1
|
Sharma D, Karuna, Gupta H, Gupta A, Kumari M, Varshney R, Meena RC. Identification and validation of hypoxia-responsive signature pathways in human cardiomyocytes. 3 Biotech 2025; 15:103. [PMID: 40177008 PMCID: PMC11958886 DOI: 10.1007/s13205-025-04271-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/10/2025] [Indexed: 04/05/2025] Open
Abstract
The present study was designed to investigate the effect of hypoxia (1% O2) for 24 h in human AC16 cells by analyzing alterations in the expression of cardiac markers and signature pathways using immunocytochemistry and next-generation sequencing respectively. The Gene set enrichment analysis and Cytoscape software were used for data analysis and visualization respectively. Sequencing data validation and functional characterization were done using flow cytometry, qRT-PCR, an antibody array, and immunoblotting. The result revealed that the expression levels of troponins decreased; however, the expression levels of VEGF-A and HIF-alpha increased under hypoxia compared with unexposed control. A total of 2120 genes corresponding to 457 gene sets were significantly altered, 153 of which were significantly upregulated and 304 of which were downregulated in hypoxic cardiomyocytes. The significantly altered gene sets corresponded to key cellular and molecular pathways, such as cardiac hypertrophy, transcription factors, microRNAs, mitochondrial abnormalities, RNA processing, cell cycle, and biological oxidation pathways. Thus, this analysis revealed multiple pathways associated with hypoxia which provides valuable insights into the molecular mechanisms underlying human cardiomyocytes, identifying potential targets for addressing cardiac illnesses induced by hypoxia. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-025-04271-z.
Collapse
Affiliation(s)
- Dolly Sharma
- Department of Disruptive and Deterrence Technologies, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054 India
| | - Karuna
- Department of Disruptive and Deterrence Technologies, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054 India
| | - Harshita Gupta
- Department of Disruptive and Deterrence Technologies, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054 India
| | - Avinash Gupta
- Department of Disruptive and Deterrence Technologies, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054 India
| | - Manisha Kumari
- Department of Disruptive and Deterrence Technologies, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054 India
| | - Rajeev Varshney
- Department of Disruptive and Deterrence Technologies, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054 India
| | - Ramesh C. Meena
- Department of Disruptive and Deterrence Technologies, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054 India
| |
Collapse
|
2
|
Gumilar KE, Rauf KBA, Akbar MIA, Imanadha NC, Atmojo S, Putri AY, Dachlan EG, Dekker G. Connecting the Dots: Exploring the Interplay Between Preeclampsia and Peripartum Cardiomyopathy. J Pregnancy 2024; 2024:7713590. [PMID: 38957710 PMCID: PMC11219213 DOI: 10.1155/2024/7713590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 07/04/2024] Open
Abstract
Preeclampsia and peripartum cardiomyopathy (PPCM) are significant obstetric problems that can arise during or after pregnancy. Both are known to be causes of maternal mortality and morbidity. Several recent studies have suggested a link between preeclampsia and the pathophysiology of PPCM. However, the common thread that connects the two has yet to be thoroughly and fully articulated. Here, we investigate the complex dynamics of preeclampsia and PPCM in this review. Our analysis focuses mainly on inflammatory and immunological responses, endothelial dysfunction as a shared pathway, and potential genetic predisposition to both diseases. To begin, we will look at how excessive inflammatory and immunological responses can lead to clinical symptoms of both illnesses, emphasizing the role of proinflammatory cytokines and immune cells in modifying vascular and tissue responses. Second, we consider endothelial dysfunction to be a crucial point at which endothelial damage and activation contribute to pathogenesis through increased vascular permeability, vascular dysfunction, and thrombus formation. Finally, we examine recent information suggesting genetic predispositions to preeclampsia and PPCM, such as genetic variants in genes involved in the management of blood pressure, the inflammatory response, and heart structural integrity. With this synergistic study, we seek to encourage more research and creative therapy solutions by emphasizing the need for an interdisciplinary approach to understanding and managing the connection between preeclampsia and PPCM.
