCs) derived from bone marrow, adipose tissue, and Wharton's jelly with a focus on their role in canine cardiology and their immunoregulatory properties. Preclinical studies have highlighted their efficacy in enhancing cardiac function, reducing fibrosis, and promoting angiogenesis. Various delivery methods, including intracoronary and intramyocardial injections, are assessed for their safety and efficacy. Challenges such as low cell retention, differentiation efficiency, and variability in therapeutic responses are also discussed. Emerging strategies, including genetic modifications and combination therapies, aim to enhance the efficacy of MSCs. Additionally, advances in delivery systems and regulatory frameworks are reviewed to support clinical translation. This comprehensive evaluation underscores the potential of stem cell therapies to revolutionize canine cardiovascular disease management while identifying critical areas for future research and clinical integration.
Collapse
Affiliation(s)
- Ahmed Farag
- Faculty of Agriculture, Veterinary Teaching Hospital, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Hanan Hendawy
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Mahmoud H. Emam
- Animal Medicine Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mizuki Hasegawa
- Faculty of Agriculture, Veterinary Teaching Hospital, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Ahmed S. Mandour
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ryou Tanaka
- Faculty of Agriculture, Veterinary Teaching Hospital, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| |
Collapse
|
2
|
Bryl R, Kulus M, Bryja A, Domagała D, Mozdziak P, Antosik P, Bukowska D, Zabel M, Dzięgiel P, Kempisty B. Cardiac progenitor cell therapy: mechanisms of action. Cell Biosci 2024; 14:30. [PMID: 38444042 PMCID: PMC10913616 DOI: 10.1186/s13578-024-01211-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 02/17/2024] [Indexed: 03/07/2024] Open
Abstract
Heart failure (HF) is an end-stage of many cardiac diseases and one of the main causes of death worldwide. The current management of this disease remains suboptimal. The adult mammalian heart was considered a post-mitotic organ. However, several reports suggest that it may possess modest regenerative potential. Adult cardiac progenitor cells (CPCs), the main players in the cardiac regeneration, constitute, as it may seem, a heterogenous group of cells, which remain quiescent in physiological conditions and become activated after an injury, contributing to cardiomyocytes renewal. They can mediate their beneficial effects through direct differentiation into cardiac cells and activation of resident stem cells but majorly do so through paracrine release of factors. CPCs can secrete cytokines, chemokines, and growth factors as well as exosomes, rich in proteins, lipids and non-coding RNAs, such as miRNAs and YRNAs, which contribute to reparation of myocardium by promoting angiogenesis, cardioprotection, cardiomyogenesis, anti-fibrotic activity, and by immune modulation. Preclinical studies assessing cardiac progenitor cells and cardiac progenitor cells-derived exosomes on damaged myocardium show that administration of cardiac progenitor cells-derived exosomes can mimic effects of cell transplantation. Exosomes may become new promising therapeutic strategy for heart regeneration nevertheless there are still several limitations as to their use in the clinic. Key questions regarding their dosage, safety, specificity, pharmacokinetics, pharmacodynamics and route of administration remain outstanding. There are still gaps in the knowledge on basic biology of exosomes and filling them will bring as closer to translation into clinic.
Collapse
Affiliation(s)
- Rut Bryl
- Section of Regenerative Medicine and Cancer Research, Natural Sciences Club, Faculty of Biology, Adam Mickiewicz University, Poznań, Poznan, 61-614, Poland
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University, Torun, 87-100, Poland
| | - Artur Bryja
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wroclaw, 50-367, Poland
| | - Dominika Domagała
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wroclaw, 50-367, Poland
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, 27695, USA
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC, 27695, USA
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University, Torun, 87-100, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, 87-100, Poland
| | - Maciej Zabel
- Division of Anatomy and Histology, University of Zielona Góra, Zielona Góra, 65-046, Poland
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, Wroclaw, 50-368, Poland
| | - Piotr Dzięgiel
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, Wroclaw, 50-368, Poland
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University, Torun, 87-100, Poland.
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wroclaw, 50-367, Poland.
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC, 27695, USA.
- Department of Obstetrics and Gynaecology, University Hospital and Masaryk University, Brno, 62500, Czech Republic.
| |
Collapse
|
3
|
Tang XL, Wysoczynski M, Gumpert AM, Li Y, Wu WJ, Li H, Stowers H, Bolli R. Effect of intravenous cell therapy in rats with old myocardial infarction. Mol Cell Biochem 2022; 477:431-444. [PMID: 34783963 PMCID: PMC8896398 DOI: 10.1007/s11010-021-04283-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
Mounting evidence shows that cell therapy provides therapeutic benefits in experimental and clinical settings of chronic heart failure. However, direct cardiac delivery of cells via transendocardial injection is logistically complex, expensive, entails risks, and is not amenable to multiple dosing. Intravenous administration would be a more convenient and clinically applicable route for cell therapy. Thus, we determined whether intravenous infusion of three widely used cell types improves left ventricular (LV) function and structure and compared their efficacy. Rats with a 30-day-old myocardial infarction (MI) received intravenous infusion of vehicle (PBS) or 1 of 3 types of cells: bone marrow mesenchymal stromal cells (MSCs), cardiac mesenchymal cells (CMCs), and c-kit-positive cardiac cells (CPCs), at a dose of 12 × 106 cells. Rats were followed for 35 days after treatment to determine LV functional status by serial echocardiography and hemodynamic studies. Blood samples were collected for Hemavet analysis to determine inflammatory cell profile. LV ejection fraction (EF) dropped ≥ 20 points in all hearts at 30 days after MI and deteriorated further at 35-day follow-up in the vehicle-treated group. In contrast, deterioration of EF was halted in rats that received MSCs and attenuated in those that received CMCs or CPCs. None of the 3 types of cells significantly altered scar size, myocardial content of collagen or CD45-positive cells, or Hemavet profile. This study demonstrates that a single intravenous administration of 3 types of cells in rats with chronic ischemic cardiomyopathy is effective in attenuating the progressive deterioration in LV function. The extent of LV functional improvement was greatest with CPCs, intermediate with CMCs, and least with MSCs.
Collapse
Affiliation(s)
- Xian-Liang Tang
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Marcin Wysoczynski
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Anna M Gumpert
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Yan Li
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Wen-Jian Wu
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Hong Li
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Heather Stowers
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA.
| |
Collapse
|
4
|
Intracellular Development of Resident Cardiac Stem Cells: An Overlooked Phenomenon in Myocardial Self-Renewal and Regeneration. Life (Basel) 2021; 11:life11080723. [PMID: 34440467 PMCID: PMC8399953 DOI: 10.3390/life11080723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 11/30/2022] Open
Abstract
At present, the approaches aimed at increasing myocardial regeneration after infarction are not available. The key question is the identity of cells capable of producing functional cardiac myocytes (CMs), replenishing those lost during ischemia. With identification of resident cardiac stem cells (CSCs), it has been supposed that this cell population may be crucial for myocardial self-renewal and regeneration. In the last few years, the focus has been shifted towards another concept, implying that new CMs are produced by dedifferentiation and proliferation of mature CMs. The observation that CSCs can undergo development inside immature cardiac cells by formation of “cell-in-cell structures” (CICSs) has enabled us to conclude that encapsulated CICSs are implicated in mammalian cardiomyogenesis over the entire lifespan. Earlier we demonstrated that new CMs are produced through formation of CSC-derived transitory amplifying cells (TACs) either in the CM colonies or inside encapsulated CICSs. In this study, we described the phenomenon of CSC penetration into mature CMs, resulting in the formation of vacuole-like CICSs (or non-encapsulated CICSs) containing proliferating CSCs with subsequent differentiation of CSC progeny into TACs and their release. In addition, we compared the phenotypes of TACs derived from encapsulated and non-encapsulated CICSs developing in immature and mature CMs, respectively.
Collapse
|
5
|
Apoptotic Bodies of Cardiomyocytes and Fibroblasts - Regulators of Directed Differentiation of Heart Stem Cells. Bull Exp Biol Med 2020; 170:112-117. [PMID: 33237531 DOI: 10.1007/s10517-020-05015-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Indexed: 12/22/2022]
Abstract
We studied the effects of apoptotic bodies of cardiomyocytes (ApBc) and fibroblasts (ApBf) on myocardial regeneration and contractility in rats and the dynamics of RNA concentrations in cardiomyocytes and fibroblasts at different stages of apoptosis. ApBc increase the contractility of rat myocardium, while ApBf reduce it. ApBc stimulate the development of clones of cardiomyocyte precursors in the myocardium, while ApBf stimulate the formation of endothelial precursor clones. In doxorubicin cardiomyopathy, ApBc, similar to the reference drug (ACE inhibitor) improve animal survival, while ApBf produce no such effect. RNA concentrations in cardiomyocytes and fibroblasts before apoptosis and at the beginning of cell death significantly differed, while in apoptotic bodies of these cells, it was practically the same. It has been hypothesized that RNA complex present in ApBc and ApBf represents an "epigenetic code" of directed differentiation of cardiac stem cells.
Collapse
|
6
|
Kang MH, Park HM. Challenges of stem cell therapies in companion animal practice. J Vet Sci 2020; 21:e42. [PMID: 32476316 PMCID: PMC7263915 DOI: 10.4142/jvs.2020.21.e42] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022] Open
Abstract
Regenerative medicine using stem cells from various sources are emerging treatment modality in several refractory diseases in veterinary medicine. It is well-known that stem cells can differentiate into specific cell types, self-renew, and regenerate. In addition, the unique immunomodulatory effects of stem cells have made stem cell transplantation a promising option for treating a wide range of disease and injuries. Recently, the medical demands for companion animals have been rapidly increasing, and certain disease conditions require alternative treatment options. In this review, we focused on stem cell application research in companion animals including experimental models, case reports and clinical trials in dogs and cats. The clinical studies and therapeutic protocols were categorized, evaluated and summarized according to the organ systems involved. The results indicate that evidence for the effectiveness of cell-based treatment in specific diseases or organ systems is not yet conclusive. Nonetheless, stem cell therapy may be a realistic treatment option in the near future, therefore, considerable efforts are needed to find optimized cell sources, cell numbers and delivery methods in order to standardize treatment methods and evaluation processes.
