1
|
Nordén ES, Bendiksen BA, Bergo KK, Espe EKS, McGinley G, Hasic A, Hauge‐Iversen IM, Ugland HK, Shen X, Frisk M, Mabotuwana NS, Louch WE, Hussain RI, Zhang L, Sjaastad I, Cataliotti A, Christensen G. Sacubitril/valsartan preserves regional cardiac function following myocardial infarction in rats. ESC Heart Fail 2025; 12:1304-1315. [PMID: 39696842 PMCID: PMC11911584 DOI: 10.1002/ehf2.15145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 12/20/2024] Open
Abstract
AIMS Sacubitril/valsartan (Sac/Val) is used for treatment of heart failure. The effect of Sac/Val on regional dysfunction following myocardial infarction (MI) remains uncertain. This study aimed at understanding the effects of Sac/Val on regional function after MI. METHODS AND RESULTS MI or sham surgery was performed in Sprague-Dawley rats. Animals were randomized to treatment with Sac/Val, valsartan (Val) or vehicle (Veh). Magnetic resonance imaging was used to acquire left ventricular volumes and strain. Left ventricular tissue was obtained for wesern blotting, PCR and Masson's trichrome staining. Isolated cardiac fibroblasts were cultured with Veh, atrial natriuretic peptide (ANP), adrenomedullin (ADM) and sacubitrilat, and collagen expression assessed with droplet digital PCR. RESULTS Sac/Val reduced ventricular end-diastolic volume by 18% compared with Veh, and preserved circumferential systolic strain in the zone proximal to infarction compared with sham after 42 days of treatment (peak strain ± SEM: sham: -0.19 ± 0.01%; Sac/Val: -0.14 ± 0.02%; Val: -0.10 ± 0.02%; Veh: -0.10 ± 0.02%). Masson's trichrome staining demonstrated lower fibrotic deposition in the intermediate zone with Sac/Val treatment than Veh (sham: 2.29 ± 0.17%; Sac/Val: 2.31 ± 0.27%; Val: 3.22 ± 0.60%; Veh: 4.14 ± 0.48%). The amounts of the pro-apoptotic caspase 3 cleavage fragments p19/17 were 89% higher in Val than sham, with Sac/Val showing no significant increase compared with sham. Collagen expression in human fibroblast culture was lower in cells co-treated with sacubitrilat and ANP, an effect not observed with sacubitrilat/ADM co-treatment. CONCLUSIONS Sac/Val preserves in vivo myocardial function in the region most proximal to MI in rats and reduces left ventricular dilatation. These effects may be related to a reduction in both fibrosis and pro-apoptotic signalling.
Collapse
Affiliation(s)
- Einar Sjaastad Nordén
- University of Oslo, Oslo University Hospital and Oslo New University CollegeOsloNorway
| | - Bård Andre Bendiksen
- University of Oslo, Oslo University Hospital and Oslo New University CollegeOsloNorway
| | | | | | - Gary McGinley
- University of Oslo and Oslo University HospitalOsloNorway
| | - Almira Hasic
- University of Oslo and Oslo University HospitalOsloNorway
| | | | | | - Xin Shen
- University of Oslo and Oslo University HospitalOsloNorway
| | - Michael Frisk
- University of Oslo and Oslo University HospitalOsloNorway
| | | | | | | | - Lili Zhang
- University of Oslo and Oslo University HospitalOsloNorway
| | - Ivar Sjaastad
- University of Oslo and Oslo University HospitalOsloNorway
| | | | | |
Collapse
|
2
|
Huo X, Lian Z, Dang P, Zhang Y. The Development of a Nomogram Predictive Model for Intracardiac Thrombosis Risk: A Study Based on Risk Factors in Patients with Acute Myocardial Infarction. Biomedicines 2025; 13:679. [PMID: 40149655 PMCID: PMC11940212 DOI: 10.3390/biomedicines13030679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/14/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Intracardiac thrombosis (ICT) is a serious complication in acute myocardial infarction (AMI) patients. This study aimed to identify potential risk factors of ICT in AMI patients, providing valuable insights for clinical management. Methods: A case-control study was conducted involving consecutive AMI patients admitted to the First Affiliated Hospital of Xi'an Jiaotong University between January 2019 and December 2022. Binary logistic regression identified independent risk factors of ICT and a nomogram prediction model was constructed and validated for accuracy. Conclusions: A total of 7341 patients with ICT and 74 without ICT were included. Multivariate logistic regression identified male gender, acute anterior wall myocardial infarction (AWMI), ventricular aneurysm, and lower prothrombin activity as independent risk factors of ICT in AMI patients. A nomogram based on these factors demonstrated excellent performance (AUC: 0.910, 95% CI: 0.877-0.943, p < 0.001), with calibration and sensitivity analyses confirming its robustness. This nomogram provides an accurate tool for predicting ICT risk, facilitating personalized management and early intervention in AMI patients.