Collapse
Affiliation(s)
- Khanisyah Erza Gumilar
- Department of Obstetrics and GynecologyFaculty of MedicineUniversitas Airlangga, Surabaya, Indonesia
- Department of Obstetrics and GynecologyHospital of Universitas Airlangga, Surabaya, Indonesia
| | | | - Muhammad Ilham Aldika Akbar
- Department of Obstetrics and GynecologyFaculty of MedicineUniversitas Airlangga, Surabaya, Indonesia
- Department of Obstetrics and GynecologyHospital of Universitas Airlangga, Surabaya, Indonesia
| | - Nareswari Cininta Imanadha
- Department of Obstetrics and GynecologyFaculty of MedicineUniversitas Airlangga, Surabaya, Indonesia
- Department of Obstetrics and GynecologyDr Soetomo General Hospital, Surabaya, Indonesia
| | - Susetyo Atmojo
- National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
| | - Alisia Yuana Putri
- Department of CardiologyFaculty of MedicineUniversitas Airlangga, Surabaya, Indonesia
| | - Erry Gumilar Dachlan
- Department of Obstetrics and GynecologyFaculty of MedicineUniversitas Airlangga, Surabaya, Indonesia
- Department of Obstetrics and GynecologyDr Soetomo General Hospital, Surabaya, Indonesia
| | - Gus Dekker
- Women's and Children's DivisionLyell McEwin HospitalMedical School NorthUniversity of Adelaide, Adelaide, Australia
| |
Collapse
|
3
|
Boen HM, Cherubin M, Franssen C, Gevaert AB, Witvrouwen I, Bosman M, Guns PJ, Heidbuchel H, Loeys B, Alaerts M, Van Craenenbroeck EM. Circulating MicroRNA as Biomarkers of Anthracycline-Induced Cardiotoxicity: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2024; 6:183-199. [PMID: 38774014 PMCID: PMC11103047 DOI: 10.1016/j.jaccao.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 05/24/2024] Open
Abstract
Close monitoring for cardiotoxicity during anthracycline chemotherapy is crucial for early diagnosis and therapy guidance. Currently, monitoring relies on cardiac imaging and serial measurement of cardiac biomarkers like cardiac troponin and natriuretic peptides. However, these conventional biomarkers are nonspecific indicators of cardiac damage. Exploring new, more specific biomarkers with a clear link to the underlying pathomechanism of cardiotoxicity holds promise for increased specificity and sensitivity in detecting early anthracycline-induced cardiotoxicity. miRNAs (microRNAs), small single-stranded, noncoding RNA sequences involved in epigenetic regulation, influence various physiological and pathological processes by targeting expression and translation. Emerging as new biomarker candidates, circulating miRNAs exhibit resistance to degradation and offer a direct pathomechanistic link. This review comprehensively outlines their potential as early biomarkers for cardiotoxicity and their pathomechanistic link.
Collapse
Affiliation(s)
- Hanne M. Boen
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Martina Cherubin
- Centrum of Medical Genetics, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Constantijn Franssen
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Andreas B. Gevaert
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Isabel Witvrouwen
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Matthias Bosman
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Hein Heidbuchel
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Bart Loeys
- Centrum of Medical Genetics, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Maaike Alaerts
- Centrum of Medical Genetics, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Emeline M. Van Craenenbroeck
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
4
|
Liu X, Li H, Hastings MH, Xiao C, Damilano F, Platt C, Lerchenmüller C, Zhu H, Wei XP, Yeri A, Most P, Rosenzweig A. miR-222 inhibits pathological cardiac hypertrophy and heart failure. Cardiovasc Res 2024; 120:262-272. [PMID: 38084908 PMCID: PMC10939454 DOI: 10.1093/cvr/cvad184] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 08/14/2023] [Accepted: 10/07/2023] [Indexed: 03/16/2024] Open
Abstract
AIMS Physiological cardiac hypertrophy occurs in response to exercise and can protect against pathological stress. In contrast, pathological hypertrophy occurs in disease and often precedes heart failure. The cardiac pathways activated in physiological and pathological hypertrophy are largely distinct. Our prior work demonstrated that miR-222 increases in exercised hearts and is required for exercise-induced cardiac hypertrophy and cardiomyogenesis. Here, we sought to define the role of miR-222 in pathological hypertrophy. METHODS AND RESULTS We found that miR-222 also increased in pathological hypertrophy induced by pressure overload. To assess its functional significance in this setting, we