Collapse
Affiliation(s)
- Min Hee Kang
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Hee Myung Park
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
7
|
How to Stimulate Myocardial Regeneration in Adult Mammalian Heart: Existing Views and New Approaches. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7874109. [PMID: 32190680 PMCID: PMC7073483 DOI: 10.1155/2020/7874109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 02/13/2020] [Indexed: 12/19/2022]
Abstract
Stem cell-based therapy has been considered as a promising option in the treatment of ischemic heart disease. Although stem cell administration resulted in the temporary improvement of myocardial contractility in the majority of studies, the formation of new cardiomyocytes within the injured myocardium has not been conclusively demonstrated. Consequently, the focus of research in the field has since shifted to stem cell-derived paracrine factors, including cytokines, growth factors, mRNA, and miRNA. Notably, both mRNA and miRNA can enter into the extracellular space either in soluble form or packed into membrane vesicles. Stem cell-derived paracrine factors have been shown to suppress inflammation and apoptosis, stimulate angiogenesis, and amplify the proliferation and differentiation of resident cardiac stem cells (CSCs). Such features have led to exosomes being considered as potential drug candidates affording myocardial regeneration. The search for chemical signals capable of stimulating cardiomyogenesis is ongoing despite continuous debates regarding the ability of mature cardiomyocytes to divide or dedifferentiate, transdifferentiation of other cells into cardiomyocytes, and the ability of CSCs to differentiate into cardiomyocytes. Future research is aimed at identifying novel cell candidates capable of differentiating into cardiomyocytes. The observation that CSCs can undergo intracellular development with the formation of “cell-in-cell structure” and subsequent release of transitory amplifying cells with the capacity to differentiate into cardiomyocytes may provide clues for stimulating regenerative cardiomyogenesis.
Collapse
|
8
|
Gorabi AM, Bianconi V, Pirro M, Banach M, Sahebkar A. Regulation of cardiac stem cells by microRNAs: State-of-the-art. Biomed Pharmacother 2019; 120:109447. [PMID: 31580971 DOI: 10.1016/j.biopha.2019.109447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/27/2022] Open
Abstract
Stem cells have a therapeutic potential in various medical conditions. In cases without sufficient response to conventional drug treatments, stem cells represent a next generation therapeutic strategy in cardiovascular diseases. Cardiac stem cells (CSCs), among a wide variety of stem cell sources, have been identified as a valid option for stem cell-based therapy in cardiovascular diseases. CSCs mainly act as a cell source to supply the physiological need for cardiovascular cells. However, they have been demonstrated to reproduce the myocardial cells under pathological settings. Despite their roles and functions have somewhat been clarified, molecular pathways underlying the regulatory mechanisms of CSCs are still not fully elucidated. Several studies have recently shown that different microRNAs (miRNAs) play a substantial role in regulating and controlling both the physiological and pathological proliferation and differentiation of stem cells. MiRNAs are small non-coding RNA molecules that regulate gene expression and may undergo aberrant expression levels during pathological conditions. Understanding the way through which miRNAs regulate CSC behavior may open up new horizons in modulating these cells in vitro to devise sophisticated approaches for treating patients with cardiovascular diseases. In this review article, we tried to discuss available evidence about the role of miRNAs in regulating CSCs.
Collapse
Affiliation(s)
- Armita Mahdavi Gorabi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Vanessa Bianconi
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Rafatian G, Davis DR. Concise Review: Heart-Derived Cell Therapy 2.0: Paracrine Strategies to Increase Therapeutic Repair of Injured Myocardium. Stem Cells 2018; 36:1794-1803. [PMID: 30171743 DOI: 10.1002/stem.2910] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 08/13/2018] [Accepted: 08/20/2018] [Indexed: 01/09/2023]
Abstract
Despite progress in cardiovascular medicine, the incidence of heart failure is rising and represents a growing challenge. To address this, ex vivo proliferated heart-derived cell products have emerged as a promising investigational cell-treatment option. Despite being originally proposed as a straightforward myocyte replacement strategy, emerging evidence has shown that cell-mediated gains in cardiac function are leveraged on paracrine stimulation of endogenous repair and tissue salvage. In this concise review, we focus on the paracrine repertoire of heart-derived cells and outline strategies used to boost cell potency by targeting cytokines, metabolic preconditioning and supportive biomaterials. Mechanistic insights from these studies will shape future efforts to use defined factors and/or synthetic cell approaches to help the millions of patients worldwide suffering from heart failure. Stem Cells 2018;36:1794-10.
Collapse
Affiliation(s)
- Ghazaleh Rafatian
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Darryl R Davis
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| |
Collapse
|
10
|
Li L, Wang Q, Yuan Z, Chen A, Liu Z, Li H, Wang Z. Long non-coding RNA H19 contributes to hypoxia-induced CPC injury by suppressing Sirt1 through miR-200a-3p. Acta Biochim Biophys Sin (Shanghai) 2018; 50:950-959. [PMID: 30137188 DOI: 10.1093/abbs/gmy093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Indexed: 12/28/2022] Open
Abstract
Cardiomyocyte death is the chief obstacle that prevents the heart function recovery in myocardial infarction (MI)-induced heart failure (HF). Cardiac progenitor cells (CPCs)-based myocardial regeneration has provided a promising method for heart function recovery after MI. However, CPCs can easily lose their proliferation ability due to oxygen deficiency in infarcted myocardium. Revealing the underlying molecular mechanism for CPC proliferation is critical for effective MI therapy. In the present study, we set up a CoCl2-induced hypoxia model in CPCs. We found that the expression of long non-coding RNA H19 was significantly down-regulated in CPCs after hypoxia stimuli. In addition, H19 suppression attenuated the proliferation and migration of CPCs under hypoxia stress. Furthermore, we discovered that H19 regulated the proliferation and migration of CPCs through mediating the expression of Sirt1 which is a target of miR-200a-3p under hypoxia. In conclusion, our findings demonstrate a novel regulatory mechanism for the proliferation and migration of CPCs under hypoxia condition, which provides useful information for the development of new therapeutic targets for MI therapy.
Collapse
Affiliation(s)
- Linlin Li
- College of Life Sciences, Peking University, Beijing, China
| | - Qiuyun Wang
- Department of Cardiac Surgery, Ruijin Hospital, Shanghai, China
| | - Zhize Yuan
- Department of Cardiac Surgery, Ruijin Hospital, Shanghai, China
| | - Anqing Chen
- Department of Cardiac Surgery, Ruijin Hospital, Shanghai, China
| | - Zuyun Liu
- Department of Cardiac Surgery, Ruijin Hospital, Shanghai, China
| | - Haiqing Li
- Department of Cardiac Surgery, Ruijin Hospital, Shanghai, China
| | - Zhe Wang
- Department of Cardiac Surgery, Ruijin Hospital, Shanghai, China
| |
Collapse
|
11
|
Li L, Wang Q, Yuan Z, Chen A, Liu Z, Wang Z, Li H. LncRNA-MALAT1 promotes CPC proliferation and migration in hypoxia by up-regulation of JMJD6 via sponging miR-125. Biochem Biophys Res Commun 2018; 499:711-718. [PMID: 29605300 DOI: 10.1016/j.bbrc.2018.03.216] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 03/29/2018] [Indexed: 02/08/2023]
Abstract
The death of cardiomyocytes after myocardial infarction (MI) often leads to ventricular remodeling as well as heart failure (HF). The cardiac progenitor cells (CPCs) have the ability to regenerate functional heart muscle in patients after MI, which provides a promising method for MI-induced HF therapy. However, to date, CPCs can easily lose their proliferation ability in the infarcted myocardium. Therefore, exploring the mechanism for CPC proliferation is essential for CPC-based therapy in MI-induced HF. A previous study indicated that a hypoxic environment is essential for CPC proliferation, but the mechanism is not yet clear. In this work, we discovered that CoCl2-induced hypoxia can promote CPC proliferation and migration. Additionally, long non-coding RNA MALAT1 expression was significantly up-regulated in the CoCl2-induced hypoxia CPC model. MALAT1 suppression inhibited CPC proliferation and migration under hypoxic conditions. In addition, MALAT1 acted as a sponge for miR-125. The miR-125 inhibitor restored the proliferation and migration potentials of CPCs after a MALAT1 knockdown in hypoxia. A further study demonstrated that JMJD6 was a target of miR-125 whose expression was negatively regulated by miR-125. JMJD6 knockdown blocked miR-125 inhibitor's protective effect on CPC function in hypoxia. Ultimately, our finding demonstrated that MALAT1 can modulate CPC proliferation and migration potential through the miR-125/JMJD6 axis in hypoxia. Our finding provided a new regulatory mechanism for CPC proliferation in hypoxia, which provided a new target for MI-induced HF therapy.