Collapse
Affiliation(s)
- Xiaowei Huo
- Department of Cardiovascular Medicine, The First Adiated Hospital of Xi’an Jiao Tong University, Xi’an 710061, China;
| | - Zizhu Lian
- Department of Cardiovascular Surgery, The First Adiated Hospital of Xi’an Jiao Tong University, Xi’an 710061, China;
| | - Peizhu Dang
- Department of Cardiovascular Medicine, The First Adiated Hospital of Xi’an Jiao Tong University, Xi’an 710061, China;
| | - Yongjian Zhang
- Department of Cardiovascular Surgery, The First Adiated Hospital of Xi’an Jiao Tong University, Xi’an 710061, China;
| |
Collapse
|
3
|
Rajakulasingam R, Ferreira PF, Scott AD, Khalique Z, Azzu A, Molto M, Conway M, Falaschetti E, Cheng K, Hammersley DJ, Cantor EJ, Tindale A, Beattie CJ, Banerjee A, Wage R, Soundarajan RK, Dalby M, Nielles-Vallespin S, Pennell DJ, de Silva R. Characterization of dynamic changes in cardiac microstructure after reperfused ST-elevation myocardial infarction by biphasic diffusion tensor cardiovascular magnetic resonance. Eur Heart J 2025; 46:454-469. [PMID: 39405409 DOI: 10.1093/eurheartj/ehae667] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/30/2024] [Accepted: 09/19/2024] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND AND AIMS Microstructural disturbances underlie dysfunctional contraction and adverse left ventricular (LV) remodelling after ST-elevation myocardial infarction (STEMI). Biphasic diffusion tensor cardiovascular magnetic resonance (DT-CMR) quantifies dynamic reorientation of sheetlets (E2A) from diastole to systole during myocardial thickening, and markers of tissue integrity [mean diffusivity (MD) and fractional anisotropy (FA)]. This study investigated whether microstructural alterations identified by biphasic DT-CMR: (i) enable contrast-free detection of acute myocardial infarction (MI); (ii) associate with severity of myocardial injury and contractile dysfunction; and (iii) predict adverse LV remodelling. METHODS Biphasic DT-CMR was acquired 4 days (n = 70) and 4 months (n = 66) after reperfused STEMI and in healthy volunteers (HVOLs) (n = 22). Adverse LV remodelling was defined as an increase in LV end-diastolic volume ≥ 20% at 4 months. MD and FA maps were compared with late gadolinium enhancement images. RESULTS Widespread microstructural disturbances were detected post-STEMI. In the acute MI zone, diastolic E2A was raised and systolic E2A reduced, resulting in reduced E2A mobility (all P < .001 vs. adjacent and remote zones and HVOLs). Acute global E2A mobility was the only independent predictor of adverse LV remodelling (odds ratio .77; 95% confidence interval .63-.94; P = .010). MD and FA maps had excellent sensitivity and specificity (all > 90%) and interobserver agreement for detecting MI presence and location. CONCLUSIONS Biphasic DT-CMR identifies microstructural alterations in both diastole and systole after STEMI, enabling detection of MI presence and location as well as predicting adverse LV remodelling. DT-CMR has potential to provide a single contrast-free modality for MI detection and prognostication of patients after acute STEMI.
Collapse
Affiliation(s)
- Ramyah Rajakulasingam
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Pedro F Ferreira
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Andrew D Scott
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Zohya Khalique
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Alessia Azzu
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Maria Molto
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Miriam Conway
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | | | - Kevin Cheng
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Daniel J Hammersley
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
- King's College Hospital NHS Foundation Trust, UK
| | - Emily-Jane Cantor
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Alexander Tindale
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Catherine J Beattie
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Arjun Banerjee
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Ricardo Wage
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Raj K Soundarajan
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Miles Dalby
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Sonia Nielles-Vallespin
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Dudley J Pennell
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Ranil de Silva
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| |
Collapse
|
4
|
Li J, Sundnes J, Hou Y, Laasmaa M, Ruud M, Unger A, Kolstad TR, Frisk M, Norseng PA, Yang L, Setterberg IE, Alves ES, Kalakoutis M, Sejersted OM, Lanner JT, Linke WA, Lunde IG, de Tombe PP, Louch WE. Stretch Harmonizes Sarcomere Strain Across the Cardiomyocyte. Circ Res 2023; 133:255-270. [PMID: 37401464 PMCID: PMC10355805 DOI: 10.1161/circresaha.123.322588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/07/2023] [Accepted: 06/22/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND Increasing cardiomyocyte contraction during myocardial stretch serves as the basis for the Frank-Starling mechanism in the heart. However, it remains unclear how this phenomenon occurs regionally within cardiomyocytes, at the level of individual sarcomeres. We investigated sarcomere contractile synchrony and how intersarcomere dynamics contribute to increasing contractility during cell lengthening. METHODS Sarcomere strain and Ca2+ were simultaneously recorded in isolated left ventricular cardiomyocytes during 1 Hz field stimulation at 37 °C, at resting length and following stepwise stretch. RESULTS We observed that in unstretched rat cardiomyocytes, differential sarcomere deformation occurred during each beat. Specifically, while most sarcomeres shortened during the stimulus, ≈10% to 20% of sarcomeres were stretched or remained stationary. This nonuniform strain was not traced to regional Ca2+ disparities but rather shorter resting lengths and lower force production in systolically stretched sarcomeres. Lengthening of the cell recruited additional shortening sarcomeres, which increased contractile efficiency as less negative, wasted work was performed by stretched sarcomeres. Given the known role of titin in setting sarcomere dimensions, we next hypothesized that modulating titin expression would alter intersarcomere dynamics. Indeed, in cardiomyocytes from mice with titin haploinsufficiency, we observed greater variability in resting sarcomere length, lower recruitment of shortening sarcomeres, and impaired work performance during cell lengthening. CONCLUSIONS Graded sarcomere recruitment directs cardiomyocyte work performance, and harmonization of sarcomere strain increases contractility during cell stretch. By setting sarcomere dimensions, titin controls sarcomere recruitment, and its lowered expression in haploinsufficiency mutations impairs cardiomyocyte contractility.