generated a miR-222 gain-of-function model through cardiac-specific constitutive transgenic miR-222 expression (TgC-miR-222) and used locked nucleic acid anti-miR specific for miR-222 to inhibit its effects. Both gain- and loss-of-function models manifested normal cardiac structure and function at baseline. However, after transverse aortic constriction (TAC), miR-222 inhibition accelerated the development of pathological hypertrophy, cardiac dysfunction, and heart failure. Conversely, miR-222-overexpressing mice had less pathological hypertrophy after TAC, as well as better cardiac function and survival. We identified p53-up-regulated modulator of apoptosis, a pro-apoptotic Bcl-2 family member, and the transcription factors, Hmbox1 and nuclear factor of activated T-cells 3, as direct miR-222 targets contributing to its roles in this context. CONCLUSION While miR-222 is necessary for physiological cardiac growth, it inhibits cardiac growth in response to pressure overload and reduces adverse remodelling and cardiac dysfunction. These findings support the model that physiological and pathological hypertrophy are fundamentally different. Further, they suggest that miR-222 may hold promise as a therapeutic target in pathological cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Xiaojun Liu
- Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Haobo Li
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Margaret H Hastings
- Institute for Heart and Brain Health, University of Michigan Medical Center, North Campus Research Complex, 2800 Plymouth Rd, NCRC Building 25, Ann Arbor, MI 48109-2800, USA
| | - Chunyang Xiao
- Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Federico Damilano
- Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Colin Platt
- Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Carolin Lerchenmüller
- Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Cardiology, Angiology, Pulmonology, University Hospital Heidelberg, INF 410, 69120 Heidelberg, Germany
- German Center for Heart and Cardiovascular Research (DZHK), Heidelberg/Mannheim, INF 410, 69120 Heidelberg, Germany
| | - Han Zhu
- Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Xin Paul Wei
- Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ashish Yeri
- Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Patrick Most
- Department of Cardiology, Angiology, Pulmonology, University Hospital Heidelberg, INF 410, 69120 Heidelberg, Germany
| | - Anthony Rosenzweig
- Institute for Heart and Brain Health, University of Michigan Medical Center, North Campus Research Complex, 2800 Plymouth Rd, NCRC Building 25, Ann Arbor, MI 48109-2800, USA
| |
Collapse
|
5
|
Ma'ayeh M, Cavus O, Hassen LJ, Johnson M, Summerfield T, Begom M, Cai A, Mehta L, Rood K, Bradley EA. Study of heart function in PRE-Eclampsia during and after PreGnancy (SHePREG): The pilot cohort. Am Heart J 2024; 269:45-55. [PMID: 38103586 PMCID: PMC10922975 DOI: 10.1016/j.ahj.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Pre-eclampsia with severe features (severe PreE) is associated with heart dysfunction, yet the impact beyond pregnancy, including its association with cardiomyopathic genetic polymorphisms, remains poorly understood. OBJECTIVE We aimed to characterize the temporal impact of severe PreE on heart function through the 4th trimester in women with and without deleterious cardiomyopathic genetic variants. METHODS Pregnant women were enrolled to undergo transthoracic echocardiography (TTE) in late pregnancy and 3 months postpartum. In women with severe PreE a targeted approach to identify pathogenic cardiomyopathic genetic polymorphisms was undertaken, and heart function was compared in carriers and noncarriers. RESULTS Pregnant women (32 ± 4 years old, severe PreE = 14, control = 8) were enrolled between 2019 - 2021. Women with severe PreE displayed attenuated myocardial relaxation (mitral e' = 11.0 ± 2.2 vs 13.2 ± 2.3 cm/sec, P < .05) in late pregnancy, and on in-silico analysis, deleterious cardiomyopathic variants were found in 58%. At 103 ± 33 days postpartum, control women showed stability in myocardial relaxation (Mitral e' Entry: 13.2 ± 2.3 vs Postpartum: 13.9 ± 1.7cm/sec, P = .464), and genetic negative severe PreE women (G-) demonstrated recovery of diastolic function to control level (Mitral e' Entry: 11.0 ± 3.0 vs Postpartum 13.7 ± 2.8cm/sec, P < .001), unlike their genetic positive (G+) counterparts (Mitral e' Entry: 10.5 ± 1.7 vs Postpartum 10.8 ± 2.4cm/sec, P = .853). CONCLUSIONS Postpartum recovery of heart function after severe PreE is attenuated in women with deleterious cardiomyopathic genetic polymorphisms.