Collapse
Affiliation(s)
- Linlin Li
- College of Life Sciences, Peking University, Beijing, 100871, China
| | - Qiuyun Wang
- Department of Cardiac Surgery, Ruijin Hospital, No. 197, Ruijin Er Road, Shanghai, 200025, China
| | - Zhize Yuan
- Department of Cardiac Surgery, Ruijin Hospital, No. 197, Ruijin Er Road, Shanghai, 200025, China
| | - Anqing Chen
- Department of Cardiac Surgery, Ruijin Hospital, No. 197, Ruijin Er Road, Shanghai, 200025, China
| | - Zuyun Liu
- Department of Cardiac Surgery, Ruijin Hospital, No. 197, Ruijin Er Road, Shanghai, 200025, China
| | - Zhe Wang
- Department of Cardiac Surgery, Ruijin Hospital, No. 197, Ruijin Er Road, Shanghai, 200025, China.
| | - Haiqing Li
- Department of Cardiac Surgery, Ruijin Hospital, No. 197, Ruijin Er Road, Shanghai, 200025, China.
| |
Collapse
|
12
|
Tachibana A, Santoso MR, Mahmoudi M, Shukla P, Wang L, Bennett M, Goldstone AB, Wang M, Fukushi M, Ebert AD, Woo YJ, Rulifson E, Yang PC. Paracrine Effects of the Pluripotent Stem Cell-Derived Cardiac Myocytes Salvage the Injured Myocardium. Circ Res 2017; 121:e22-e36. [PMID: 28743804 DOI: 10.1161/circresaha.117.310803] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 01/06/2023]
Abstract
RATIONALE Cardiac myocytes derived from pluripotent stem cells have demonstrated the potential to mitigate damage of the infarcted myocardium and improve left ventricular ejection fraction. However, the mechanism underlying the functional benefit is unclear. OBJECTIVE To evaluate whether the transplantation of cardiac-lineage differentiated derivatives enhance myocardial viability and restore left ventricular ejection fraction more effectively than undifferentiated pluripotent stem cells after a myocardial injury. Herein, we utilize novel multimodality evaluation of human embryonic stem cells (hESCs), hESC-derived cardiac myocytes (hCMs), human induced pluripotent stem cells (iPSCs), and iPSC-derived cardiac myocytes (iCMs) in a murine myocardial injury model. METHODS AND RESULTS Permanent ligation of the left anterior descending coronary artery was induced in immunosuppressed mice. Intramyocardial injection was performed with (1) hESCs (n=9), (2) iPSCs (n=8), (3) hCMs (n=9), (4) iCMs (n=14), and (5) PBS control (n=10). Left ventricular ejection fraction and myocardial viability, measured by cardiac magnetic resonance imaging and manganese-enhanced magnetic resonance imaging, respectively, was significantly improved in hCM- and iCM-treated mice compared with pluripotent stem cell- or control-treated mice. Bioluminescence imaging revealed limited cell engraftment in all treated groups, suggesting that the cell secretions may underlie the repair mechanism. To determine the paracrine effects of the transplanted cells, cytokines from supernatants from all groups were assessed in vitro. Gene expression and immunohistochemistry analyses of the murine myocardium demonstrated significant upregulation of the promigratory, proangiogenic, and antiapoptotic targets in groups treated with cardiac lineage cells compared with pluripotent stem cell and control groups. CONCLUSIONS This study demonstrates that the cardiac phenotype of hCMs and iCMs salvages the injured myocardium effectively than undifferentiated stem cells through their differential paracrine effects.
Collapse
Affiliation(s)
- Atsushi Tachibana
- From the Division of Cardiovascular Medicine (A.T., M.R.S., M.M., P.S., L.W., M.W., A.D.E., E.R., P.C.Y.), Division of Neonatal and Developmental Medicine (M.B.), and Department of Cardiothoracic Surgery (A.B.G., Y.J.W.), Stanford University, CA; Department of Radiological Sciences, Tokyo Metropolitan University, Japan (A.T., M.F.); Department of Critical Care Medicine, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, China (L.W.); Department of Cardiology and Pneumonology, Göttingen University Medical Center, Germany (A.D.E.); and German Center for Cardiovascular Research, Partner Site Göttingen, Germany (A.D.E.)
| | - Michelle R Santoso
- From the Division of Cardiovascular Medicine (A.T., M.R.S., M.M., P.S., L.W., M.W., A.D.E., E.R., P.C.Y.), Division of Neonatal and Developmental Medicine (M.B.), and Department of Cardiothoracic Surgery (A.B.G., Y.J.W.), Stanford University, CA; Department of Radiological Sciences, Tokyo Metropolitan University, Japan (A.T., M.F.); Department of Critical Care Medicine, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, China (L.W.); Department of Cardiology and Pneumonology, Göttingen University Medical Center, Germany (A.D.E.); and German Center for Cardiovascular Research, Partner Site Göttingen, Germany (A.D.E.)
| | - Morteza Mahmoudi
- From the Division of Cardiovascular Medicine (A.T., M.R.S., M.M., P.S., L.W., M.W., A.D.E., E.R., P.C.Y.), Division of Neonatal and Developmental Medicine (M.B.), and Department of Cardiothoracic Surgery (A.B.G., Y.J.W.), Stanford University, CA; Department of Radiological Sciences, Tokyo Metropolitan University, Japan (A.T., M.F.); Department of Critical Care Medicine, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, China (L.W.); Department of Cardiology and Pneumonology, Göttingen University Medical Center, Germany (A.D.E.); and German Center for Cardiovascular Research, Partner Site Göttingen, Germany (A.D.E.)
| | - Praveen Shukla
- From the Division of Cardiovascular Medicine (A.T., M.R.S., M.M., P.S., L.W., M.W., A.D.E., E.R., P.C.Y.), Division of Neonatal and Developmental Medicine (M.B.), and Department of Cardiothoracic Surgery (A.B.G., Y.J.W.), Stanford University, CA; Department of Radiological Sciences, Tokyo Metropolitan University, Japan (A.T., M.F.); Department of Critical Care Medicine, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, China (L.W.); Department of Cardiology and Pneumonology, Göttingen University Medical Center, Germany (A.D.E.); and German Center for Cardiovascular Research, Partner Site Göttingen, Germany (A.D.E.)
| | - Lei Wang
- From the Division of Cardiovascular Medicine (A.T., M.R.S., M.M., P.S., L.W., M.W., A.D.E., E.R., P.C.Y.), Division of Neonatal and Developmental Medicine (M.B.), and Department of Cardiothoracic Surgery (A.B.G., Y.J.W.), Stanford University, CA; Department of Radiological Sciences, Tokyo Metropolitan University, Japan (A.T., M.F.); Department of Critical Care Medicine, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, China (L.W.); Department of Cardiology and Pneumonology, Göttingen University Medical Center, Germany (A.D.E.); and German Center for Cardiovascular Research, Partner Site Göttingen, Germany (A.D.E.)
| | - Mihoko Bennett
- From the Division of Cardiovascular Medicine (A.T., M.R.S., M.M., P.S., L.W., M.W., A.D.E., E.R., P.C.Y.), Division of Neonatal and Developmental Medicine (M.B.), and Department of Cardiothoracic Surgery (A.B.G., Y.J.W.), Stanford University, CA; Department of Radiological Sciences, Tokyo Metropolitan University, Japan (A.T., M.F.); Department of Critical Care Medicine, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, China (L.W.); Department of Cardiology and Pneumonology, Göttingen University Medical Center, Germany (A.D.E.); and German Center for Cardiovascular Research, Partner Site Göttingen, Germany (A.D.E.)
| | - Andrew B Goldstone
- From the Division of Cardiovascular Medicine (A.T., M.R.S., M.M., P.S., L.W., M.W., A.D.E., E.R., P.C.Y.), Division of Neonatal and Developmental Medicine (M.B.), and Department of Cardiothoracic Surgery (A.B.G., Y.J.W.), Stanford University, CA; Department of Radiological Sciences, Tokyo Metropolitan University, Japan (A.T., M.F.); Department of Critical Care Medicine, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, China (L.W.); Department of Cardiology and Pneumonology, Göttingen University Medical Center, Germany (A.D.E.); and German Center for Cardiovascular Research, Partner Site Göttingen, Germany (A.D.E.)
| | - Mouer Wang
- From the Division of Cardiovascular Medicine (A.T., M.R.S., M.M., P.S., L.W., M.W., A.D.E., E.R., P.C.Y.), Division of Neonatal and Developmental Medicine (M.B.), and Department of Cardiothoracic Surgery (A.B.G., Y.J.W.), Stanford University, CA; Department of Radiological Sciences, Tokyo Metropolitan University, Japan (A.T., M.F.); Department of Critical Care Medicine, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, China (L.W.); Department of Cardiology and Pneumonology, Göttingen University Medical Center, Germany (A.D.E.); and German Center for Cardiovascular Research, Partner Site Göttingen, Germany (A.D.E.)
| | - Masahiro Fukushi
- From the Division of Cardiovascular Medicine (A.T., M.R.S., M.M., P.S., L.W., M.W., A.D.E., E.R., P.C.Y.), Division of Neonatal and Developmental Medicine (M.B.), and Department of Cardiothoracic Surgery (A.B.G., Y.J.W.), Stanford University, CA; Department of Radiological Sciences, Tokyo Metropolitan University, Japan (A.T., M.F.); Department of Critical Care Medicine, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, China (L.W.); Department of Cardiology and Pneumonology, Göttingen University Medical Center, Germany (A.D.E.); and German Center for Cardiovascular Research, Partner Site Göttingen, Germany (A.D.E.)
| | - Antje D Ebert
- From the Division of Cardiovascular Medicine (A.T., M.R.S., M.M., P.S., L.W., M.W., A.D.E., E.R., P.C.Y.), Division of Neonatal and Developmental Medicine (M.B.), and Department of Cardiothoracic Surgery (A.B.G., Y.J.W.), Stanford University, CA; Department of Radiological Sciences, Tokyo Metropolitan University, Japan (A.T., M.F.); Department of Critical Care Medicine, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, China (L.W.); Department of Cardiology and Pneumonology, Göttingen University Medical Center, Germany (A.D.E.); and German Center for Cardiovascular Research, Partner Site Göttingen, Germany (A.D.E.)
| | - Y Joseph Woo
- From the Division of Cardiovascular Medicine (A.T., M.R.S., M.M., P.S., L.W., M.W., A.D.E., E.R., P.C.Y.), Division of Neonatal and Developmental Medicine (M.B.), and Department of Cardiothoracic Surgery (A.B.G., Y.J.W.), Stanford University, CA; Department of Radiological Sciences, Tokyo Metropolitan University, Japan (A.T., M.F.); Department of Critical Care Medicine, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, China (L.W.); Department of Cardiology and Pneumonology, Göttingen University Medical Center, Germany (A.D.E.); and German Center for Cardiovascular Research, Partner Site Göttingen, Germany (A.D.E.)
| | - Eric Rulifson
- From the Division of Cardiovascular Medicine (A.T., M.R.S., M.M., P.S., L.W., M.W., A.D.E., E.R., P.C.Y.), Division of Neonatal and Developmental Medicine (M.B.), and Department of Cardiothoracic Surgery (A.B.G., Y.J.W.), Stanford University, CA; Department of Radiological Sciences, Tokyo Metropolitan University, Japan (A.T., M.F.); Department of Critical Care Medicine, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, China (L.W.); Department of Cardiology and Pneumonology, Göttingen University Medical Center, Germany (A.D.E.); and German Center for Cardiovascular Research, Partner Site Göttingen, Germany (A.D.E.)