Collapse
Affiliation(s)
- Jia Li
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
- KG Jebsen Center for Cardiac Research, University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., I.E.S., O.M.S., I.G.L., W.E.L.)
| | | | - Yufeng Hou
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
- KG Jebsen Center for Cardiac Research, University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., I.E.S., O.M.S., I.G.L., W.E.L.)
| | - Martin Laasmaa
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
- KG Jebsen Center for Cardiac Research, University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., I.E.S., O.M.S., I.G.L., W.E.L.)
| | - Marianne Ruud
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
- KG Jebsen Center for Cardiac Research, University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., I.E.S., O.M.S., I.G.L., W.E.L.)
| | - Andreas Unger
- Institute of Physiology II, University of Münster, Germany (A.U., W.A.L.)
| | - Terje R. Kolstad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
- KG Jebsen Center for Cardiac Research, University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., I.E.S., O.M.S., I.G.L., W.E.L.)
| | - Michael Frisk
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
- KG Jebsen Center for Cardiac Research, University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., I.E.S., O.M.S., I.G.L., W.E.L.)
| | - Per Andreas Norseng
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
| | | | - Ingunn E. Setterberg
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
- KG Jebsen Center for Cardiac Research, University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., I.E.S., O.M.S., I.G.L., W.E.L.)
| | - Estela S. Alves
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.S.A., M.K., J.T.L.)
| | - Michaeljohn Kalakoutis
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.S.A., M.K., J.T.L.)
| | - Ole M. Sejersted
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
- KG Jebsen Center for Cardiac Research, University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., I.E.S., O.M.S., I.G.L., W.E.L.)
| | - Johanna T. Lanner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.S.A., M.K., J.T.L.)
| | - Wolfgang A. Linke
- Institute of Physiology II, University of Münster, Germany (A.U., W.A.L.)
| | - Ida G. Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
- KG Jebsen Center for Cardiac Research, University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., I.E.S., O.M.S., I.G.L., W.E.L.)
| | - Pieter P. de Tombe
- Department of Physiology and Biophysics, University of Illinois at Chicago (P.P.d.T.)
- Phymedexp, Université de Montpellier, INSERM, CNRS, France (P.P.d.T.)
| | - William E. Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
- KG Jebsen Center for Cardiac Research, University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., I.E.S., O.M.S., I.G.L., W.E.L.)
| |
Collapse
|
5
|
Onishi R, Ueda J, Ide S, Koseki M, Sakata Y, Saito S. Application of Magnetic Resonance Strain Analysis Using Feature Tracking in a Myocardial Infarction Model. Tomography 2023; 9:871-882. [PMID: 37104142 PMCID: PMC10141923 DOI: 10.3390/tomography9020071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023] Open
Abstract
This study validates the usefulness of myocardial strain analysis with cardiac cine magnetic resonance imaging (MRI) by evaluating the changes in the cardiac function and myocardial strain values longitudinally in a myocardial disease model. Six eight-week-old male Wistar rats were used as a model of myocardial infarction (MI). Cine images were taken in the short axis, two-chamber view longitudinal axis, and four-chamber view longitudinal axis directions in rats 3 and 9 days after MI and in control rats, with preclinical 7-T MRI. The control images and the images on days 3 and 9 were evaluated by measuring the ventricular ejection fraction (EF) and the strain values in the circumferential (CS), radial (RS), and longitudinal directions (LS). The CS decreased significantly 3 days after MI, but there was no difference between the images on days 3 and 9. The two-chamber view LS was -9.7 ± 2.1% at 3 days and -13.9 ± 1.4% at 9 days after MI. The four-chamber view LS was -9.9 ± 1.5% at 3 days and -11.9 ± 1.3% at 9 days after MI. Both the two- and four-chamber LS values were significantly decreased 3 days after MI. Myocardial strain analysis is, therefore, useful for assessing the pathophysiology of MI.
Collapse
Affiliation(s)
- Ryutaro Onishi
- Department of Medical Physics and Engineering, Area of Medical Imaging Technology and Science, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Division of Clinical Radiology Service, Kyoto University Hospital, Kyoto 606-8507, Japan
| | - Junpei Ueda
- Department of Medical Physics and Engineering, Area of Medical Imaging Technology and Science, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Seiko Ide
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Masahiro Koseki
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Shigeyoshi Saito
- Department of Medical Physics and Engineering, Area of Medical Imaging Technology and Science, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Department of Advanced Medical Technologies, National Cerebral and Cardiovascular Center Research Institute, Osaka 564-8565, Japan
| |
Collapse
|
6
|
Mendiola EA, Neelakantan S, Xiang Q, Merchant S, Li K, Hsu EW, Dixon RAF, Vanderslice P, Avazmohammadi R. Contractile Adaptation of the Left Ventricle Post-myocardial Infarction: Predictions by Rodent-Specific Computational Modeling. Ann Biomed Eng 2023; 51:846-863. [PMID: 36394778 PMCID: PMC10023390 DOI: 10.1007/s10439-022-03102-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 10/02/2022] [Indexed: 11/19/2022]
Abstract
Myocardial infarction (MI) results in cardiac myocyte death and the formation of a fibrotic scar in the left ventricular free wall (LVFW). Following an acute MI, LVFW remodeling takes place consisting of several alterations in the structure and properties of cellular and extracellular components with a heterogeneous pattern across the LVFW. The normal function of the heart is strongly influenced by the passive and active biomechanical behavior of the LVFW, and progressive myocardial structural remodeling can have a detrimental effect on both diastolic and systolic functions of the LV leading to heart failure. Despite important advances in understanding LVFW passive remodeling in the setting of MI, heterogeneous remodeling in the LVFW active properties and its relationship to organ-level LV function remain understudied. To address these gaps, we developed high-fidelity finite-element (FE) rodent computational cardiac models (RCCMs) of MI using extensive datasets from MI rat hearts representing the heart remodeling from one-week (1-wk) to four-week (4-wk) post-MI timepoints. The rat-specific models (n = 2 for each timepoint) integrate detailed imaging data of the heart geometry, myocardial fiber architecture, and infarct zone determined using late gadolinium enhancement prior to terminal measurements. The computational models predicted a significantly higher level of active tension in remote myocardium in early post-MI hearts (1-wk post-MI) followed by a return to near the control level in late-stage MI (3- and 4-wk post-MI). The late-stage MI rats showed smaller myofiber ranges in the remote region and in-silico experiments using RCCMs suggested that the smaller fiber helicity is consistent with lower contractile forces needed to meet the measured ejection fractions in late-stage MI. In contrast, in-silico experiments predicted that collagen fiber transmural orientation in the infarct region has little influence on organ-level function. In addition, our MI RCCMs indicated that reduced and potentially positive circumferential strains in the infarct region at end-systole can be used to infer information about the time-varying properties of the infarct region. The detailed description of regional passive and active remodeling patterns can complement and enhance the traditional measures of LV anatomy and function that often lead to a gross and limited assessment of cardiac performance. The translation and implementation of our model in patient-specific organ-level simulations offer to advance the investigation of individualized prognosis and intervention for MI.