Collapse
Affiliation(s)
- Marwan Ma'ayeh
- Division of Maternal Fetal Medicine, Christiana Hospital, Department of Obstetrics and Gynecology, Newark, DE
| | - Omer Cavus
- Pennsylvania State University Hershey S. Milton Medical Center, Heart and Vascular Institute, Division of Cardiovascular Medicine, Hershey, PA
| | - Lauren J Hassen
- The Ohio State University, Department of Internal Medicine, Division of Cardiovascular Medicine, Columbus, OH
| | - Martin Johnson
- Pennsylvania State University College of Medicine, Hershey PA
| | - Taryn Summerfield
- The Ohio State University, Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Columbus, OH
| | - Mosammat Begom
- Pennsylvania State University Hershey S. Milton Medical Center, Heart and Vascular Institute, Division of Cardiovascular Medicine, Hershey, PA
| | - Amanda Cai
- Pennsylvania State University Hershey S. Milton Medical Center, Heart and Vascular Institute, Division of Cardiovascular Medicine, Hershey, PA
| | - Laxmi Mehta
- The Ohio State University, Department of Internal Medicine, Division of Cardiovascular Medicine, Columbus, OH
| | - Kara Rood
- The Ohio State University, Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Columbus, OH
| | - Elisa A Bradley
- Pennsylvania State University Hershey S. Milton Medical Center, Heart and Vascular Institute, Division of Cardiovascular Medicine, Hershey, PA; Pennsylvania State University College of Medicine, Hershey PA; Pennsylvania State University, College of Medicine, Department of Cellular and Molecular Physiology, Hershey, PA.
| |
Collapse
|
6
|
Slavcheva SE, Angelov A. HER2-Targeted Therapy-From Pathophysiology to Clinical Manifestation: A Narrative Review. J Cardiovasc Dev Dis 2023; 10:489. [PMID: 38132657 PMCID: PMC10743885 DOI: 10.3390/jcdd10120489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Trastuzumab is the primary treatment for all stages of HER2-overexpressing breast cancer in patients. Though discovered over 20 years ago, trastuzumab-induced cardiotoxicity (TIC) remains a research topic in cardio-oncology. This review explores the pathophysiological basis of TIC and its clinical manifestations. Their understanding is paramount for early detection and cardioprotective treatment. Trastuzumab renders cardiomyocytes susceptible by inhibiting the cardioprotective NRG-1/HER2/HER4 signaling pathway. The drug acts on HER2-receptor-expressing cardiomyocytes, endothelium, and cardiac progenitor cells (see the Graphical Abstract). The activation of immune cells, fibroblasts, inflammation, and neurohormonal systems all contribute to the evolution of TIC. A substantial amount of research demonstrates that trastuzumab induces overt and subclinical left ventricular (LV) systolic failure. Data suggest the development of right ventricular damage, LV diastolic dysfunction, and heart failure with preserved ejection fraction. Further research is needed to define a chronological sequence of cardiac impairments to guide the proper timing of cardioprotection implementation.
