1
|
Zelko IN, Hussain A, Malovichko MV, Wickramasinghe N, Srivastava S. Benzene metabolites increase vascular permeability by activating heat shock proteins and Rho GTPases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626801. [PMID: 39677674 PMCID: PMC11643022 DOI: 10.1101/2024.12.04.626801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Benzene is a ubiquitous environmental and occupational pollutant abundant in household products, petrochemicals, and cigarette smoke. It is also a well-known carcinogen and hematopoietic toxin. Population-based studies indicate an increased risk of heart failure in subjects exposed to inhaled benzene, which coincides with the infiltration of immune cells into the myocardium. However, the mechanisms of benzene-induced cardiovascular disease remain unknown. Our data suggests that benzene metabolites trans,trans-muconaldehyde (MA), and hydroquinone (HQ) propagate endothelial activation and apoptosis analyzed by endothelial-specific microparticles in C57BL/6J mice plasma. Subcutaneous injections of MA and HQ increased vascular permeability by 1.54 fold and 1.27 fold correspondingly. In addition, the exposure of primary cardiac microvascular endothelial cells to MA increased vascular permeability detected by transendothelial monolayer resistance and by fluorescently labeled dextrans diffusion. The bulk RNA sequencing of endothelial cells exposed to MA for 2, 6, and 24 hours showed MA-dependent upregulation of heat shock-related pathways at 2 and 6 hours, dysregulation of GTPases at 6 hours, and altered cytoskeleton organization at 24 hours of exposure. We found that the HSP70 protein induced by MA in endothelial cells is colocalized with F-actin foci. HSP70 inhibitor 17AAG and HSP90 inhibitor JG98 attenuated MA-induced endothelial permeability, while HSP activator TRC enhanced endothelial leakage. Moreover, MA induced Rac1 GTPase activity, while Rho GTPase inhibitor Y-27632 attenuated MA-induced endothelial permeability. We showed that benzene metabolites compromised the endothelial barrier by altering HSP- and GTPase-related signaling pathways.
Collapse
Affiliation(s)
- Igor N. Zelko
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202
- Envirome Institute, University of Louisville, Louisville, KY 40202
- Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Ahtesham Hussain
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202
- Envirome Institute, University of Louisville, Louisville, KY 40202
- Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Marina V. Malovichko
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202
- Envirome Institute, University of Louisville, Louisville, KY 40202
- Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Nalinie Wickramasinghe
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202
- Envirome Institute, University of Louisville, Louisville, KY 40202
- Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Sanjay Srivastava
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202
- Envirome Institute, University of Louisville, Louisville, KY 40202
- Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| |
Collapse
|
2
|
Huang Y, Zhang K, Wang X, Guo K, Li X, Chen F, Du R, Li S, Li L, Yang Z, Zhuo D, Wang B, Wang W, Hu Y, Jiang M, Fan G. Multi-omics approach for identification of molecular alterations of QiShenYiQi dripping pills in heart failure with preserved ejection fraction. JOURNAL OF ETHNOPHARMACOLOGY 2023; 315:116673. [PMID: 37268257 DOI: 10.1016/j.jep.2023.116673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/07/2023] [Accepted: 05/21/2023] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine theory believes that qi deficiency and blood stasis are the key pathogenesis of heart failure with preserved ejection fraction (HFpEF). As a representative prescription for replenishing qi and activating blood, QiShenYiQi dripping pills (QSYQ) has been used for treating heart diseases. However, the pharmacological mechanism of QSYQ in improving HFpEF is not well understood. AIM OF THE STUDY The objective of the study is to investigate the cardioprotective effect and mechanism of QSYQ in HFpEF using the phenotypic dataset of HFpEF. MATERIALS AND METHODS HFpEF mouse models established by feeding mice combined high-fat diet and Nω-nitro-L-arginine methyl ester drinking water were treated with QSYQ. To reveal causal genes, we performed a multi-omics study, including integrative analysis of transcriptomics, proteomics, and metabolomics data. Moreover, adeno-associated virus (AAV)-based PKG inhibition confirmed that QSYQ mediated myocardial remodeling through PKG. RESULTS Computational systems pharmacological analysis based on human transcriptome data for HFpEF showed that QSYQ could potentially treat HFpEF through multiple signaling pathways. Subsequently, integrative analysis of transcriptome and proteome showed alterations in gene expression in HFpEF. QSYQ regulated genes involved in inflammation, energy metabolism, myocardial hypertrophy, myocardial fibrosis, and cGMP-PKG signaling pathway, confirming its function in the pathogenesis of HFpEF. Metabolomics analysis revealed fatty acid metabolism as the main mechanism by which QSYQ regulates HFpEF myocardial energy metabolism. Importantly, we found that the myocardial protective effect of QSYQ on HFpEF mice was attenuated after RNA interference-mediated knock-down of myocardial PKG. CONCLUSION This study provides mechanistic insights into the pathogenesis of HFpEF and molecular mechanisms of QSYQ in HFpEF. We also identified the regulatory role of PKG in myocardial stiffness, making it an ideal therapeutic target for myocardial remodeling.
