2
|
Eckhardt A, Kulhava L, Miksik I, Pataridis S, Hlavackova M, Vasinova J, Kolar F, Sedmera D, Ostadal B. Proteomic analysis of cardiac ventricles: baso-apical differences. Mol Cell Biochem 2018; 445:211-219. [PMID: 29302836 DOI: 10.1007/s11010-017-3266-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/23/2017] [Indexed: 12/19/2022]
Abstract
The heart is characterized by a remarkable degree of heterogeneity. Since different cardiac pathologies affect different cardiac regions, it is important to understand molecular mechanisms by which these parts respond to pathological stimuli. In addition to already described left ventricular (LV)/right ventricular (RV) and transmural differences, possible baso-apical heterogeneity has to be taken into consideration. The aim of our study has been, therefore, to compare proteomes in the apical and basal parts of the rat RV and LV. Two-dimensional electrophoresis was used for the proteomic analysis. The major result of this study has revealed for the first time significant baso-apical differences in concentration of several proteins, both in the LV and RV. As far as the LV is concerned, five proteins had higher concentration in the apical compared to basal part of the ventricle. Three of them are mitochondrial and belong to the "metabolism and energy pathways" (myofibrillar creatine kinase M-type, L-lactate dehydrogenase, dihydrolipoamide dehydrogenase). Myosin light chain 3 is a contractile protein and HSP60 belongs to heat shock proteins. In the RV, higher concentration in the apical part was observed in two mitochondrial proteins (creatine kinase S-type and proton pumping NADH:ubiquinone oxidoreductase). The described changes were more pronounced in the LV, which is subjected to higher workload. However, in both chambers was the concentration of proteins markedly higher in the apical than that in basal part, which corresponds to the higher energetic demand and contractile activity of these segments of both ventricles.
Collapse
Affiliation(s)
- Adam Eckhardt
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic.
| | - Lucie Kulhava
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic.,Department of Analytical Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague, Czech Republic
| | - Ivan Miksik
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic
| | - Statis Pataridis
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic
| | - Marketa Hlavackova
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic.,Department of Physiology, Faculty of Science, Charles University, Viničná 7, Prague, Czech Republic
| | - Jana Vasinova
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic
| | - Frantisek Kolar
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic
| | - David Sedmera
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic.,First Faculty of Medicine, Charles University, Kateřinská 32, Prague, Czech Republic
| | - Bohuslav Ostadal
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic
| |
Collapse
|
3
|
Qin X, Riegler J, Tiburcy M, Zhao X, Chour T, Ndoye B, Nguyen M, Adams J, Ameen M, Denney TS, Yang PC, Nguyen P, Zimmermann WH, Wu JC. Magnetic Resonance Imaging of Cardiac Strain Pattern Following Transplantation of Human Tissue Engineered Heart Muscles. Circ Cardiovasc Imaging 2017; 9:CIRCIMAGING.116.004731. [PMID: 27903535 DOI: 10.1161/circimaging.116.004731] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 09/16/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND The use of tissue engineering approaches in combination with exogenously produced cardiomyocytes offers the potential to restore contractile function after myocardial injury. However, current techniques assessing changes in global cardiac performance after such treatments are plagued by relatively low detection ability. Since the treatment is locally performed, this detection could be improved by myocardial strain imaging that measures regional contractility. METHODS AND RESULTS Tissue engineered heart muscles (EHMs) were generated by casting human embryonic stem cell-derived cardiomyocytes with collagen in preformed molds. EHMs were transplanted (n=12) to cover infarct and border zones of recipient rat hearts 1 month after ischemia reperfusion injury. A control group (n=10) received only sham placement of sutures without EHMs. To assess the efficacy of EHMs, magnetic resonance imaging and ultrasound-based strain imaging were performed before and 4 weeks after transplantation. In addition to strain imaging, global cardiac performance was estimated from cardiac magnetic resonance imaging. Although no significant differences were found for global changes in left ventricular ejection fraction (control -9.6±1.3% versus EHM -6.2±1.9%; P=0.17), regional myocardial strain from tagged magnetic resonance imaging was able to detect preserved systolic function in EHM-treated animals compared with control (control 4.4±1.0% versus EHM 1.0±0.6%; P=0.04). However, ultrasound-based strain failed to detect any significant change (control 2.1±3.0% versus EHM 6.3±2.9%; P=0.46). CONCLUSIONS This study highlights the feasibility of using cardiac strain from tagged magnetic resonance imaging to assess functional changes in rat models following localized regenerative therapies, which may not be detected by conventional measures of global systolic performance.