Collapse
Affiliation(s)
- Emilio A Mendiola
- Computational Cardiovascular Bioengineering Laboratory, Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Sunder Neelakantan
- Computational Cardiovascular Bioengineering Laboratory, Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Qian Xiang
- Department of Molecular Cardiology, Texas Heart Institute, Houston, TX, USA
| | - Samer Merchant
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Ke Li
- Department of Molecular Cardiology, Texas Heart Institute, Houston, TX, USA
| | - Edward W Hsu
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Richard A F Dixon
- Department of Molecular Cardiology, Texas Heart Institute, Houston, TX, USA
| | - Peter Vanderslice
- Department of Molecular Cardiology, Texas Heart Institute, Houston, TX, USA
| | - Reza Avazmohammadi
- Computational Cardiovascular Bioengineering Laboratory, Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA.
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, USA.
- Department of Cardiovascular Sciences, Houston Methodist Academic Institute, Houston, TX, USA.
| |
Collapse
|
7
|
Lashgari M, Ravikumar N, Teh I, Li JR, Buckley DL, Schneider JE, Frangi AF. Three-dimensional micro-structurally informed in silico myocardium-Towards virtual imaging trials in cardiac diffusion weighted MRI. Med Image Anal 2022; 82:102592. [PMID: 36095906 DOI: 10.1016/j.media.2022.102592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 08/14/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022]
Abstract
In silico tissue models (viz. numerical phantoms) provide a mechanism for evaluating quantitative models of magnetic resonance imaging. This includes the validation and sensitivity analysis of imaging biomarkers and tissue microstructure parameters. This study proposes a novel method to generate a realistic numerical phantom of myocardial microstructure. The proposed method extends previous studies by accounting for the variability of the cardiomyocyte shape, water exchange between the cardiomyocytes (intercalated discs), disorder class of myocardial microstructure, and four sheetlet orientations. In the first stage of the method, cardiomyocytes and sheetlets are generated by considering the shape variability and intercalated discs in cardiomyocyte-cardiomyocyte connections. Sheetlets are then aggregated and oriented in the directions of interest. The morphometric study demonstrates no significant difference (p>0.01) between the distribution of volume, length, and primary and secondary axes of the numerical and real (literature) cardiomyocyte data. Moreover, structural correlation analysis validates that the in-silico tissue is in the same class of disorderliness as the real tissue. Additionally, the absolute angle differences between the simulated helical angle (HA) and input HA (reference value) of the cardiomyocytes (4.3°±3.1°) demonstrate a good agreement with the absolute angle difference between the measured HA using experimental cardiac diffusion tensor imaging (cDTI) and histology (reference value) reported by (Holmes et al., 2000) (3.7°±6.4°) and (Scollan et al. 1998) (4.9°±14.6°). Furthermore, the angular distance between eigenvectors and sheetlet angles of the input and simulated cDTI is much smaller than those between measured angles using structural tensor imaging (as a gold standard) and experimental cDTI. Combined with the qualitative results, these results confirm that the proposed method can generate richer numerical phantoms for the myocardium than previous studies.
Collapse
Affiliation(s)
- Mojtaba Lashgari
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), School of Computing, University of Leeds, Leeds, UK; Biomedical Imaging Science Department, Leeds Institute for Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds, UK.
| | - Nishant Ravikumar
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), School of Computing, University of Leeds, Leeds, UK; Biomedical Imaging Science Department, Leeds Institute for Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds, UK
| | - Irvin Teh
- Biomedical Imaging Science Department, Leeds Institute for Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds, UK
| | - Jing-Rebecca Li
- INRIA Saclay, Equipe DEFI, CMAP, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex, France
| | - David L Buckley
- Biomedical Imaging Science Department, Leeds Institute for Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds, UK
| | - Jurgen E Schneider
- Biomedical Imaging Science Department, Leeds Institute for Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds, UK
| | - Alejandro F Frangi
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), School of Computing, University of Leeds, Leeds, UK; Biomedical Imaging Science Department, Leeds Institute for Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds, UK; INRIA Saclay, Equipe DEFI, CMAP, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex, France; Medical Imaging Research Center (MIRC), Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Medical Imaging Research Center (MIRC), Department of Electrical Engineering, KU Leuven, Leuven, Belgium; Alan Turing Institute, London, UK.