Collapse
Affiliation(s)
- Yuting Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, 341000, China
| | - Kai Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300193, China
| | - Xiao Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kaimin Guo
- Cloudphar Pharmaceuticals Co., Ltd, Shenzhen, 518000, China
| | - Xiaoqiang Li
- Cloudphar Pharmaceuticals Co., Ltd, Shenzhen, 518000, China
| | - Feng Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ruijiao Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Sheng Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lan Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhihui Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Danping Zhuo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Bingkai Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wenjia Wang
- Cloudphar Pharmaceuticals Co., Ltd, Shenzhen, 518000, China
| | - Yunhui Hu
- Cloudphar Pharmaceuticals Co., Ltd, Shenzhen, 518000, China.
| | - Miaomiao Jiang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300193, China.
| |
Collapse
|
3
|
Duplàa C, Couffinhal T. [Accumulation of fluid in the myocardial extracellular space: a major cause of heart failure]. Med Sci (Paris) 2023; 39:293-295. [PMID: 36943129 DOI: 10.1051/medsci/2023022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Affiliation(s)
- Cécile Duplàa
- Inserm U1034, biologie des maladies cardiovasculaires, Pessac, France
| | | |
Collapse
|
4
|
Abelanet A, Camoin M, Rubin S, Bougaran P, Delobel V, Pernot M, Forfar I, Guilbeau-Frugier C, Galès C, Bats ML, Renault MA, Dufourcq P, Couffinhal T, Duplàa C. Increased Capillary Permeability in Heart Induces Diastolic Dysfunction Independently of Inflammation, Fibrosis, or Cardiomyocyte Dysfunction. Arterioscler Thromb Vasc Biol 2022; 42:745-763. [PMID: 35510550 DOI: 10.1161/atvbaha.121.317319] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND While endothelial dysfunction is suggested to contribute to heart failure with preserved ejection fraction pathophysiology, understanding the importance of the endothelium alone, in the pathogenesis of diastolic abnormalities has not yet been fully elucidated. Here, we investigated the consequences of specific endothelial dysfunction on cardiac function, independently of any comorbidity or risk factor (diabetes or obesity) and their potential effect on cardiomyocyte. METHODS The ubiquitine ligase Pdzrn3, expressed in endothelial cells (ECs), was shown to destabilize tight junction. A genetic mouse model in which Pdzrn3 is overexpressed in EC (iEC-Pdzrn3) in adults was developed. RESULTS EC-specific Pdzrn3 expression increased cardiac leakage of IgG and fibrinogen blood-born molecules. The induced edema demonstrated features of diastolic dysfunction, with increased end-diastolic pressure, alteration of dP/dt min, increased natriuretic peptides, in addition to limited exercise capacity, without major signs of cardiac fibrosis and inflammation. Electron microscopic images showed edema with disrupted EC-cardiomyocyte interactions. RNA sequencing analysis of gene expression in cardiac EC demonstrated a decrease in genes coding for endothelial extracellular matrix proteins, which could be related to the fragile blood vessel phenotype. Irregularly shaped capillaries with hemorrhages were found in heart sections of iEC-Pdzrn3 mice. We also found that a high-fat diet was not sufficient to provoke diastolic dysfunction; high-fat diet aggravated cardiac inflammation, associated with an altered cardiac metabolic signature in EC-Pdzrn3 mice, reminiscent of heart failure with preserved ejection fraction features. CONCLUSIONS An increase of endothelial permeability is responsible for mediating diastolic dysfunction pathophysiology and for aggravating detrimental effects of a high-fat diet on cardiac inflammation and metabolism.