Collapse
Affiliation(s)
- Xulei Qin
- From the Stanford Cardiovascular Institute and Department of Medicine, Division of Cardiology, CA (X.Q., J.R., X.Z., T.C., B.N., M.N., J.A., M.A., P.C.Y., P.N., J.C.W.); Auburn University MRI Research Center, Department of Electrical and Computer Engineering, AL (T.S.D.); Institute of Pharmacology, Heart Research Center, University Medical Center, Georg-August-University and German Center for Cardiovascular Research, Göttingen, Germany (M.T., W.H.Z.)
| | - Johannes Riegler
- From the Stanford Cardiovascular Institute and Department of Medicine, Division of Cardiology, CA (X.Q., J.R., X.Z., T.C., B.N., M.N., J.A., M.A., P.C.Y., P.N., J.C.W.); Auburn University MRI Research Center, Department of Electrical and Computer Engineering, AL (T.S.D.); Institute of Pharmacology, Heart Research Center, University Medical Center, Georg-August-University and German Center for Cardiovascular Research, Göttingen, Germany (M.T., W.H.Z.)
| | - Malte Tiburcy
- From the Stanford Cardiovascular Institute and Department of Medicine, Division of Cardiology, CA (X.Q., J.R., X.Z., T.C., B.N., M.N., J.A., M.A., P.C.Y., P.N., J.C.W.); Auburn University MRI Research Center, Department of Electrical and Computer Engineering, AL (T.S.D.); Institute of Pharmacology, Heart Research Center, University Medical Center, Georg-August-University and German Center for Cardiovascular Research, Göttingen, Germany (M.T., W.H.Z.)
| | - Xin Zhao
- From the Stanford Cardiovascular Institute and Department of Medicine, Division of Cardiology, CA (X.Q., J.R., X.Z., T.C., B.N., M.N., J.A., M.A., P.C.Y., P.N., J.C.W.); Auburn University MRI Research Center, Department of Electrical and Computer Engineering, AL (T.S.D.); Institute of Pharmacology, Heart Research Center, University Medical Center, Georg-August-University and German Center for Cardiovascular Research, Göttingen, Germany (M.T., W.H.Z.)
| | - Tony Chour
- From the Stanford Cardiovascular Institute and Department of Medicine, Division of Cardiology, CA (X.Q., J.R., X.Z., T.C., B.N., M.N., J.A., M.A., P.C.Y., P.N., J.C.W.); Auburn University MRI Research Center, Department of Electrical and Computer Engineering, AL (T.S.D.); Institute of Pharmacology, Heart Research Center, University Medical Center, Georg-August-University and German Center for Cardiovascular Research, Göttingen, Germany (M.T., W.H.Z.)
| | - Babacar Ndoye
- From the Stanford Cardiovascular Institute and Department of Medicine, Division of Cardiology, CA (X.Q., J.R., X.Z., T.C., B.N., M.N., J.A., M.A., P.C.Y., P.N., J.C.W.); Auburn University MRI Research Center, Department of Electrical and Computer Engineering, AL (T.S.D.); Institute of Pharmacology, Heart Research Center, University Medical Center, Georg-August-University and German Center for Cardiovascular Research, Göttingen, Germany (M.T., W.H.Z.)
| | - Michael Nguyen
- From the Stanford Cardiovascular Institute and Department of Medicine, Division of Cardiology, CA (X.Q., J.R., X.Z., T.C., B.N., M.N., J.A., M.A., P.C.Y., P.N., J.C.W.); Auburn University MRI Research Center, Department of Electrical and Computer Engineering, AL (T.S.D.); Institute of Pharmacology, Heart Research Center, University Medical Center, Georg-August-University and German Center for Cardiovascular Research, Göttingen, Germany (M.T., W.H.Z.)
| | - Jackson Adams
- From the Stanford Cardiovascular Institute and Department of Medicine, Division of Cardiology, CA (X.Q., J.R., X.Z., T.C., B.N., M.N., J.A., M.A., P.C.Y., P.N., J.C.W.); Auburn University MRI Research Center, Department of Electrical and Computer Engineering, AL (T.S.D.); Institute of Pharmacology, Heart Research Center, University Medical Center, Georg-August-University and German Center for Cardiovascular Research, Göttingen, Germany (M.T., W.H.Z.)
| | - Mohamed Ameen
- From the Stanford Cardiovascular Institute and Department of Medicine, Division of Cardiology, CA (X.Q., J.R., X.Z., T.C., B.N., M.N., J.A., M.A., P.C.Y., P.N., J.C.W.); Auburn University MRI Research Center, Department of Electrical and Computer Engineering, AL (T.S.D.); Institute of Pharmacology, Heart Research Center, University Medical Center, Georg-August-University and German Center for Cardiovascular Research, Göttingen, Germany (M.T., W.H.Z.)
| | - Thomas S Denney
- From the Stanford Cardiovascular Institute and Department of Medicine, Division of Cardiology, CA (X.Q., J.R., X.Z., T.C., B.N., M.N., J.A., M.A., P.C.Y., P.N., J.C.W.); Auburn University MRI Research Center, Department of Electrical and Computer Engineering, AL (T.S.D.); Institute of Pharmacology, Heart Research Center, University Medical Center, Georg-August-University and German Center for Cardiovascular Research, Göttingen, Germany (M.T., W.H.Z.)