| |
Collapse
|
8
|
Ghanta RK, Pugazenthi A, Zhao Y, Sylvester C, Wall MJ, Mazur RA, Russell LN, Lampe KJ. Influence of Supraphysiologic Biomaterial Stiffness on Ventricular Mechanics and Myocardial Infarct Reinforcement. Acta Biomater 2022; 149:30-39. [PMID: 35820592 DOI: 10.1016/j.actbio.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 11/15/2022]
Abstract
Injectable intramyocardial biomaterials have promise to limit adverse ventricular remodeling through mechanical and biologic mechanisms. While some success has been observed by injecting materials to regenerate new tissue, optimal biomaterial stiffness to thicken and stiffen infarcted myocardium to limit adverse remodeling has not been determined. In this work, we present an in-vivo study of the impact of biomaterial stiffness over a wide range of stiffness moduli on ventricular mechanics. We utilized injectable methacrylated polyethylene glycol (PEG) hydrogels fabricated at 3 different mechanical moduli: 5 kPa (low), 25 kPa (medium/myocardium), and 250 kPa (high/supraphysiologic). We demonstrate that the supraphysiological high stiffness favorably alters post-infarct ventricular mechanics and prevents negative tissue remodeling. Lower stiffness materials do not alter mechanics and thus to be effective, must instead target biological reparative mechanisms. These results may influence rationale design criteria for biomaterials developed for infarct reinforcement therapy. STATEMENT OF SIGNIFICANCE: Acellular biomaterials for cardiac application can provide benefit via mechanical and biological mechanisms post myocardial infarction. We study the role of biomaterial mechanical characteristics on ventricular mechanics in myocardial infarcts. Previous studies have not measured the influence of injected biomaterials on ventricular mechanics, and consequently rational design criteria is unknown. By utilizing an in-vivo assessment of ventricular mechanics, we demonstrate that low stiffness biomaterial do not alter pathologic ventricular mechanics. Thus, to be effective, low stiffness biomaterials must target biological reparative mechanisms. Physiologic and supra-physiologic biomaterials favorably alter post-infarct mechanics and prevents adverse ventricular remodeling.
Collapse
Affiliation(s)
- Ravi K Ghanta
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX United States; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX United States.
| | - Aarthi Pugazenthi
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX United States
| | - Yunge Zhao
- Department of Surgery, University of Maryland, Baltimore, MD United States
| | - Christopher Sylvester
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX United States; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX United States
| | - Mathew J Wall
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX United States
| | - Rachel A Mazur
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA United States
| | - Lauren N Russell
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA United States
| | - Kyle J Lampe
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA United States
| |
Collapse
|
9
|
Harbo MB, Stokke MK, Sjaastad I, Espe EKS. One step closer to myocardial physiology: From PV loop analysis to state-of-the-art myocardial imaging. Acta Physiol (Oxf) 2022; 234:e13759. [PMID: 34978759 DOI: 10.1111/apha.13759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/14/2021] [Accepted: 01/01/2022] [Indexed: 11/29/2022]
Abstract
Recent advances in cardiac imaging have revitalized the assessment of fundamental physiological concepts. In the field of cardiac physiology, invasive measurements with pressure-volume (PV) loops have served as the gold standard methodology for the characterization of left ventricular (LV) function. From PV loop data, fundamental aspects of LV chamber function are derived such as work, efficiency, stiffness and contractility. However, the parametrization of these aspects is limited because of the need for invasive procedures. Through the utilization of recent advances in echocardiography, magnetic resonance imaging and positron emission tomography, it has become increasingly feasible to quantify these fundamental aspects of LV function non-invasively. Importantly, state-of-the-art imaging technology enables direct assessment of myocardial performance, thereby extending functional assessment from the net function of the LV chamber, as is done with PV loops, to the myocardium itself. With a strong coupling to underlying myocardial physiology, imaging measurements of myocardial work, efficiency, stiffness and contractility could represent the next generation of functional parameters. The purpose of this review is to discuss how the new imaging parameters of myocardial work, efficiency, stiffness and contractility can bring cardiac physiologists, researchers and clinicians alike one step closer to underlying myocardial physiology.