Collapse
Affiliation(s)
- Alice Abelanet
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.)
| | - Marion Camoin
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.).,CHU de Bordeaux, Pessac, France (M.C., S.R., M.P., M.L.B., P.D., T.C.)
| | - Sebastien Rubin
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.).,CHU de Bordeaux, Pessac, France (M.C., S.R., M.P., M.L.B., P.D., T.C.)
| | - Pauline Bougaran
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.)
| | - Valentin Delobel
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.)
| | - Mathieu Pernot
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.).,CHU de Bordeaux, Pessac, France (M.C., S.R., M.P., M.L.B., P.D., T.C.)
| | - Isabelle Forfar
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.)
| | - Céline Guilbeau-Frugier
- Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, INSERM U1048, I2MC, France (C.G.-F., C.G.)
| | - Céline Galès
- Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, INSERM U1048, I2MC, France (C.G.-F., C.G.)
| | - Marie Lise Bats
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.).,CHU de Bordeaux, Pessac, France (M.C., S.R., M.P., M.L.B., P.D., T.C.)
| | - Marie-Ange Renault
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.)
| | - Pascale Dufourcq
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.).,CHU de Bordeaux, Pessac, France (M.C., S.R., M.P., M.L.B., P.D., T.C.)
| | - Thierry Couffinhal
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.).,CHU de Bordeaux, Pessac, France (M.C., S.R., M.P., M.L.B., P.D., T.C.)
| | - Cécile Duplàa
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.)
| |
Collapse
|
5
|
Pandey A, Shah SJ, Butler J, Kellogg DL, Lewis GD, Forman DE, Mentz RJ, Borlaug BA, Simon MA, Chirinos JA, Fielding RA, Volpi E, Molina AJA, Haykowsky MJ, Sam F, Goodpaster BH, Bertoni AG, Justice JN, White JP, Ding J, Hummel SL, LeBrasseur NK, Taffet GE, Pipinos II, Kitzman D. Exercise Intolerance in Older Adults With Heart Failure With Preserved Ejection Fraction: JACC State-of-the-Art Review. J Am Coll Cardiol 2021; 78:1166-1187. [PMID: 34503685 PMCID: PMC8525886 DOI: 10.1016/j.jacc.2021.07.014] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 12/16/2022]
Abstract
Exercise intolerance (EI) is the primary manifestation of chronic heart failure with preserved ejection fraction (HFpEF), the most common form of heart failure among older individuals. The recent recognition that HFpEF is likely a systemic, multiorgan disorder that shares characteristics with other common, difficult-to-treat, aging-related disorders suggests that novel insights may be gained from combining knowledge and concepts from aging and cardiovascular disease disciplines. This state-of-the-art review is based on the outcomes of a National Institute of Aging-sponsored working group meeting on aging and EI in HFpEF. We discuss aging-related and extracardiac contributors to EI in HFpEF and provide the rationale for a transdisciplinary, "gero-centric" approach to advance our understanding of EI in HFpEF and identify promising new therapeutic targets. We also provide a framework for prioritizing future research, including developing a uniform, comprehensive approach to phenotypic characterization of HFpEF, elucidating key geroscience targets for treatment, and conducting proof-of-concept trials to modify these targets.
Collapse
Affiliation(s)
- Ambarish Pandey
- University of Texas Southwestern Medical Center, Dallas, Texas, USA. https://twitter.com/ambarish4786
| | - Sanjiv J Shah
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Javed Butler
- University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Dean L Kellogg
- University of Texas Health Science Center and GRECC, South Texas Veterans Affairs Health System, San Antonio, Texas, USA
| | | | - Daniel E Forman
- University of Pittsburgh and VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - Robert J Mentz
- Duke Clinical Research Center, Durham, North Carolina, USA
| | | | - Marc A Simon
- University of Pittsburgh and VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | | | | | - Elena Volpi
- University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | | | | | - Flora Sam
- Boston University School of Medicine, Boston, Massachusetts, USA
| | - Bret H Goodpaster
- Advent Health Translational Research Institute, Orlando, Florida, USA
| | - Alain G Bertoni
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jamie N Justice
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | | | - Jingzhone Ding
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Scott L Hummel
- University of Michigan and the VA Ann Arbor Health System, Ann Arbor, Michigan, USA
| | | | | | | | - Dalane Kitzman
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
| |
Collapse
|
6
|
Abstract
Heart failure is a complex clinical syndrome and represents the final path of numerous heart diseases. Coronary artery disease is recognized as the primary risk factor for heart failure development, being the main etiological factor in more than 50% of heart failure patients in North America and Europe. Regardless of overt coronary artery disease, myocardial ischemia is a common finding in failing hearts, likely due to structural or functional coronary circulation alterations. Ischemia is a self-propagating process which irreversibly impairs the cardiac function and negatively impacts prognosis. Thus, a better and thorough understanding of myocardial ischemia pathophysiology in heart failure would likely lead to significantly improved outcomes in these patients. This review aims to describe the mechanisms of myocardial ischemia and coronary artery disease in heart failure, focusing on coronary circulation dysfunctions due to increased parietal stress or non-obstructive coronary disease, and discussing the association and management of coronary artery disease in patients with heart failure.