Collapse
Affiliation(s)
- Svetoslava Elefterova Slavcheva
- First Department of Internal Diseases, EC Cardiology, Faculty of Medicine, Medical University “Prof. Dr. Paraskev Stoyanov”, 9000 Varna, Bulgaria;
- First Cardiology Clinic with Intensive Cardiology Activity, University Multiprofessional Hospital of Active Treatment “St. Marina”, 9000 Varna, Bulgaria
| | - Atanas Angelov
- First Department of Internal Diseases, EC Cardiology, Faculty of Medicine, Medical University “Prof. Dr. Paraskev Stoyanov”, 9000 Varna, Bulgaria;
- First Cardiology Clinic with Intensive Cardiology Activity, University Multiprofessional Hospital of Active Treatment “St. Marina”, 9000 Varna, Bulgaria
| |
Collapse
|
7
|
Lermant A, Rabussier G, Lanz HL, Davidson L, Porter IM, Murdoch CE. Development of a human iPSC-derived placental barrier-on-chip model. iScience 2023; 26:107240. [PMID: 37534160 PMCID: PMC10392097 DOI: 10.1016/j.isci.2023.107240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/28/2023] [Accepted: 06/26/2023] [Indexed: 08/04/2023] Open
Abstract
Although recently developed placenta-on-chip systems opened promising perspectives for placental barrier modeling, they still lack physiologically relevant trophoblasts and are poorly amenable to high-throughput studies. We aimed to implement human-induced pluripotent stem cells (hiPSC)-derived trophoblasts into a multi-well microfluidic device to develop a physiologically relevant and scalable placental barrier model. When cultured in a perfused micro-channel against a collagen-based matrix, hiPSC-derived trophoblasts self-arranged into a 3D structure showing invasive behavior, fusogenic and endocrine activities, structural integrity, and expressing placental transporters. RNA-seq analysis revealed that the microfluidic 3D environment boosted expression of genes related to early placental structural development, mainly involved in mechanosensing and cell surface receptor signaling. These results demonstrated the feasibility of generating a differentiated primitive syncytium from hiPSC in a microfluidic platform. Besides expanding hiPSC-derived trophoblast scope of applications, this study constitutes an important resource to improve placental barrier models and boost research and therapeutics evaluation in pregnancy.
Collapse
Affiliation(s)
- Agathe Lermant
- Systems Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | | | | | - Lindsay Davidson
- Human Pluripotent Stem Cell Facility, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Iain M. Porter
- Dundee Imaging Facility, School of Life Sciences, University of Dundee, DD1 5EH, UK
| | - Colin E. Murdoch
- Systems Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| |
Collapse
|
8
|
Neuregulin-1/ErbB4 upregulates acetylcholine receptors via Akt/mTOR/p70S6K: a study in a rat model of obstetric brachial plexus palsy and in vitro. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1648-1657. [PMID: 36331297 PMCID: PMC9828288 DOI: 10.3724/abbs.2022158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In obstetric brachial plexus palsy (OBPP), the operative time window for nerve reconstruction of the intrinsic muscles of the hand (IMH) is much shorter than that of biceps. The reason is that the atrophy of IMH becomes irreversible more quickly than that of biceps. A previous study confirmed that the motor endplates of denervated intrinsic muscles of the forepaw (IMF) were destabilized, while those of denervated biceps remained intact. However, the specific molecular mechanism of regulating the self-repair of motor endplates is still unknown. In this study, we use a rat model of OBPP with right C5-C6 rupture plus C7-C8-T1 avulsion and left side as a control. Bilateral IMF and biceps are harvested at 5 weeks postinjury to assess relative protein and mRNA expression. We also use L6 skeletal myoblasts to verify the effects of signaling pathways regulating acetylcholine receptor (AChR) protein synthesis in vitro. The results show that in the OBPP rat model, the protein and mRNA expression levels of NRG-1/ErbB4 and phosphorylation of Akt/mTOR/p70S6K are lower in denervated IMF than in denervated biceps. In L6 myoblasts stimulated with NRG-1, overexpression and knockdown of ErbB4 lead to upregulation and downregulation of AChR subunit protein synthesis and Akt/mTOR/p70S6K phosphorylation, respectively. Inhibition of mTOR abolishes protein synthesis of AChR subunits elevated by NRG-1/ErbB4. Our findings suggest that in the OBPP rat model, lower expression of AChR subunits in the motor endplates of denervated IMF is associated with downregulation of NRG-1/ErbB4 and phosphorylation of Akt/mTOR/p70S6K. NRG-1/ErbB4 can promote protein synthesis of the AChR subunits in L6 myoblasts via phosphorylation of Akt/mTOR/p70S6K.