Collapse
Affiliation(s)
- Markus Borge Harbo
- Institute for Experimental Medical Research Oslo University Hospital and University of Oslo Oslo Norway
- K.G. Jebsen Center for Cardiac Research University of Oslo Oslo Norway
| | - Mathis Korseberg Stokke
- Institute for Experimental Medical Research Oslo University Hospital and University of Oslo Oslo Norway
- K.G. Jebsen Center for Cardiac Research University of Oslo Oslo Norway
- Department of Cardiology Oslo University Hospital Rikshospitalet Oslo Norway
| | - Ivar Sjaastad
- Institute for Experimental Medical Research Oslo University Hospital and University of Oslo Oslo Norway
- K.G. Jebsen Center for Cardiac Research University of Oslo Oslo Norway
| | - Emil Knut Stenersen Espe
- Institute for Experimental Medical Research Oslo University Hospital and University of Oslo Oslo Norway
- K.G. Jebsen Center for Cardiac Research University of Oslo Oslo Norway
| |
Collapse
|
10
|
Wang H, Wisneski A, Imbrie-Moore AM, Paulsen MJ, Wang Z, Xuan Y, Lopez Hernandez H, Hironaka CE, Lucian HJ, Shin HS, Anilkumar S, Thakore AD, Farry JM, Eskandari A, Williams KM, Grady F, Wu MA, Jung J, Stapleton LM, Steele AN, Zhu Y, Woo YJ. Natural cardiac regeneration conserves native biaxial left ventricular biomechanics after myocardial infarction in neonatal rats. J Mech Behav Biomed Mater 2022; 126:105074. [PMID: 35030471 PMCID: PMC8899021 DOI: 10.1016/j.jmbbm.2022.105074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 12/23/2021] [Accepted: 01/02/2022] [Indexed: 02/03/2023]
Abstract
After myocardial infarction (MI), adult mammals exhibit scar formation, adverse left ventricular (LV) remodeling, LV stiffening, and impaired contractility, ultimately resulting in heart failure. Neonatal mammals, however, are capable of natural heart regeneration after MI. We hypothesized that neonatal cardiac regeneration conserves native biaxial LV mechanics after MI. Wistar rat neonates (1 day old, n = 46) and adults (8-10 weeks old, n = 20) underwent sham surgery or permanent left anterior descending coronary artery ligation. At 6 weeks after neonatal MI, Masson's trichrome staining revealed negligible fibrosis. Echocardiography for the neonatal MI (n = 15) and sham rats (n = 14) revealed no differences in LV wall thickness or chamber diameter, and both groups had normal ejection fraction (72.7% vs 77.5%, respectively, p = 0.1946). Biaxial tensile testing revealed similar stress-strain curves along both the circumferential and longitudinal axes across a full range of physiologic stresses and strains. The circumferential modulus (267.9 kPa vs 274.2 kPa, p = 0.7847), longitudinal modulus (269.3 kPa vs 277.1 kPa, p = 0.7435), and maximum shear stress (3.30 kPa vs 3.95 kPa, p = 0.5418) did not differ significantly between the neonatal MI and sham groups, respectively. In contrast, transmural scars were observed at 4 weeks after adult MI. Adult MI hearts (n = 7) exhibited profound LV wall thinning (p < 0.0001), chamber dilation (p = 0.0246), and LV dysfunction (ejection fraction 45.4% vs 79.7%, p < 0.0001) compared to adult sham hearts (n = 7). Adult MI hearts were significantly stiffer than adult sham hearts in both the circumferential (321.5 kPa vs 180.0 kPa, p = 0.0111) and longitudinal axes (315.4 kPa vs 172.3 kPa, p = 0.0173), and also exhibited greater maximum shear stress (14.87 kPa vs 3.23 kPa, p = 0.0162). Our study is the first to show that native biaxial LV mechanics are conserved after neonatal heart regeneration following MI, thus adding biomechanical support for the therapeutic potential of cardiac regeneration in the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Andrew Wisneski
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Annabel M Imbrie-Moore
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Michael J Paulsen
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Zhongjie Wang
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Yue Xuan
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | | | - Camille E Hironaka
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Haley J Lucian
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Hye Sook Shin
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Shreya Anilkumar
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Akshara D Thakore
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Justin M Farry
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Anahita Eskandari
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Kiah M Williams
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Frederick Grady
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Matthew A Wu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Jinsuh Jung
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Lyndsay M Stapleton
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Amanda N Steele
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Yuanjia Zhu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
11
|
Myocardial Work, an Echocardiographic Measure of Post Myocardial Infarct Scar on Contrast-Enhanced Cardiac Magnetic Resonance. Am J Cardiol 2021; 151:1-9. [PMID: 34034906 DOI: 10.1016/j.amjcard.2021.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022]
Abstract
This study investigates the relation of non-invasive myocardial work and myocardial viability following ST-segment elevation myocardial infarction (STEMI) assessed on late gadolinium contrast enhanced cardiac magnetic resonance (LGE CMR) and characterizes the remote zone using non-invasive myocardial work parameters. STEMI patients who underwent primary percutaneous coronary intervention (PCI) were included. Several non-invasive myocardial work parameters were derived from speckle tracking strain echocardiography and sphygmomanometric blood pressure, e.g.: myocardial work index (MWI), constructive work (CW), wasted work (WW) and myocardial work efficiency (MWE). LGE was quantified to determine infarct transmurality and scar burden. The core zone was defined as the segment with the largest extent of transmural LGE and the remote zone as the diametrically opposed segment without LGE. A total of 53 patients (89% male, mean age 58 ± 9 years) and 689 segments were analyzed. The mean scar burden was 14 ± 7% of the total LV mass, and 76 segments (11%) demonstrated transmural hyperenhancement, 280 (41%) non-transmural hyperenhancement and 333 (48%) no LGE. An inverse relation was observed between segmental MWI, CW and MWE and infarct transmurality (p < 0.05). MWI, CW and MWE were significantly lower in the core zone compared to the remote zone (p<0.05). In conclusion, non-invasive myocardial work parameters may serve as potential markers of segmental myocardial viability in post-STEMI patients who underwent primary PCI. Non-invasive myocardial work can also be utilized to characterize the remote zone, which is an emerging prognostic marker as well as a therapeutic target.