| | - Phillip C Yang
- From the Division of Cardiovascular Medicine (A.T., M.R.S., M.M., P.S., L.W., M.W., A.D.E., E.R., P.C.Y.), Division of Neonatal and Developmental Medicine (M.B.), and Department of Cardiothoracic Surgery (A.B.G., Y.J.W.), Stanford University, CA; Department of Radiological Sciences, Tokyo Metropolitan University, Japan (A.T., M.F.); Department of Critical Care Medicine, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, China (L.W.); Department of Cardiology and Pneumonology, Göttingen University Medical Center, Germany (A.D.E.); and German Center for Cardiovascular Research, Partner Site Göttingen, Germany (A.D.E.).
| |
Collapse
|
13
|
Autologous and allogeneic cardiac stem cell therapy for cardiovascular diseases. Pharmacol Res 2017; 127:92-100. [PMID: 28554583 DOI: 10.1016/j.phrs.2017.05.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/14/2017] [Accepted: 05/25/2017] [Indexed: 12/27/2022]
Abstract
Stem cell therapy is one of the most promising therapeutic innovations to help restore cardiac structure and function after ischemic insults to the heart. However, phase I and II clinical trials with autologous "first-generation stem cells" have yielded inconsistent results in ischemic cardiomyopathy patients and have not produced the definitive evidence for their broad clinical application. Recently, new cell types such as cardiac stem cells (CSC) and new allogeneic sources have attracted the attention of researchers given their inherent biological, clinical and logistic advantages. Preclinical evidence and emerging clinical data show that exogenous CSC produce a range of protein-based factors that have a powerful cardioprotective effect in the ischemic myocardium, immunoregulatory properties that promote angiogenesis and reduce scar formation, and are able to activate endogenous CSC which multiply and differentiate into cardiomyocytes and microvasculature. Furthermore, allogeneic CSC can be produced in large quantities beforehand and can be administered "off-the-shelf" early during the acute phase of myocardial ischemia. The distinctive immunological behavior of allogeneic CSC and their interaction with the host immune system is supposed to produce immunomodulatory beneficial effects in the short-term, preventing long-term side-effects after their rejection. Preclinical studies have shown highly promising results with allogeneic CSC, and clinical trials are already ongoing. Finally, unraveling questions about the biology and physiology of CSC, the characterization of their secretome, the conduction of larger clinical trials with autologous CSC, the definitive evidence on the safety and efficacy of allogeneic CSC in humans and the possibility of repeated administrations or combinations with other cell types and soluble factors will pave the road for further developments with CSC, that will undoubtedly determine the future of cardiovascular regenerative medicine in human beings.
Collapse
|
14
|
Trindade F, Leite-Moreira A, Ferreira-Martins J, Ferreira R, Falcão-Pires I, Vitorino R. Towards the standardization of stem cell therapy studies for ischemic heart diseases: Bridging the gap between animal models and the clinical setting. Int J Cardiol 2016; 228:465-480. [PMID: 27870978 DOI: 10.1016/j.ijcard.2016.11.236] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 12/20/2022]
Abstract
Today there is an increasing demand for heart transplantations for patients diagnosed with heart failure. Though, shortage of donors as well as the large number of ineligible patients hurdle such treatment option. This, in addition to the considerable number of transplant rejections, has driven the clinical research towards the field of regenerative medicine. Nonetheless, to date, several stem cell therapies tested in animal models fall by the wayside and when they meet the criteria to clinical trials, subjects often exhibit modest improvements. A main issue slowing down the admission of such therapies in the domain of human trials is the lack of protocol standardization between research groups, which hampers comparison between different approaches as well as the lack of thought regarding the clinical translation. In this sense, given the large amount of reports on stem cell therapy studies in animal models reported in the last 3years, we sought to evaluate their advantages and limitations towards the clinical setting and provide some suggestions for the forthcoming investigations. We expect, with this review, to start a new paradigm on regenerative medicine, by evoking the debate on how to plan novel stem cell therapy studies with animal models in order to achieve more consistent scientific production and accelerate the admission of stem cell therapies in the clinical setting.
Collapse
Affiliation(s)
- Fábio Trindade
- iBiMED, Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Portugal; Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Portugal.
| | - Adelino Leite-Moreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Portugal
| | | | - Rita Ferreira
- QOPNA, Mass Spectrometry Center, Department of Chemistry, University of Aveiro, Portugal
| | - Inês Falcão-Pires
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Portugal
| | - Rui Vitorino
- iBiMED, Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Portugal; Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Portugal.
| |
Collapse
|
15
|
Salabei JK, Lorkiewicz PK, Mehra P, Gibb AA, Haberzettl P, Hong KU, Wei X, Zhang X, Li Q, Wysoczynski M, Bolli R, Bhatnagar A, Hill BG. Type 2 Diabetes Dysregulates Glucose Metabolism in Cardiac Progenitor Cells. J Biol Chem 2016; 291:13634-48. [PMID: 27151219 DOI: 10.1074/jbc.m116.722496] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Indexed: 12/22/2022] Open
Abstract
Type 2 diabetes is associated with increased mortality and progression to heart failure. Recent studies suggest that diabetes also impairs reparative responses after cell therapy. In this study, we examined potential mechanisms by which diabetes affects cardiac progenitor cells (CPCs). CPCs isolated from the diabetic heart showed diminished proliferation, a propensity for cell death, and a pro-adipogenic phenotype. The diabetic CPCs were insulin-resistant, and they showed higher energetic reliance on glycolysis, which was associated with up-regulation of the pro-glycolytic enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). In WT CPCs, expression of a mutant form of PFKFB, which mimics PFKFB3 activity and increases glycolytic rate, was sufficient to phenocopy the mitochondrial and proliferative deficiencies found in diabetic cells. Consistent with activation of phosphofructokinase in diabetic cells, stable isotope carbon tracing in diabetic CPCs showed dysregulation of the pentose phosphate and glycero(phospho)lipid synthesis pathways. We describe diabetes-induced dysregulation of carbon partitioning using stable isotope metabolomics-based coupling quotients, which relate relative flux values between metabolic pathways. These findings suggest that diabetes causes an imbalance in glucose carbon allocation by uncoupling biosynthetic pathway activity, which could diminish the efficacy of CPCs for myocardial repair.
Collapse
Affiliation(s)
- Joshua K Salabei
- From the Institute of Molecular Cardiology, Diabetes and Obesity Center
| | | | - Parul Mehra
- From the Institute of Molecular Cardiology, Diabetes and Obesity Center
| | - Andrew A Gibb
- From the Institute of Molecular Cardiology, Diabetes and Obesity Center, Physiology
| | - Petra Haberzettl
- From the Institute of Molecular Cardiology, Diabetes and Obesity Center
| | - Kyung U Hong
- From the Institute of Molecular Cardiology, Diabetes and Obesity Center
| | - Xiaoli Wei
- Chemistry, the Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, Kentucky 40202
| | - Xiang Zhang
- Chemistry, the Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, Kentucky 40202 Pharmacology and Toxicology, and
| | | | | | - Roberto Bolli
- From the Institute of Molecular Cardiology, Diabetes and Obesity Center, Physiology
| | - Aruni Bhatnagar
- From the Institute of Molecular Cardiology, Diabetes and Obesity Center, Physiology, the Departments of Biochemistry and Molecular Genetics
| | - Bradford G Hill
- From the Institute of Molecular Cardiology, Diabetes and Obesity Center, Physiology, the Departments of Biochemistry and Molecular Genetics,
| |
Collapse
|
16
|
Zwetsloot PP, Végh AMD, Jansen of Lorkeers SJ, van Hout GPJ, Currie GL, Sena ES, Gremmels H, Buikema JW, Goumans MJ, Macleod MR, Doevendans PA, Chamuleau SAJ, Sluijter JPG. Cardiac Stem Cell Treatment in Myocardial Infarction: A Systematic Review and Meta-Analysis of Preclinical Studies. Circ Res 2016; 118:1223-32. [PMID: 26888636 DOI: 10.1161/circresaha.115.307676] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 02/17/2016] [Indexed: 12/09/2022]
Abstract
RATIONALE Cardiac stem cells (CSC) therapy has been clinically introduced for cardiac repair after myocardial infarction (MI). To date, there has been no systematic overview and meta-analysis of studies using CSC therapy for MI. OBJECTIVE Here, we used meta-analysis to establish the overall effect of CSCs in preclinical studies and assessed translational differences between and within large and small animals in the CSC therapy field. In addition, we explored the effect of CSC type and other clinically relevant parameters on functional outcome to better predict and design future (pre)clinical studies using CSCs for MI. METHODS AND RESULTS A systematic search was performed, yielding 80 studies. We determined the overall effect of CSC therapy on left ventricular ejection fraction and performed meta-regression to investigate clinically relevant parameters. We also assessed the quality of included studies and possible bias. The overall effect observed in CSC-treated animals was 10.7% (95% confidence interval 9.4-12.1; P<0.001) improvement in ejection fraction compared with placebo controls. Interestingly, CSC therapy had a greater effect in small animals compared with large animals (P<0.001). Meta-regression indicated that cell type was a significant predictor for ejection fraction improvement in small animals. Minor publication bias was observed in small animal studies. CONCLUSIONS CSC treatment resulted in significant improvement of ejection fraction in preclinical animal models of MI compared with placebo. There was a reduction in the magnitude of effect in large compared with small animal models. Although different CSC types have overlapping culture characteristics, we observed a significant difference in their effect in post-MI animal studies.