Collapse
Affiliation(s)
- Beniamino R Pagliaro
- Cardio Center, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy
| | - Francesco Cannata
- Cardio Center, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy
| | - Giulio G Stefanini
- Cardio Center, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy. .,Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy.
| | | |
Collapse
|
7
|
Elgendy IY, Pepine CJ. Heart Failure With Preserved Ejection Fraction: Is Ischemia Due to Coronary Microvascular Dysfunction a Mechanistic Factor? Am J Med 2019; 132:692-697. [PMID: 30684452 PMCID: PMC7722793 DOI: 10.1016/j.amjmed.2018.12.038] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 12/17/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is increasing in prevalence and has no guideline-recommended therapy, related in part to a lack of mechanism. Traditionally, HFpEF was thought to be secondary to afterload overload due to systemic hypertension; however, accumulating evidence suggests that HFpEF continues to worsen despite adequate control of blood pressure. Emerging data support the suggestion that myocardial ischemia secondary to coronary microvascular dysfunction could be the new paradigm pathophysiology. Several prospective, observational cohort studies indicate that the outcomes of patients with microvascular dysfunction, after an interval of several years, are dominated by HFpEF hospitalizations. Further, the most prevalent clinical phenotype (eg older women with multiple comorbidities) of patients with HFpEF resembles those with coronary microvascular dysfunction, albeit older. In this review, we provide in-depth insight about this emerging HFpEF paradigm, discuss potential therapeutic implications of this pathophysiology, and summarize some important knowledge gaps.
Collapse
Affiliation(s)
- Islam Y Elgendy
- Division of Cardiovascular Medicine, Department of Medicine, University of Florida, Gainesville
| | - Carl J Pepine
- Division of Cardiovascular Medicine, Department of Medicine, University of Florida, Gainesville.
| |
Collapse
|
8
|
Batko B, Maga P, Urbanski K, Ryszawa-Mrozek N, Schramm-Luc A, Koziej M, Mikolajczyk T, McGinnigle E, Czesnikiewicz-Guzik M, Ceranowicz P, Guzik TJ. Microvascular dysfunction in ankylosing spondylitis is associated with disease activity and is improved by anti-TNF treatment. Sci Rep 2018; 8:13205. [PMID: 30181568 PMCID: PMC6123474 DOI: 10.1038/s41598-018-31550-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/20/2018] [Indexed: 12/26/2022] Open
Abstract
Ankylosing spondylitis (AS) is associated with high cardiovascular morbidity and mortality. Recent studies indicate that microvascular dysfunction may underlie cardiovascular risk in AS. We hypothesized, that microvascular morphology and dysfunction is linked to AS activity and is modifiable by TNF-α inhibitor (TNFi) treatment. Functional Laser Doppler Flowmetry with post-occlusive reactive hyperemia, and structural nailfold capillaroscopy were performed in 54 patients with AS and 28 matched controls. Active AS was diagnosed based on BASDAI ≥ 4 (n = 37). Effects of 3-month TNFi on microcirculation in active AS were studied. AS was associated with prolonged time to peak hyperemia compared to healthy controls. High disease activity was associated with increased time to peak hyperemia and decreased peak hyperemia when compared to patients with inactive AS. In capillaroscopy, AS was associated with morphological abnormalities indicating increased neoangiogenesis and pericapillary edema compared to controls. Microvascular function improved following 3 months of TNFi in reference to basal flow as well as post-occlusive parameters. TNFi reduced pericapillary edema, while other parameters of capillary morphology remained unchanged. Microvascular dysfunction and capillary neovascular formation are associated with disease activity of AS. Anti-TNF-α treatment may restore microcirculation function and capillary edema but does not modify microvascular structural parameters.