| | - Phillip C Yang
- From the Stanford Cardiovascular Institute and Department of Medicine, Division of Cardiology, CA (X.Q., J.R., X.Z., T.C., B.N., M.N., J.A., M.A., P.C.Y., P.N., J.C.W.); Auburn University MRI Research Center, Department of Electrical and Computer Engineering, AL (T.S.D.); Institute of Pharmacology, Heart Research Center, University Medical Center, Georg-August-University and German Center for Cardiovascular Research, Göttingen, Germany (M.T., W.H.Z.)
| | - Patricia Nguyen
- From the Stanford Cardiovascular Institute and Department of Medicine, Division of Cardiology, CA (X.Q., J.R., X.Z., T.C., B.N., M.N., J.A., M.A., P.C.Y., P.N., J.C.W.); Auburn University MRI Research Center, Department of Electrical and Computer Engineering, AL (T.S.D.); Institute of Pharmacology, Heart Research Center, University Medical Center, Georg-August-University and German Center for Cardiovascular Research, Göttingen, Germany (M.T., W.H.Z.)
| | - Wolfram H Zimmermann
- From the Stanford Cardiovascular Institute and Department of Medicine, Division of Cardiology, CA (X.Q., J.R., X.Z., T.C., B.N., M.N., J.A., M.A., P.C.Y., P.N., J.C.W.); Auburn University MRI Research Center, Department of Electrical and Computer Engineering, AL (T.S.D.); Institute of Pharmacology, Heart Research Center, University Medical Center, Georg-August-University and German Center for Cardiovascular Research, Göttingen, Germany (M.T., W.H.Z.)
| | - Joseph C Wu
- From the Stanford Cardiovascular Institute and Department of Medicine, Division of Cardiology, CA (X.Q., J.R., X.Z., T.C., B.N., M.N., J.A., M.A., P.C.Y., P.N., J.C.W.); Auburn University MRI Research Center, Department of Electrical and Computer Engineering, AL (T.S.D.); Institute of Pharmacology, Heart Research Center, University Medical Center, Georg-August-University and German Center for Cardiovascular Research, Göttingen, Germany (M.T., W.H.Z.).
| |
Collapse
|
7
|
Attanà P, Paoletti Perini A, Votta CD, Cappelli F, Pieragnoli P, Ricciardi G, Nesti M, Giomi A, Sacchi S, Chiostri M, Padeletti L. QRS duration in left bundle branch block does not affect left ventricular twisting in chronic systolic heart failure. Clin Physiol Funct Imaging 2014; 35:436-42. [PMID: 25077412 DOI: 10.1111/cpf.12181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/24/2014] [Indexed: 11/30/2022]
Abstract
PURPOSE Left ventricular (LV) torsion is an important parameter of LV performance and can be influenced by several factors. Aim of this investigation was to evaluate whether QRS prolongation in left bundle branch block (LBBB) may influence global LV twist and twisting/untwisting rate in chronic systolic heart failure (HF) patients. METHODS We prospectively evaluated 30 healthy subjects (control group) and 100 chronic HF patients with severely impaired LV systolic function (ejection fraction ≤ 35%). Patients were divided into three groups according to QRS duration: A: QRS < 120 ms (n 49), B: 120 ≤ QRS ≤ 150 ms (n 28) and C: QRS > 150 ms (n 23). Patients in groups B and C presented LBBB. All subjects underwent standard trans-thoracic echocardiography and two-dimensional speckle-tracking echocardiography evaluation. Categorical variables were compared by the chi-square or the Fisher's exact test. Continuous variables were compared using the ANOVA test. Correlations between variables were analysed with linear regression. RESULTS Control subjects presented higher torsion parameters, when compared with patients in any HF group. Among the three HF groups, no differences were detected in global twist (4.79 ± 3.54, 3.8 ± 3.0 and 4.15 ± 3.14 degrees, respectively), twist rate max (44.81 ± 25.03, 37.94 ± 19.09 and 37.61 ± 24.49 degrees s(-1), respectively) and untwist rate max (-36.31 ± 30.89, -27.68 ± 34.67 and -39.62 ± 26.27 degrees s(-1), respectively) (P>0.05 for all). At linear regression analysis, there was no relation between QRS duration and any torsion parameter (P>0.05 for all). CONCLUSIONS In patients with chronic severe systolic heart failure, QRS duration and LBBB morphology do not affect LV twisting and untwisting.
Collapse
Affiliation(s)
- Paola Attanà
- Dipartimento Cuore e Vasi, Università degli Studi, Firenze, Italia
| | | | | | | | - Paolo Pieragnoli
- Dipartimento Cuore e Vasi, Università degli Studi, Firenze, Italia
| | | | - Martina Nesti
- Dipartimento Cuore e Vasi, Università degli Studi, Firenze, Italia
| | - Andrea Giomi
- Dipartimento Cuore e Vasi, Università degli Studi, Firenze, Italia
| | - Stefania Sacchi
- Dipartimento Cuore e Vasi, Università degli Studi, Firenze, Italia
| | - Marco Chiostri
- Dipartimento Cuore e Vasi, Università degli Studi, Firenze, Italia
| | - Luigi Padeletti
- Dipartimento Cuore e Vasi, Università degli Studi, Firenze, Italia.,Cliniche Humanitas Gavazzeni, Bergamo, Italia
| |
Collapse
|