Collapse
Affiliation(s)
- Peter Paul Zwetsloot
- From the Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, The Netherlands (P.P.Z., A.M.D.V., S.J.J.o.L., G.P.J.v.H., J.W.B., P.A.D., S.A.J.C., J.P.G.S.); Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands (A.M.D.V., M.-J.G.); Department of Clinical Neurosciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom (G.L.C., E.S.S., M.R.M.); Department of Nephrology & Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands (H.G.); ICIN, Netherlands Heart Institute, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.); and UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.)
| | - Anna Maria Dorothea Végh
- From the Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, The Netherlands (P.P.Z., A.M.D.V., S.J.J.o.L., G.P.J.v.H., J.W.B., P.A.D., S.A.J.C., J.P.G.S.); Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands (A.M.D.V., M.-J.G.); Department of Clinical Neurosciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom (G.L.C., E.S.S., M.R.M.); Department of Nephrology & Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands (H.G.); ICIN, Netherlands Heart Institute, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.); and UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.)
| | - Sanne Johanna Jansen of Lorkeers
- From the Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, The Netherlands (P.P.Z., A.M.D.V., S.J.J.o.L., G.P.J.v.H., J.W.B., P.A.D., S.A.J.C., J.P.G.S.); Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands (A.M.D.V., M.-J.G.); Department of Clinical Neurosciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom (G.L.C., E.S.S., M.R.M.); Department of Nephrology & Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands (H.G.); ICIN, Netherlands Heart Institute, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.); and UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.)
| | - Gerardus P J van Hout
- From the Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, The Netherlands (P.P.Z., A.M.D.V., S.J.J.o.L., G.P.J.v.H., J.W.B., P.A.D., S.A.J.C., J.P.G.S.); Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands (A.M.D.V., M.-J.G.); Department of Clinical Neurosciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom (G.L.C., E.S.S., M.R.M.); Department of Nephrology & Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands (H.G.); ICIN, Netherlands Heart Institute, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.); and UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.)
| | - Gillian L Currie
- From the Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, The Netherlands (P.P.Z., A.M.D.V., S.J.J.o.L., G.P.J.v.H., J.W.B., P.A.D., S.A.J.C., J.P.G.S.); Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands (A.M.D.V., M.-J.G.); Department of Clinical Neurosciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom (G.L.C., E.S.S., M.R.M.); Department of Nephrology & Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands (H.G.); ICIN, Netherlands Heart Institute, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.); and UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.)
| | - Emily S Sena
- From the Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, The Netherlands (P.P.Z., A.M.D.V., S.J.J.o.L., G.P.J.v.H., J.W.B., P.A.D., S.A.J.C., J.P.G.S.); Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands (A.M.D.V., M.-J.G.); Department of Clinical Neurosciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom (G.L.C., E.S.S., M.R.M.); Department of Nephrology & Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands (H.G.); ICIN, Netherlands Heart Institute, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.); and UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.)
| | - Hendrik Gremmels
- From the Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, The Netherlands (P.P.Z., A.M.D.V., S.J.J.o.L., G.P.J.v.H., J.W.B., P.A.D., S.A.J.C., J.P.G.S.); Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands (A.M.D.V., M.-J.G.); Department of Clinical Neurosciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom (G.L.C., E.S.S., M.R.M.); Department of Nephrology & Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands (H.G.); ICIN, Netherlands Heart Institute, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.); and UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.)
| | - Jan Willem Buikema
- From the Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, The Netherlands (P.P.Z., A.M.D.V., S.J.J.o.L., G.P.J.v.H., J.W.B., P.A.D., S.A.J.C., J.P.G.S.); Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands (A.M.D.V., M.-J.G.); Department of Clinical Neurosciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom (G.L.C., E.S.S., M.R.M.); Department of Nephrology & Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands (H.G.); ICIN, Netherlands Heart Institute, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.); and UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.)
| | - Marie-Jose Goumans
- From the Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, The Netherlands (P.P.Z., A.M.D.V., S.J.J.o.L., G.P.J.v.H., J.W.B., P.A.D., S.A.J.C., J.P.G.S.); Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands (A.M.D.V., M.-J.G.); Department of Clinical Neurosciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom (G.L.C., E.S.S., M.R.M.); Department of Nephrology & Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands (H.G.); ICIN, Netherlands Heart Institute, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.); and UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.)
| | - Malcolm R Macleod
- From the Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, The Netherlands (P.P.Z., A.M.D.V., S.J.J.o.L., G.P.J.v.H., J.W.B., P.A.D., S.A.J.C., J.P.G.S.); Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands (A.M.D.V., M.-J.G.); Department of Clinical Neurosciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom (G.L.C., E.S.S., M.R.M.); Department of Nephrology & Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands (H.G.); ICIN, Netherlands Heart Institute, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.); and UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.)
| | - Pieter A Doevendans
- From the Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, The Netherlands (P.P.Z., A.M.D.V., S.J.J.o.L., G.P.J.v.H., J.W.B., P.A.D., S.A.J.C., J.P.G.S.); Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands (A.M.D.V., M.-J.G.); Department of Clinical Neurosciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom (G.L.C., E.S.S., M.R.M.); Department of Nephrology & Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands (H.G.); ICIN, Netherlands Heart Institute, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.); and UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.)
| | - Steven A J Chamuleau
- From the Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, The Netherlands (P.P.Z., A.M.D.V., S.J.J.o.L., G.P.J.v.H., J.W.B., P.A.D., S.A.J.C., J.P.G.S.); Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands (A.M.D.V., M.-J.G.); Department of Clinical Neurosciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom (G.L.C., E.S.S., M.R.M.); Department of Nephrology & Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands (H.G.); ICIN, Netherlands Heart Institute, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.); and UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.)
| | - Joost P G Sluijter
- From the Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, The Netherlands (P.P.Z., A.M.D.V., S.J.J.o.L., G.P.J.v.H., J.W.B., P.A.D., S.A.J.C., J.P.G.S.); Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands (A.M.D.V., M.-J.G.); Department of Clinical Neurosciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom (G.L.C., E.S.S., M.R.M.); Department of Nephrology & Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands (H.G.); ICIN, Netherlands Heart Institute, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.); and UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.).
| |
Collapse
|
17
|
Suzuki G. Translational research of adult stem cell therapy. World J Cardiol 2015; 7:707-718. [PMID: 26635920 PMCID: PMC4660467 DOI: 10.4330/wjc.v7.i11.707] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/12/2015] [Accepted: 09/28/2015] [Indexed: 02/06/2023] Open
Abstract
Congestive heart failure (CHF) secondary to chronic coronary artery disease is a major cause of morbidity and mortality world-wide. Its prevalence is increasing despite advances in medical and device therapies. Cell based therapies generating new cardiomyocytes and vessels have emerged as a promising treatment to reverse functional deterioration and prevent the progression to CHF. Functional efficacy of progenitor cells isolated from the bone marrow and the heart have been evaluated in preclinical large animal models. Furthermore, several clinical trials using autologous and allogeneic stem cells and progenitor cells have demonstrated their safety in humans yet their clinical relevance is inconclusive. This review will discuss the clinical therapeutic applications of three specific adult stem cells that have shown particularly promising regenerative effects in preclinical studies, bone marrow derived mesenchymal stem cell, heart derived cardiosphere-derived cell and cardiac stem cell. We will also discuss future therapeutic approaches.
Collapse
|
18
|
Hatzistergos KE, Paulino EC, Dulce RA, Takeuchi LM, Bellio MA, Kulandavelu S, Cao Y, Balkan W, Kanashiro-Takeuchi RM, Hare JM. S-Nitrosoglutathione Reductase Deficiency Enhances the Proliferative Expansion of Adult Heart Progenitors and Myocytes Post Myocardial Infarction. J Am Heart Assoc 2015; 4:JAHA.115.001974. [PMID: 26178404 PMCID: PMC4608081 DOI: 10.1161/jaha.115.001974] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background Mammalian heart regenerative activity is lost before adulthood but increases after cardiac injury. Cardiac repair mechanisms, which involve both endogenous cardiac stem cells (CSCs) and cardiomyocyte cell-cycle reentry, are inadequate to achieve full recovery after myocardial infarction (MI). Mice deficient in S-nitrosoglutathione reductase (GSNOR−⁄−), an enzyme regulating S-nitrosothiol turnover, have preserved cardiac function after MI. Here, we tested the hypothesis that GSNOR activity modulates cardiac cell proliferation in the post-MI adult heart. Methods and Results GSNOR−⁄− and C57Bl6/J (wild-type [WT]) mice were subjected to sham operation (n=3 GSNOR−⁄−; n=3 WT) or MI (n=41 GSNOR−⁄−; n=65 WT). Compared with WT,GSNOR−⁄− mice exhibited improved survival, cardiac performance, and architecture after MI, as demonstrated by higher ejection fraction (P<0.05), lower endocardial volumes (P<0.001), and diminished scar size (P<0.05). In addition, cardiomyocytes from post-MI GSNOR−⁄− hearts exhibited faster calcium decay and sarcomeric relaxation times (P<0.001). Immunophenotypic analysis illustrated that post-MI GSNOR−⁄− hearts demonstrated enhanced neovascularization (P<0.001), c-kit+ CSC abundance (P=0.013), and a ≈3-fold increase in proliferation of adult cardiomyocytes and c-kit+/CD45− CSCs (P<0.0001 and P=0.023, respectively) as measured by using 5-bromodeoxyuridine. Conclusions Loss of GSNOR confers enhanced post-MI cardiac regenerative activity, characterized by enhanced turnover of cardiomyocytes and CSCs. Endogenous denitrosylases exert an inhibitory effect over cardiac repair mechanisms and therefore represents a potential novel therapeutic target.