Collapse
|
9
|
Pfeffer TJ, Mueller JH, Haebel L, Erschow S, Yalman KC, Talbot SR, Koenig T, Berliner D, Zwadlo C, Scherr M, Hilfiker‐Kleiner D, Bauersachs J, Ricke‐Hoch M. Cabergoline treatment promotes myocardial recovery in peripartum cardiomyopathy. ESC Heart Fail 2022; 10:465-477. [PMID: 36300679 PMCID: PMC9871652 DOI: 10.1002/ehf2.14210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/16/2022] [Accepted: 10/02/2022] [Indexed: 01/27/2023] Open
Abstract
AIMS Peripartum cardiomyopathy (PPCM) is a rare heart disease, occurring in previously heart-healthy women during the last month of pregnancy or the first months after delivery due to left ventricular (LV) systolic dysfunction. A common pathomechanistic pathway of PPCM includes increased oxidative stress and the subsequent generation of a cleaved prolactin fragment (16 kDa PRL), which promotes the onset of heart failure (HF) in a microRNA (miR)-146a-dependent manner. Inhibition of prolactin secretion with the dopamine D2 receptor (D2R) agonist bromocriptine combined with standard HF therapy supports cardiac recovery. This study examined whether treatment with the more selective D2R agonist cabergoline prevents HF development in an experimental PPCM mouse model and might be used as an alternative treatment regime for PPCM. METHODS AND RESULTS Postpartum (PP) female PPCM-prone mice with a cardiomyocyte restricted STAT3-deficiency (αMHC-Cretg/+ ; Stat3fl/fl ; CKO) were treated over two consecutive nursing periods with cabergoline (CKO Cab, 0.5 mg/kg/day) and were compared with bromocriptine treated CKO (CKO Br) and postpartum-matched WT and CKO mice. Cabergoline treatment in CKO PP mice preserved cardiac function [fractional shortening (FS): CKO Cab: 34.5 ± 9.4% vs. CKO: 22.1 ± 9%, P < 0.05] and prevented the development of cardiac hypertrophy, fibrosis, and inflammation as effective as bromocriptine therapy (FS: CKO Br: 33.4 ± 5.6%). The myocardial up-regulation of the PPCM biomarkers plasminogen inhibitor activator 1 (PAI-1) and miR-146a were prevented by both cabergoline and bromocriptine therapy. A small cohort of three PPCM patients from the German PPCM Registry was treated with cabergoline (1 mg per week for 2 weeks, followed by 0.5 mg per week for another 6 weeks) due to a temporary unavailability of bromocriptine. All PPCM patients initially presented with a severely reduced LV ejection fraction (LVEF: 26 ± 2%). However, at 6 months of follow-up, LV function (LVEF: 56 ± 2%) fully recovered in all three PPCM patients, and no adverse events were detected. CONCLUSIONS In the experimental PPCM mouse model, the selective D2R agonist cabergoline prevents the onset of postpartum HF similar to bromocriptine. In PPCM patients, cabergoline treatment was safe and effective as all patients fully recovered. Cabergoline might serve as a promising alternative to bromocriptine. However, these findings are based on experimental data and a small case series and thus have to be interpreted with caution and should be validated in a larger clinical trial.