Collapse
|
12
|
Espe EKS, Bendiksen BA, Zhang L, Sjaastad I. Analysis of right ventricular mass from magnetic resonance imaging data: a simple post-processing algorithm for correction of partial-volume effects. Am J Physiol Heart Circ Physiol 2021; 320:H912-H922. [PMID: 33337965 DOI: 10.1152/ajpheart.00494.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/14/2020] [Indexed: 11/22/2022]
Abstract
Magnetic resonance imaging (MRI) of the right ventricle (RV) offers important diagnostic information, but the accuracy of this information is hampered by the complex geometry of the RV. Here, we propose a novel postprocessing algorithm that corrects for partial-volume effects in the analysis of standard MRI cine images of RV mass (RVm) and evaluate the method in clinical and preclinical data. Self-corrected RVm measurement was compared with conventionally measured RVm in 16 patients who showed different clinical indications for cardiac MRI and in 17 Wistar rats with different degrees of pulmonary congestion. The rats were studied under isoflurane anaesthesia. To evaluate the reliability of the proposed method, the measured end-systolic and end-diastolic RVm were compared. Accuracy was evaluated by comparing preclinical RVm to ex vivo RV weight (RVw). We found that use of the self-correcting algorithm improved reliability compared with conventional segmentation. For clinical data, the limits of agreement (LOAs) were -1.8 ± 8.6g (self-correcting) vs. 5.8 ± 7.8g (conventional), and coefficients of variation (CoVs) were 7.0% (self-correcting) vs. 14.3% (conventional). For preclinical data, LOAs were 21 ± 46 mg (self-correcting) vs. 64 ± 89 mg (conventional), and CoVs were 9.0% (self-correcting) and 17.4% (conventional). Self-corrected RVm also showed better correspondence with the ex vivo RVw: LOAs were -5 ± 80 mg (self-correcting) vs. 94 ± 116 mg (conventional) in end-diastole and -26 ± 74 mg (self-correcting) vs. 31 ± 98 mg (conventional) in end-systole. The new self-correcting algorithm improves the reliability and accuracy of RVm measurements in both clinical and preclinical MRI. It is simple and easy to implement and does not require any additional MRI data.NEW & NOTEWORTHY Magnetic resonance imaging (MRI) of the right ventricle (RV) offers important diagnostic information, but the accuracy of this information is hampered by the complex geometry of the RV. In particular, the crescent shape of the RV renders it particularly vulnerable to partial-volume effects. We present a new, simple, self-correcting algorithm that can be applied to correct partial-volume effects in MRI-based RV mass estimation. The self-correcting algorithm offers improved reliability and accuracy compared with the conventional approach.
Collapse
Affiliation(s)
- Emil K S Espe
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Nydalen, Oslo, Norway
- K. G. Jebsen Centre for Cardiac Research, University of Oslo, Nydalen, Oslo, Norway
| | - Bård A Bendiksen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Nydalen, Oslo, Norway
- K. G. Jebsen Centre for Cardiac Research, University of Oslo, Nydalen, Oslo, Norway
- Bjørknes University College, Oslo, Norway
| | - Lili Zhang
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Nydalen, Oslo, Norway
- K. G. Jebsen Centre for Cardiac Research, University of Oslo, Nydalen, Oslo, Norway
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Nydalen, Oslo, Norway
- K. G. Jebsen Centre for Cardiac Research, University of Oslo, Nydalen, Oslo, Norway
| |
Collapse
|
13
|
González A, Nome CG, Bendiksen BA, Sjaastad I, Zhang L, Aleksandersen M, Taubøll E, Aurlien D, Heuser K. Assessment of cardiac structure and function in a murine model of temporal lobe epilepsy. Epilepsy Res 2020; 161:106300. [PMID: 32126491 DOI: 10.1016/j.eplepsyres.2020.106300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/28/2020] [Accepted: 02/22/2020] [Indexed: 10/24/2022]
Abstract
Sudden unexpected death in epilepsy (SUDEP) is a significant cause of premature seizure-related death. An association between SUDEP and cardiac remodeling has been suggested. However, whether SUDEP is a direct consequence of acute or recurrent seizures is unsettled. The purpose of this study was to evaluate the impact of status epilepticus (SE) and chronic seizures on myocardial structure and function. We used the intracortical kainate injection model of temporal lobe epilepsy to elicit SE and chronic epilepsy in mice. In total, 24 C57/BL6 mice (13 kainate, 11 sham) were studied 2 and 30 days post-injection. Cardiac structure and function were investigated in-vivo with a 9.4 T MRI, electrocardiography (ECG), echocardiography, and histology [Haematoxylin/Eosin (HE) and Martius Scarlet Blue (MSB)] for staining of collagen proliferation and fibrin accumulation. In conclusion, we did not detect any significant changes in cardiac structure and function neither in mice 2 days nor 30 days post-injection.
Collapse
Affiliation(s)
- Alba González
- Dep. of Neurology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Bård Andre Bendiksen
- Institute for Experimental Medical Research (IEMR), Oslo University Hospital, Ullevål, Oslo, Norway; KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway; Bjørknes University College, Oslo, Norway
| | - Ivar Sjaastad
- Institute for Experimental Medical Research (IEMR), Oslo University Hospital, Ullevål, Oslo, Norway; KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Lili Zhang
- Institute for Experimental Medical Research (IEMR), Oslo University Hospital, Ullevål, Oslo, Norway; KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Mona Aleksandersen
- School of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Erik Taubøll
- Dep. of Neurology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Dag Aurlien
- Neuroscience Research Group and Dep. of Neurology, Stavanger University Hospital, Stavanger, Norway
| | - Kjell Heuser
- Dep. of Neurology, Oslo University Hospital, Rikshospitalet, Oslo, Norway.