Collapse
Affiliation(s)
- Konstantinos E Hatzistergos
- Interdisciplinary Stem Cell Institute, University of Miami, FL (K.E.H., E.C.P., R.A.D., L.M.T., M.A.B., S.K., Y.C., W.B., R.M.K.T., J.M.H.)
| | - Ellena C Paulino
- Interdisciplinary Stem Cell Institute, University of Miami, FL (K.E.H., E.C.P., R.A.D., L.M.T., M.A.B., S.K., Y.C., W.B., R.M.K.T., J.M.H.)
| | - Raul A Dulce
- Interdisciplinary Stem Cell Institute, University of Miami, FL (K.E.H., E.C.P., R.A.D., L.M.T., M.A.B., S.K., Y.C., W.B., R.M.K.T., J.M.H.)
| | - Lauro M Takeuchi
- Interdisciplinary Stem Cell Institute, University of Miami, FL (K.E.H., E.C.P., R.A.D., L.M.T., M.A.B., S.K., Y.C., W.B., R.M.K.T., J.M.H.)
| | - Michael A Bellio
- Interdisciplinary Stem Cell Institute, University of Miami, FL (K.E.H., E.C.P., R.A.D., L.M.T., M.A.B., S.K., Y.C., W.B., R.M.K.T., J.M.H.) Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL (M.A.B., R.M.K.T., J.M.H.)
| | - Shathiyah Kulandavelu
- Interdisciplinary Stem Cell Institute, University of Miami, FL (K.E.H., E.C.P., R.A.D., L.M.T., M.A.B., S.K., Y.C., W.B., R.M.K.T., J.M.H.)
| | - Yenong Cao
- Interdisciplinary Stem Cell Institute, University of Miami, FL (K.E.H., E.C.P., R.A.D., L.M.T., M.A.B., S.K., Y.C., W.B., R.M.K.T., J.M.H.)
| | - Wayne Balkan
- Interdisciplinary Stem Cell Institute, University of Miami, FL (K.E.H., E.C.P., R.A.D., L.M.T., M.A.B., S.K., Y.C., W.B., R.M.K.T., J.M.H.) Department of Medicine, University of Miami Miller School of Medicine, Miami, FL (W.B., J.M.H.)
| | - Rosemeire M Kanashiro-Takeuchi
- Interdisciplinary Stem Cell Institute, University of Miami, FL (K.E.H., E.C.P., R.A.D., L.M.T., M.A.B., S.K., Y.C., W.B., R.M.K.T., J.M.H.) Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL (M.A.B., R.M.K.T., J.M.H.)
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami, FL (K.E.H., E.C.P., R.A.D., L.M.T., M.A.B., S.K., Y.C., W.B., R.M.K.T., J.M.H.) Department of Medicine, University of Miami Miller School of Medicine, Miami, FL (W.B., J.M.H.) Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL (M.A.B., R.M.K.T., J.M.H.)
| |
Collapse
|
19
|
Du W, Tao H, Zhao S, He ZX, Li Z. Translational applications of molecular imaging in cardiovascular disease and stem cell therapy. Biochimie 2015; 116:43-51. [PMID: 26134715 DOI: 10.1016/j.biochi.2015.06.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/25/2015] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality and morbidity worldwide. Molecular imaging techniques provide valuable information at cellular and molecular level, as opposed to anatomical and structural layers acquired from traditional imaging modalities. More specifically, molecular imaging employs imaging probes which interact with specific molecular targets and therefore makes it possible to visualize biological processes in vivo. Molecular imaging technology is now progressing towards preclinical and clinical application that gives an integral and comprehensive guidance for the investigation of cardiovascular disease. In addition, cardiac stem cell therapy holds great promise for clinical translation. Undoubtedly, combining stem cell therapy with molecular imaging technology will bring a broad prospect for the study and treatment of cardiac disease. This review will focus on the progresses of molecular imaging strategies in cardiovascular disease and cardiac stem cell therapy. Furthermore, the perspective on the future role of molecular imaging in clinical translation and potential strategies in defining safety and efficacy of cardiac stem cell therapies will be discussed.
Collapse
Affiliation(s)
- Wei Du
- Collaborative Innovation Center for Biotherapy, Nankai University School of Medicine, Tianjin, China; Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin, China; The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Hongyan Tao
- Collaborative Innovation Center for Biotherapy, Nankai University School of Medicine, Tianjin, China; Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin, China
| | - Shihua Zhao
- Department of Radiology, Fuwai Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Zuo-Xiang He
- Department of Nuclear Imaging, Fuwai Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.
| | - Zongjin Li
- Collaborative Innovation Center for Biotherapy, Nankai University School of Medicine, Tianjin, China; Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin, China; The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
20
|
Salabei JK, Lorkiewicz PK, Holden CR, Li Q, Hong KU, Bolli R, Bhatnagar A, Hill BG. Glutamine Regulates Cardiac Progenitor Cell Metabolism and Proliferation. Stem Cells 2015; 33:2613-27. [PMID: 25917428 DOI: 10.1002/stem.2047] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/08/2015] [Accepted: 03/29/2015] [Indexed: 12/27/2022]
Abstract
Autologous transplantation of cardiac progenitor cells (CPCs) alleviates myocardial dysfunction in the damaged heart; however, the mechanisms that contribute to their reparative qualities remain poorly understood. In this study, we examined CPC metabolism to elucidate the metabolic pathways that regulate their proliferative capacity. In complete growth medium, undifferentiated CPCs isolated from adult mouse heart proliferated rapidly (Td = 13.8 hours). CPCs expressed the Glut1 transporter and their glycolytic rate was increased by high extracellular glucose (Glc) concentration, in the absence of insulin. Although high Glc concentrations did not stimulate proliferation, glutamine (Gln) increased CPC doubling time and promoted survival under conditions of oxidative stress. In comparison with Glc, pyruvate (Pyr) or BSA-palmitate, Gln, when provided as the sole metabolic substrate, increased ATP-linked and uncoupled respiration. Although fatty acids were not used as respiratory substrates when present as a sole carbon source, Gln-induced respiration was doubled in the presence of BSA-palmitate, suggesting that Gln stimulates fatty acid oxidation. Additionally, Gln promoted rapid phosphorylation of the mTORC1 substrate, p70S6k, as well as retinoblastoma protein, followed by induction of cyclin D1 and cdk4. Inhibition of either mTORC1 or glutaminolysis was sufficient to diminish CPC proliferation, and provision of cell permeable α-ketoglutarate in the absence of Gln increased both respiration and cell proliferation, indicating a key role of Gln anaplerosis in cell growth. These findings suggest that Gln, by enhancing mitochondrial function and stimulating mTORC1, increases CPC proliferation, and that interventions to increase Gln uptake or oxidation may improve CPC therapy.
Collapse
Affiliation(s)
- Joshua K Salabei
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, USA.,Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky, USA
| | - Pawel K Lorkiewicz
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, USA.,Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky, USA
| | - Candice R Holden
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, USA.,Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky, USA.,Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky, USA
| | - Qianhong Li
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, USA
| | - Kyung U Hong
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, USA
| | - Roberto Bolli
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, USA.,Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky, USA.,Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky, USA
| | - Aruni Bhatnagar
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, USA.,Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky, USA.,Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky, USA.,Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, USA
| | - Bradford G Hill
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, USA.,Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky, USA.,Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky, USA.,Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
21
|
Crisostomo V, Baez-Diaz C, Maestre J, Garcia-Lindo M, Sun F, Casado JG, Blazquez R, Abad JL, Palacios I, Rodriguez-Borlado L, Sanchez-Margallo FM. Delayed administration of allogeneic cardiac stem cell therapy for acute myocardial infarction could ameliorate adverse remodeling: experimental study in swine. J Transl Med 2015; 13:156. [PMID: 25964098 PMCID: PMC4458045 DOI: 10.1186/s12967-015-0512-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 04/30/2015] [Indexed: 02/07/2023] Open
Abstract
Background The optimal timing of cardiac stem cells administration is still unclear. We assessed the safety of same-day and delayed (one week) delivery and the possible influence of the timing on the therapeutic outcomes of allogeneic porcine cardiac stem cells administration after acute myocardial infarction in a closed-chest ischemia-reperfusion model. Methods Female swine surviving 90 min occlusion of the mid left anterior descending coronary artery received an intracoronary injection of 25x106 porcine cardiac stem cells either two hours (n = 5, D0) or 7 days (n = 6, D7) after reperfusion. Controls received intracoronary injection of vehicle on day 7 (n = 6, CON). Safety was defined in terms of absence of major cardiac events, changes to the ECG during injection, post-administration coronary flow assessed using the TIMI scale and cardiac troponin I determination after the intervention. Cardiac Magnetic Resonance was performed for morphological and functional assessment prior to infarction, before injection (D7 and CON groups only), at one and 10 weeks. Samples were taken from the infarct and transition areas for pathological examination. Results No major adverse cardiac events were seen during injection in any group. Animals receiving the therapy on the same day of infarction (D0 group) showed mild transient ST changes during injection (n = 4) and, in one case, slightly compromised coronary flow (TIMI 2). Cardiac function parameters and infarct sizes were not significantly different between groups, with a trend towards higher ejection fraction in the treated groups. Ventricular volumes indexed to body surface area increased over time in control animals, and decreased by the end of the study in animals receiving the therapy, significantly so when comparing End Diastolic Volume between CON and D7 groups (CON: 121.70 ml/m2 ± 26.09 ml/m2, D7: 98.71 ml/m2 ± 8.30 ml/m2, p = 0.037). The treated groups showed less organization of the collagenous scar, and a significantly (p = 0.019) higher amount of larger, more mature vessels at the infarct border. Conclusions The intracoronary injection of 25x106 allogeneic cardiac stem cells is generally safe, both early and 7 days after experimental infarction, and alleviates myocardial dysfunction, with a greater limitation of left ventricular remodeling when performed at one week. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0512-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Veronica Crisostomo
- Jesús Usón Minimally Invasive Surgery Centre, Carretera N-521, km 41.8, 10071, Cáceres, Spain.
| | - Claudia Baez-Diaz
- Jesús Usón Minimally Invasive Surgery Centre, Carretera N-521, km 41.8, 10071, Cáceres, Spain.
| | - Juan Maestre
- Jesús Usón Minimally Invasive Surgery Centre, Carretera N-521, km 41.8, 10071, Cáceres, Spain.
| | - Monica Garcia-Lindo
- Jesús Usón Minimally Invasive Surgery Centre, Carretera N-521, km 41.8, 10071, Cáceres, Spain.
| | - Fei Sun
- Jesús Usón Minimally Invasive Surgery Centre, Carretera N-521, km 41.8, 10071, Cáceres, Spain.
| | - Javier G Casado
- Jesús Usón Minimally Invasive Surgery Centre, Carretera N-521, km 41.8, 10071, Cáceres, Spain.
| | - Rebeca Blazquez
- Jesús Usón Minimally Invasive Surgery Centre, Carretera N-521, km 41.8, 10071, Cáceres, Spain.
| | - Jose L Abad
- Coretherapix, Santiago Grisolía, n° 2 Parque Científico de Madrid, 28760, Tres Cantos, Madrid, Spain.