Collapse
Affiliation(s)
- Bogdan Batko
- Department of Rheumatology, J Dietl Hospital, Krakow, Poland
| | - Pawel Maga
- 0000 0001 2162 9631grid.5522.0Department of Angiology, II Chair of Internal Medicine, Jagiellonian University School of Medicine, Krakow, Poland
| | - Karol Urbanski
- 0000 0001 2162 9631grid.5522.0Department of Internal and Agricultural Medicine, Jagiellonian University School of Medicine, Krakow, Poland
| | - Natalia Ryszawa-Mrozek
- 0000 0001 2162 9631grid.5522.0Department of Internal and Agricultural Medicine, Jagiellonian University School of Medicine, Krakow, Poland
| | - Agata Schramm-Luc
- 0000 0001 2162 9631grid.5522.0Department of Internal and Agricultural Medicine, Jagiellonian University School of Medicine, Krakow, Poland
| | - Mateusz Koziej
- 0000 0001 2162 9631grid.5522.0Department of Anatomy, Jagiellonian University School of Medicine, Krakow, Poland
| | - Tomasz Mikolajczyk
- 0000 0001 2193 314Xgrid.8756.cBHF Centre of Research Excellence, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Eilidh McGinnigle
- 0000 0001 2193 314Xgrid.8756.cBHF Centre of Research Excellence, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Marta Czesnikiewicz-Guzik
- 0000 0001 2162 9631grid.5522.0Department of Internal and Agricultural Medicine, Jagiellonian University School of Medicine, Krakow, Poland ,0000 0001 2193 314Xgrid.8756.cInstitute of Infection Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Piotr Ceranowicz
- 0000 0001 2162 9631grid.5522.0Department of Physiology, Jagiellonian University School of Medicine, Krakow, Poland
| | - Tomasz J. Guzik
- 0000 0001 2162 9631grid.5522.0Department of Internal and Agricultural Medicine, Jagiellonian University School of Medicine, Krakow, Poland ,0000 0001 2193 314Xgrid.8756.cBHF Centre of Research Excellence, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
9
|
Kristensen SL, Rørth R, Jhund PS, Shen L, Lee MMY, Petrie MC, Køber L, McMurray JJV. Microvascular complications in diabetes patients with heart failure and reduced ejection fraction-insights from the Beta-blocker Evaluation of Survival Trial. Eur J Heart Fail 2018; 20:1549-1556. [PMID: 29727039 DOI: 10.1002/ejhf.1201] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/11/2018] [Accepted: 03/26/2018] [Indexed: 12/28/2022] Open
Abstract
AIMS The role of microvascular complications in the risk conferred by diabetes in heart failure with reduced ejection fraction (HFrEF) is unknown. METHODS AND RESULTS We studied 2707 HFrEF patients in the Beta-blocker Evaluation of Survival Trial (BEST), stratified into three groups: no diabetes and diabetes without or with microvascular complications (neuropathy, nephropathy, or retinopathy). The risks of the composite of cardiovascular death or heart failure hospitalization, and all-cause death, were studied using Cox regression analyses adjusted for other prognostic variables. Overall, 964 (36%) patients had diabetes, of which 313 (32%) had microvascular complications. Patients with microvascular complications had more severe symptoms (New York Heart Association class IV 12% vs. 9% diabetes with no complications and 7% no diabetes), and worse quality of life (Minnesota Living with Heart Failure median score 60 vs. 54 and 51 points). In patients with diabetes and complications, the rate of the composite outcome was 50 per 100 person-years of follow-up (compared with 34 and 29 in those with diabetes and no microvascular complications and participants without diabetes, respectively). Compared to patients without diabetes, the adjusted hazard ratio (HR) for the composite outcome was 1.44 [95% confidence interval (CI) 1.22-1.70] and 1.18 (95% CI 1.03-1.35) for patients with diabetes with and without complications, respectively. The risk of all-cause mortality was similarly elevated: adjusted HR 1.42 (95% CI 1.16-1.74) and 1.20 (95% CI 1.01-1.42), respectively. CONCLUSION In HFrEF, diabetes with microvascular complications is associated with worse symptoms and outcomes than diabetes without microvascular complications. Prevention of microvascular complications has the potential to improve HFrEF outcomes.
Collapse
Affiliation(s)
- Søren L Kristensen
- BHF Cardiovascular Research Centre, University of Glasgow, Glasgow, UK.,Department of Cardiology, Rigshospitalet University Hospital, Copenhagen, Denmark
| | - Rasmus Rørth
- BHF Cardiovascular Research Centre, University of Glasgow, Glasgow, UK.,Department of Cardiology, Rigshospitalet University Hospital, Copenhagen, Denmark
| | - Pardeep S Jhund
- BHF Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Li Shen
- BHF Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Matthew M Y Lee
- BHF Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Mark C Petrie
- BHF Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Lars Køber
- Department of Cardiology, Rigshospitalet University Hospital, Copenhagen, Denmark
| | - John J V McMurray
- BHF Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | | |
Collapse
|