Collapse
Affiliation(s)
- Tobias J. Pfeffer
- Department of Cardiology and AngiologyHannover Medical SchoolHannoverGermany
| | - Julia H. Mueller
- Department of Cardiology and AngiologyHannover Medical SchoolHannoverGermany
| | - Lea Haebel
- Department of Cardiology and AngiologyHannover Medical SchoolHannoverGermany
| | - Sergej Erschow
- Department of Cardiology and AngiologyHannover Medical SchoolHannoverGermany
| | - Kuebra C. Yalman
- Department of Cardiology and AngiologyHannover Medical SchoolHannoverGermany
| | - Steven R. Talbot
- Institute for Laboratory Animal Science and Central Animal FacilityHannover Medical SchoolHannoverGermany
| | - Tobias Koenig
- Department of Cardiology and AngiologyHannover Medical SchoolHannoverGermany
| | - Dominik Berliner
- Department of Cardiology and AngiologyHannover Medical SchoolHannoverGermany
| | - Carolin Zwadlo
- Department of Cardiology and AngiologyHannover Medical SchoolHannoverGermany
| | - Michaela Scherr
- Department of Hematology, Hemostasis, Oncology and Stem Cell TransplantationHannover Medical SchoolHannoverGermany
| | - Denise Hilfiker‐Kleiner
- Department of Cardiology and AngiologyHannover Medical SchoolHannoverGermany,Department of Cardiovascular Complications of Oncologic Therapies, Medical FacultyPhilipps University MarburgMarburgGermany
| | - Johann Bauersachs
- Department of Cardiology and AngiologyHannover Medical SchoolHannoverGermany
| | - Melanie Ricke‐Hoch
- Department of Cardiology and AngiologyHannover Medical SchoolHannoverGermany
| |
Collapse
|
10
|
Brown C, Mantzaris M, Nicolaou E, Karanasiou G, Papageorgiou E, Curigliano G, Cardinale D, Filippatos G, Memos N, Naka KK, Papakostantinou A, Vogazianos P, Ioulianou E, Shammas C, Constantinidou A, Tozzi F, Fotiadis DI, Antoniades A. A systematic review of miRNAs as biomarkers for chemotherapy-induced cardiotoxicity in breast cancer patients reveals potentially clinically informative panels as well as key challenges in miRNA research. CARDIO-ONCOLOGY 2022; 8:16. [PMID: 36071532 PMCID: PMC9450324 DOI: 10.1186/s40959-022-00142-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/02/2022] [Indexed: 12/01/2022]
Abstract
Breast cancer patients are at a particularly high risk of cardiotoxicity from chemotherapy having a detrimental effect on quality-of-life parameters and increasing the risk of mortality. Prognostic biomarkers would allow the management of therapies to mitigate the risks of cardiotoxicity in vulnerable patients and a key potential candidate for such biomarkers are microRNAs (miRNA). miRNAs are post-transcriptional regulators of gene expression which can also be released into the circulatory system and have been associated with the progression of many chronic diseases including many types of cancer. In this review, the evidence for the potential application of miRNAs as biomarkers for chemotherapy-induced cardiotoxicity (CIC) in breast cancer patientsis evaluated and a simple meta-analysis is performed to confirm the replication status of each reported miRNA. Further selection of miRNAs is performed by reviewing the reported associations of each miRNA with other cardiovascular conditions. Based on this research, the most representative panels targeting specific chemotherapy agents and treatment regimens are suggested, that contain several informative miRNAs, including both general markers of cardiac damage as well as those for the specific cancer treatments.