| | - Itziar Palacios
- Coretherapix, Santiago Grisolía, n° 2 Parque Científico de Madrid, 28760, Tres Cantos, Madrid, Spain.
| | - Luis Rodriguez-Borlado
- Coretherapix, Santiago Grisolía, n° 2 Parque Científico de Madrid, 28760, Tres Cantos, Madrid, Spain.
| | | |
Collapse
|
22
|
Parikh A, Wu J, Blanton RM, Tzanakakis ES. Signaling Pathways and Gene Regulatory Networks in Cardiomyocyte Differentiation. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:377-92. [PMID: 25813860 DOI: 10.1089/ten.teb.2014.0662] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Strategies for harnessing stem cells as a source to treat cell loss in heart disease are the subject of intense research. Human pluripotent stem cells (hPSCs) can be expanded extensively in vitro and therefore can potentially provide sufficient quantities of patient-specific differentiated cardiomyocytes. Although multiple stimuli direct heart development, the differentiation process is driven in large part by signaling activity. The engineering of hPSCs to heart cell progeny has extensively relied on establishing proper combinations of soluble signals, which target genetic programs thereby inducing cardiomyocyte specification. Pertinent differentiation strategies have relied as a template on the development of embryonic heart in multiple model organisms. Here, information on the regulation of cardiomyocyte development from in vivo genetic and embryological studies is critically reviewed. A fresh interpretation is provided of in vivo and in vitro data on signaling pathways and gene regulatory networks (GRNs) underlying cardiopoiesis. The state-of-the-art understanding of signaling pathways and GRNs presented here can inform the design and optimization of methods for the engineering of tissues for heart therapies.
Collapse
Affiliation(s)
- Abhirath Parikh
- 1 Lonza Walkersville, Inc. , Lonza Group, Walkersville, Maryland
| | - Jincheng Wu
- 2 Department of Chemical and Biological Engineering, Tufts University , Medford, Massachusetts
| | - Robert M Blanton
- 3 Division of Cardiology, Molecular Cardiology Research Institute , Tufts Medical Center, Tufts School of Medicine, Boston, Massachusetts
| | - Emmanuel S Tzanakakis
- 2 Department of Chemical and Biological Engineering, Tufts University , Medford, Massachusetts.,4 Tufts Clinical and Translational Science Institute (CTSI) , Boston, Massachusetts
| |
Collapse
|
23
|
Bulatovic I, Ibarra C, Österholm C, Wang H, Beltrán-Rodríguez A, Varas-Godoy M, Månsson-Broberg A, Uhlén P, Simon A, Grinnemo KH. Sublethal caspase activation promotes generation of cardiomyocytes from embryonic stem cells. PLoS One 2015; 10:e0120176. [PMID: 25763592 PMCID: PMC4357377 DOI: 10.1371/journal.pone.0120176] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 01/26/2015] [Indexed: 02/07/2023] Open
Abstract
Generation of new cardiomyocytes is critical for cardiac repair following myocardial injury, but which kind of stimuli is most important for cardiomyocyte regeneration is still unclear. Here we explore if apoptotic stimuli, manifested through caspase activation, influences cardiac progenitor up-regulation and cardiomyocyte differentiation. Using mouse embryonic stem cells as a cellular model, we show that sublethal activation of caspases increases the yield of cardiomyocytes while concurrently promoting the proliferation and differentiation of c-Kit+/α-actininlow cardiac progenitor cells. A broad-spectrum caspase inhibitor blocked these effects. In addition, the caspase inhibitor reversed the mRNA expression of genes expressed in cardiomyocytes and their precursors. Our study demonstrates that sublethal caspase-activation has an important role in cardiomyocyte differentiation and may have significant implications for promoting cardiac regeneration after myocardial injury involving exogenous or endogenous cell sources.
Collapse
Affiliation(s)
- Ivana Bulatovic
- Division of Cardiothoracic Surgery and Anesthesiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Cristian Ibarra
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Österholm
- Division of Cardiothoracic Surgery and Anesthesiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Heng Wang
- Department of Cellular and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Antonio Beltrán-Rodríguez
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Varas-Godoy
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Agneta Månsson-Broberg
- Division of Cardiology, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Per Uhlén
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - András Simon
- Department of Cellular and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Karl-Henrik Grinnemo
- Division of Cardiothoracic Surgery and Anesthesiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
24
|
Kim PJ, Mahmoudi M, Ge X, Matsuura Y, Toma I, Metzler S, Kooreman NG, Ramunas J, Holbrook C, McConnell MV, Blau H, Harnish P, Rulifson E, Yang PC. Direct evaluation of myocardial viability and stem cell engraftment demonstrates salvage of the injured myocardium. Circ Res 2015; 116:e40-50. [PMID: 25654979 DOI: 10.1161/circresaha.116.304668] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
RATIONALE The mechanism of functional restoration by stem cell therapy remains poorly understood. Novel manganese-enhanced MRI and bioluminescence reporter gene imaging were applied to follow myocardial viability and cell engraftment, respectively. Human-placenta-derived amniotic mesenchymal stem cells (AMCs) demonstrate unique immunoregulatory and precardiac properties. In this study, the restorative effects of 3 AMC-derived subpopulations were examined in a murine myocardial injury model: (1) unselected AMCs, (2) ckit(+)AMCs, and (3) AMC-derived induced pluripotent stem cells (MiPSCs). OBJECTIVE To determine the differential restorative effects of the AMC-derived subpopulations in the murine myocardial injury model using multimodality imaging. METHODS AND RESULTS SCID (severe combined immunodeficiency) mice underwent left anterior descending artery ligation and were divided into 4 treatment arms: (1) normal saline control (n=14), (2) unselected AMCs (n=10), (3) ckit(+)AMCs (n=13), and (4) MiPSCs (n=11). Cardiac MRI assessed myocardial viability and left ventricular function, whereas bioluminescence imaging assessed stem cell engraftment during a 4-week period. Immunohistological labeling and reverse transcriptase polymerase chain reaction of the explanted myocardium were performed. The unselected AMC and ckit(+)AMC-treated mice demonstrated transient left ventricular functional improvement. However, the MiPSCs exhibited a significantly greater increase in left ventricular function compared with all the other groups during the entire 4-week period. Left ventricular functional improvement correlated with increased myocardial viability and sustained stem cell engraftment. The MiPSC-treated animals lacked any evidence of de novo cardiac differentiation. CONCLUSION The functional restoration seen in MiPSCs was characterized by increased myocardial viability and sustained engraftment without de novo cardiac differentiation, indicating salvage of the injured myocardium.
Collapse
Affiliation(s)
- Paul J Kim
- From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (J.R., C.H., H.B.); and Eagle Vision Pharmaceutical Corporation, Exton, PA (P.H.)
| | - Morteza Mahmoudi
- From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (J.R., C.H., H.B.); and Eagle Vision Pharmaceutical Corporation, Exton, PA (P.H.)
| | - Xiaohu Ge
- From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (J.R., C.H., H.B.); and Eagle Vision Pharmaceutical Corporation, Exton, PA (P.H.)
| | - Yuka Matsuura
- From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (J.R., C.H., H.B.); and Eagle Vision Pharmaceutical Corporation, Exton, PA (P.H.)
| | - Ildiko Toma
- From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (J.R., C.H., H.B.); and Eagle Vision Pharmaceutical Corporation, Exton, PA (P.H.)
| | - Scott Metzler
- From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (J.R., C.H., H.B.); and Eagle Vision Pharmaceutical Corporation, Exton, PA (P.H.)
| | - Nigel G Kooreman
- From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (J.R., C.H., H.B.); and Eagle Vision Pharmaceutical Corporation, Exton, PA (P.H.)
| | - John Ramunas
- From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (J.R., C.H., H.B.); and Eagle Vision Pharmaceutical Corporation, Exton, PA (P.H.)
| | - Colin Holbrook
- From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (J.R., C.H., H.B.); and Eagle Vision Pharmaceutical Corporation, Exton, PA (P.H.)
| | - Michael V McConnell
- From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (J.R., C.H., H.B.); and Eagle Vision Pharmaceutical Corporation, Exton, PA (P.H.)
| | - Helen Blau
- From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (J.R., C.H., H.B.); and Eagle Vision Pharmaceutical Corporation, Exton, PA (P.H.)
| | - Phillip Harnish
- From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (J.R., C.H., H.B.); and Eagle Vision Pharmaceutical Corporation, Exton, PA (P.H.)
| | - Eric Rulifson
- From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (J.R., C.H., H.B.); and Eagle Vision Pharmaceutical Corporation, Exton, PA (P.H.)
| | - Phillip C Yang
- From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (J.R., C.H., H.B.); and Eagle Vision Pharmaceutical Corporation, Exton, PA (P.H.).
| |
Collapse
|
25
|
Crisostomo V, Casado JG, Baez-Diaz C, Blazquez R, Sanchez-Margallo FM. Allogeneic cardiac stem cell administration for acute myocardial infarction. Expert Rev Cardiovasc Ther 2015; 13:285-99. [DOI: 10.1586/14779072.2015.1011621] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Purvis N, Bahn A, Katare R. The Role of MicroRNAs in Cardiac Stem Cells. Stem Cells Int 2015; 2015:194894. [PMID: 25802528 PMCID: PMC4329769 DOI: 10.1155/2015/194894] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 12/14/2014] [Accepted: 01/05/2015] [Indexed: 12/12/2022] Open
Abstract
Stem cells are considered as the next generation drug treatment in patients with cardiovascular disease who are resistant to conventional treatment. Among several stem cells used in the clinical setting, cardiac stem cells (CSCs) which reside in the myocardium and epicardium of the heart have been shown to be an effective option for the source of stem cells. In normal circumstances, CSCs primarily function as a cell store to replace the physiologically depleted cardiovascular cells, while under the diseased condition they have been shown to experimentally regenerate the diseased myocardium. In spite of their major functional role, molecular mechanisms regulating the CSCs proliferation and differentiation are still unknown. MicroRNAs (miRs) are small, noncoding RNA molecules that regulate gene expression at the posttranscriptional level. Recent studies have demonstrated the important role of miRs in regulating stem cell proliferation and differentiation, as well as other physiological and pathological processes related to stem cell function. This review summarises the current understanding of the role of miRs in CSCs. A deeper understanding of the mechanisms by which miRs regulate CSCs may lead to advances in the mode of stem cell therapies for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Nima Purvis
- Department of Physiology-Heart Otago, Otago School of Medical Sciences, University of Otago, Dunedin 9010, New Zealand
| | - Andrew Bahn
- Department of Physiology-Heart Otago, Otago School of Medical Sciences, University of Otago, Dunedin 9010, New Zealand
| | - Rajesh Katare
- Department of Physiology-Heart Otago, Otago School of Medical Sciences, University of Otago, Dunedin 9010, New Zealand
| |
Collapse
|
27
|
Agonists of growth hormone-releasing hormone stimulate self-renewal of cardiac stem cells and promote their survival. Proc Natl Acad Sci U S A 2014; 111:17260-5. [PMID: 25404316 DOI: 10.1073/pnas.1420375111] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The beneficial effects of agonists of growth hormone-releasing hormone receptor (GHRH-R) in heart failure models are associated with an increase in the number of ckit(+) cardiac stem cells (CSCs). The goal of the present study was to determine the presence of GHRH-R in CSCs, the effect of GHRH-R agonists on their proliferation and survival, and the mechanisms involved. We investigated the expression of GHRH-R in CSCs of different species and the effect of GHRH-R agonists on their cell proliferation and survival. GHRH-R is expressed in ckit(+) CSCs isolated from mouse, rat, and pig. Treatment of porcine CSCs with the GHRH-R agonist JI-38 significantly increased the rate of cell division. Similar results were observed with other GHRH-R agonists, MR-356 and MR-409. JI-38 exerted a protective effect on survival of porcine CSCs under conditions of oxidative stress induced by exposure to hydrogen peroxide. Treatment with JI-38 before exposure to peroxide significantly reduced cell death. A similar effect was observed with MR-356. Addition of GHRH-R agonists to porcine CSCs induced activation of ERK and AKT pathways as determined by increased expression of phospho-ERK and phospho-AKT. Inhibitors of ERK and AKT pathways completely reversed the effect of GHRH-R agonists on CSC proliferation. Our findings extend the observations of the expression of GHRH-R by CSCs and demonstrate that GHRH-R agonists have a direct effect on proliferation and survival of CSCs. These results support the therapeutic use of GHRH-R agonists for stimulating endogenous mechanisms for myocardial repair or for preconditioning of stem cells before transplantation.
Collapse
|
28
|
Zhang H, Wang H, Li N, Duan CE, Yang YJ. Cardiac progenitor/stem cells on myocardial infarction or ischemic heart disease: what we have known from current research. Heart Fail Rev 2014; 19:247-58. [PMID: 23381197 DOI: 10.1007/s10741-013-9372-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stem cell therapy has become a promising method for many diseases, including ischemic heart disease and heart failure. Several kinds of stem cells have been studied for heart diseases. Of them, bone marrow stem cells (BMSCs), which have been used in many clinical trials, are the most understood one. But the effect of BMSCs is mediated by paracrine factors instead of direct turning into cardiomyocytes. On the other hand, a lot of evidences have shown that resident cardiac stem cells could turn into cardiomyocytes directly in vivo. Currently, seven kinds of resident cardiac stem cells have been discovered. However, their mechanisms, development origins, and relationships have yet to be fully understood. Moreover, two Phase I clinical trials have been performed recently. They show promising results. In this review, we will summarize the current research on these cardiac stem cells and the methods to enhance their effects in clinical applications.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Translational Cardiovascular Medicine, Fuwai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | | | | | | | | |
Collapse
|
29
|
Hudson JE, Porrello ER. The non-coding road towards cardiac regeneration. J Cardiovasc Transl Res 2014; 6:909-23. [PMID: 23797382 DOI: 10.1007/s12265-013-9486-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 06/05/2013] [Indexed: 12/31/2022]
Abstract
Our understanding of cardiovascular disease has evolved rapidly, leading to a number of treatments that have improved patient quality of life and mortality rates. However, there is still no cure for heart failure. This has led to the pursuit of cardiac regeneration to prevent, and ultimately cure, this debilitating condition. To this end, several approaches have been proposed, including activation of cardiomyocyte proliferation, activation of endogenous or exogenous stem/progenitor cells, delivery of de novo cardiomyocytes, and in situ direct reprogramming of cardiac fibroblasts. While these different methodologies are currently being intensely investigated, there are still a number of caveats limiting their application in the clinic. Given the emerging regulatory potential of non-coding RNAs for controlling diverse cellular processes, these molecules may offer potential solutions in this pursuit of cardiac regeneration. In this concise review, we discuss the potential role of non-coding RNAs in a variety of different cardiac regenerative approaches.
Collapse
|
30
|
ZHAO JINGJIE, LIU XIAOCHENG, KONG FENG, QI TONGGANG, CHENG GUANGHUI, WANG JUE, SUN CHAO, LUAN YUN. Bone marrow mesenchymal stem cells improve myocardial function in a swine model of acute myocardial infarction. Mol Med Rep 2014; 10:1448-54. [DOI: 10.3892/mmr.2014.2378] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/06/2013] [Indexed: 11/05/2022] Open
|
31
|
Mayfield AE, Tilokee EL, Davis DR. Resident cardiac stem cells and their role in stem cell therapies for myocardial repair. Can J Cardiol 2014; 30:1288-98. [PMID: 25092406 DOI: 10.1016/j.cjca.2014.03.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/14/2014] [Accepted: 03/17/2014] [Indexed: 02/06/2023] Open
Abstract
Despite advances in treatment, heart failure remains one of the top killers in Canada. This recognition motivated a new research focus to harness the fundamental repair properties of the human heart. Since then, cardiac stem cells (CSCs) have emerged as a promising cell candidate to regenerate damaged hearts. The rationale of this approach is simple with ex vivo amplification of CSCs from clinical-grade biopsies, followed by delivery to areas of injury, where they engraft and regenerate the heart. In this review we will summarize recent advances and discuss future developments in CSC-mediated cardiac repair to treat the growing number of Canadians living with and dying from heart failure.
Collapse
Affiliation(s)
| | | | - Darryl R Davis
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
32
|
Abstract
In the last two decades, morbidity and mortality of patients with chronic heart failure could be further reduced by improved pharmacological and cardiac device therapies. However, despite these advances, there is a substantial unmet need for novel therapies, ideally specifically addressing repair and regeneration of the damaged or lost myocardium and its vasculature, given the limited endogenous potential for renewal of cardiomyocytes in adults. In this respect, cardiac cell-based therapies have gained substantial attention and have entered clinical feasibility and safety studies a decade ago. Different cell-types have been used, including bone marrow-derived mononuclear cells, bone marrow-derived mesenchymal stem cells, mobilized CD34+ cells, and more recently cardiac-derived c-kit+ stem cells and cardiosphere-derived cells. Some of these studies have suggested a potential of cell-based therapies to reduce cardiac scar size and to improve cardiac function in patients with ischemic cardiomyopathy. While first clinical trials examining the impact of cardiac cell-based therapy on clinical outcome have now been initiated, improved understanding of underlying mechanisms of action of cell-based therapies may lead to strategies for optimization of the cardiac repair potential of the applied cells. In experimental studies, direct in vivo reprogramming of cardiac fibroblasts towards cardiomyocytes, and microRNA-based promotion of cardiomyocyte proliferation and cardiac repair have recently been reported that may represent novel therapeutic approaches for cardiac regeneration that would not need cell-administration but rather directly stimulate endogenous cardiac regeneration. This review will focus mainly on recently completed clinical trials (within the last 2 years) investigating cardiac cell-based therapies and the current status of experimental studies for cardiac cell-based repair and regeneration with a potential for later translation into clinical studies in the future.
Collapse
Affiliation(s)
- Philipp Jakob
- Cardiovascular Center, University Hospital Zurich, Zurich, Switzerland
| | | |
Collapse
|
33
|
Exosomal signaling during hypoxia mediates microvascular endothelial cell migration and vasculogenesis. PLoS One 2013; 8:e68451. [PMID: 23861904 PMCID: PMC3704530 DOI: 10.1371/journal.pone.0068451] [Citation(s) in RCA: 271] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/30/2013] [Indexed: 01/26/2023] Open
Abstract
Vasculogenesis and angiogenesis are critical processes in fetal circulation and placental vasculature development. Placental mesenchymal stem cells (pMSC) are known to release paracrine factors (some of which are contained within exosomes) that promote angiogenesis and cell migration. The aims of this study were: to determine the effects of oxygen tension on the release of exosomes from pMSC; and to establish the effects of pMSC-derived exosomes on the migration and angiogenic tube formation of placental microvascular endothelial cells (hPMEC). pMSC were isolated from placental villi (8-12 weeks of gestation, n = 6) and cultured under an atmosphere of 1%, 3% or 8% O2. Cell-conditioned media were collected and exosomes (exo-pMSC) isolated by differential and buoyant density centrifugation. The dose effect (5-20 µg exosomal protein/ml) of pMSC-derived exosomes on hPMEC migration and tube formation were established using a real-time, live-cell imaging system (Incucyte™). The exosome pellet was resuspended in PBS and protein content was established by mass spectrometry (MS). Protein function and canonical pathways were identified using the PANTHER program and Ingenuity Pathway Analysis, respectively. Exo-pMSC were identified, by electron microscopy, as spherical vesicles, with a typical cup-shape and diameters around of 100 nm and positive for exosome markers: CD63, CD9 and CD81. Under hypoxic conditions (1% and 3% O2) exo-pMSC released increased by 3.3 and 6.7 folds, respectively, when compared to the controls (8% O2; p<0.01). Exo-pMSC increased hPMEC migration by 1.6 fold compared to the control (p<0.05) and increased hPMEC tube formation by 7.2 fold (p<0.05). MS analysis identified 390 different proteins involved in cytoskeleton organization, development, immunomodulatory, and cell-to-cell communication. The data obtained support the hypothesis that pMSC-derived exosomes may contribute to placental vascular adaptation to low oxygen tension under both physiological and pathological conditions.
Collapse
|