Collapse
|
11
|
Carter N, Mathiesen AH, Miller N, Brown M, Colunga Biancatelli RML, Catravas JD, Dobrian AD. Endothelial cell-derived extracellular vesicles impair the angiogenic response of coronary artery endothelial cells. Front Cardiovasc Med 2022; 9:923081. [PMID: 35928931 PMCID: PMC9343725 DOI: 10.3389/fcvm.2022.923081] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/28/2022] [Indexed: 12/17/2022] Open
Abstract
Cardiovascular disease (CVD) is the most prominent cause of death of adults in the United States with coronary artery disease being the most common type of CVD. Following a myocardial event, the coronary endothelium plays an important role in the recovery of the ischemic myocardium. Specifically, endothelial cells (EC) must be able to elicit a robust angiogenic response necessary for tissue revascularization and repair. However, local or distant cues may prevent effective revascularization. Extracellular vesicles (EV) are produced by all cells and endothelium is a rich source of EVs that have access to the main circulation thereby potentially impacting local and distant tissue function. Systemic inflammation associated with conditions such as obesity as well as the acute inflammatory response elicited by a cardiac event can significantly increase the EV release by endothelium and alter their miRNA, protein or lipid cargo. Our laboratory has previously shown that EVs released by adipose tissue endothelial cells exposed to chronic inflammation have angiostatic effects on naïve adipose tissue EC in vitro. Whether the observed effect is specific to EVs from adipose tissue endothelium or is a more general feature of the endothelial EVs exposed to pro-inflammatory cues is currently unclear. The objective of this study was to investigate the angiostatic effects of EVs produced by EC from the coronary artery and adipose microvasculature exposed to pro-inflammatory cytokines (PIC) on naïve coronary artery EC. We have found that EVs from both EC sources have angiostatic effects on the coronary endothelium. EVs produced by cells in a pro-inflammatory environment reduced proliferation and barrier function of EC without impacting cellular senescence. Some of these functional effects could be attributed to the miRNA cargo of EVs. Several miRNAs such as miR-451, let-7, or miR-23a impact on multiple pathways responsible for proliferation, cellular permeability and angiogenesis. Collectively, our data suggests that EVs may compete with pro-angiogenic cues in the ischemic myocardium therefore slowing down the repair response. Acute treatments with inhibitors that prevent endogenous EV release immediately after an ischemic event may contribute to better efficacy of therapeutic approaches using functionalized exogenous EVs or other pro-angiogenic approaches.
Collapse
Affiliation(s)
- Nigeste Carter
- Department of Physiological Science, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Allison H. Mathiesen
- Department of Physiological Science, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Noel Miller
- Department of Physiological Science, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Michael Brown
- Department of Physiological Science, Eastern Virginia Medical School, Norfolk, VA, United States
| | | | - John D. Catravas
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
- School of Medical Diagnostic and Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, VA, United States
| | - Anca D. Dobrian
- Department of Physiological Science, Eastern Virginia Medical School, Norfolk, VA, United States
- *Correspondence: Anca D. Dobrian,
| |
Collapse
|
12
|
Abstract
Cardiovascular complications of pregnancy have risen substantially over the past decades, and now account for the majority of pregnancy-induced maternal deaths, as well as having substantial long-term consequences on maternal cardiovascular health. The causes and pathophysiology of these complications remain poorly understood, and therapeutic options are limited. Preclinical models represent a crucial tool for understanding human disease. We review here advances made in preclinical models of cardiovascular complications of pregnancy, including preeclampsia and peripartum cardiomyopathy, with a focus on pathological mechanisms elicited by the models and on relevance to human disease.
Collapse
Affiliation(s)
- Zolt Arany
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia (Z.A.)
| | - Denise Hilfiker-Kleiner
- Institute of Cardiovascular Complications in Pregnancy and in Oncologic Therapies, Philipps University Marburg, Germany (D.H.-K.)
| | - S Ananth Karumanchi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA (S.A.K.)
| |
Collapse
|
13
|
Abstract
Peripartum cardiomyopathy (PPCM) is a potentially fatal form of idiopathic heart failure with variable prevalence across different countries and ethnic groups. The cause of PPCM is unclear, but environmental and genetic factors and pregnancy-associated conditions such as pre-eclampsia can contribute to the development of PPCM. Furthermore, animal studies have shown that impaired vascular and metabolic function might be central to the development of PPCM. A better understanding of the pathogenic mechanisms involved in the development of PPCM is necessary to establish new therapies that can improve the outcomes of patients with PPCM. Pregnancy hormones tightly regulate a plethora of maternal adaptive responses, including haemodynamic, structural and metabolic changes in the cardiovascular system. In patients with PPCM, the peripartum period is associated with profound and rapid hormonal fluctuations that result in a brief period of disrupted cardiovascular (metabolic) homeostasis prone to secondary perturbations. In this Review, we discuss the latest studies on the potential pathophysiological mechanisms of and risk factors for PPCM, with a focus on maternal cardiovascular changes associated with pregnancy. We provide an updated framework to further our understanding of PPCM pathogenesis, which might lead to an improvement in disease definition.
Collapse
|