| |
Collapse
|
14
|
Sokolova M, Sjaastad I, Louwe MC, Alfsnes K, Aronsen JM, Zhang L, Haugstad SB, Bendiksen BA, Øgaard J, Bliksøen M, Lien E, Berge RK, Aukrust P, Ranheim T, Yndestad A. NLRP3 Inflammasome Promotes Myocardial Remodeling During Diet-Induced Obesity. Front Immunol 2019; 10:1621. [PMID: 31379826 PMCID: PMC6648799 DOI: 10.3389/fimmu.2019.01621] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 06/28/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Obesity is an increasingly prevalent metabolic disorder in the modern world and is associated with structural and functional changes in the heart. The NLRP3 inflammasome is an innate immune sensor that can be activated in response to endogenous danger signals and triggers activation of interleukin (IL)-1β and IL-18. Increasing evidence points to the involvement of the NLRP3 inflammasome in obesity-induced inflammation and insulin resistance, and we hypothesized that it also could play a role in the development of obesity induced cardiac alterations. Methods and Results: WT, Nlrp3−/−, and ASC−/− (Pycard−/−) male mice were exposed to high fat diet (HFD; 60 cal% fat) or control diet for 52 weeks. Cardiac structure and function were evaluated by echocardiography and magnetic resonance imaging, respectively. Whereas, NLRP3 and ASC deficiency did not affect the cardiac hypertrophic response to obesity, it was preventive against left ventricle concentric remodeling and impairment of diastolic function. Furthermore, whereas NLRP3 and ASC deficiency attenuated systemic inflammation in HFD fed mice; long-term HFD did not induce significant cardiac fibrosis or inflammation, suggesting that the beneficial effects of NLRP3 inflammasome deficiency on myocardial remodeling at least partly reflect systemic mechanisms. Nlrp3 and ASC (Pycard) deficient mice were also protected against obesity-induced systemic metabolic dysregulation, as well as lipid accumulation and impaired insulin signaling in hepatic and cardiac tissues. Conclusions: Our data indicate that the NLRP3 inflammasome modulates cardiac concentric remodeling in obesity through effects on systemic inflammation and metabolic disturbances, with effect on insulin signaling as a potential mediator within the myocardium.
Collapse
Affiliation(s)
- Marina Sokolova
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Center for Heart Failure Research, University of Oslo, Oslo, Norway.,K.G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Ivar Sjaastad
- K.G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway.,Institute for Experimental Medical Research, Oslo University Hospital Ullevål, Oslo, Norway
| | - Mieke C Louwe
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Center for Heart Failure Research, University of Oslo, Oslo, Norway.,K.G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Katrine Alfsnes
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Jan Magnus Aronsen
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål, Oslo, Norway.,Bjørknes College, Oslo, Norway
| | - Lili Zhang
- Center for Heart Failure Research, University of Oslo, Oslo, Norway.,Institute for Experimental Medical Research, Oslo University Hospital Ullevål, Oslo, Norway
| | - Solveig B Haugstad
- Center for Heart Failure Research, University of Oslo, Oslo, Norway.,Institute for Experimental Medical Research, Oslo University Hospital Ullevål, Oslo, Norway
| | - Bård Andre Bendiksen
- Center for Heart Failure Research, University of Oslo, Oslo, Norway.,Institute for Experimental Medical Research, Oslo University Hospital Ullevål, Oslo, Norway
| | - Jonas Øgaard
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Marte Bliksøen
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Egil Lien
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, United States.,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Rolf K Berge
- Department of Clinical Science, Department of Heart Disease, Haukeland University Hospital, University of Bergen, Bergen, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,K.G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway.,Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Trine Ranheim
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Center for Heart Failure Research, University of Oslo, Oslo, Norway.,K.G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Arne Yndestad
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Center for Heart Failure Research, University of Oslo, Oslo, Norway.,K.G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| |
Collapse
|
15
|
McGinley G, Bendiksen BA, Zhang L, Aronsen JM, Nordén ES, Sjaastad I, Espe EKS. Accelerated magnetic resonance imaging tissue phase mapping of the rat myocardium using compressed sensing with iterative soft-thresholding. PLoS One 2019; 14:e0218874. [PMID: 31276508 PMCID: PMC6611593 DOI: 10.1371/journal.pone.0218874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/11/2019] [Indexed: 11/22/2022] Open
Abstract
Introduction Tissue Phase Mapping (TPM) MRI can accurately measure regional myocardial velocities and strain. The lengthy data acquisition, however, renders TPM prone to errors due to variations in physiological parameters, and reduces data yield and experimental throughput. The purpose of the present study is to examine the quality of functional measures (velocity and strain) obtained by highly undersampled TPM data using compressed sensing reconstruction in infarcted and non-infarcted rat hearts. Methods Three fully sampled left-ventricular short-axis TPM slices were acquired from 5 non-infarcted rat hearts and 12 infarcted rat hearts in vivo. The datasets were used to generate retrospectively (simulated) undersampled TPM datasets, with undersampling factors of 2, 4, 8 and 16. Myocardial velocities and circumferential strain were calculated from all datasets. The error introduced from undersampling was then measured and compared to the fully sampled data in order to validate the method. Finally, prospectively undersampled data were acquired and compared to the fully sampled datasets. Results Bland Altman analysis of the retrospectively undersampled and fully sampled data revealed narrow limits of agreement and little bias (global radial velocity: median bias = -0.01 cm/s, 95% limits of agreement = [-0.16, 0.20] cm/s, global circumferential strain: median bias = -0.01%strain, 95% limits of agreement = [-0.43, 0.51] %strain, all for 4x undersampled data at the mid-ventricular level). The prospectively undersampled TPM datasets successfully demonstrated the feasibility of method implementation. Conclusion Through compressed sensing reconstruction, highly undersampled TPM data can be used to accurately measure the velocity and strain of the infarcted and non-infarcted rat myocardium in vivo, thereby increasing experimental throughput and simultaneously reducing error introduced by physiological variations over time.
Collapse
Affiliation(s)
- Gary McGinley
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Center for Cardiac Research and Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Bård A. Bendiksen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Center for Cardiac Research and Center for Heart Failure Research, University of Oslo, Oslo, Norway
- Bjørknes University College, Oslo, Norway
| | - Lili Zhang
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Center for Cardiac Research and Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Jan Magnus Aronsen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Center for Cardiac Research and Center for Heart Failure Research, University of Oslo, Oslo, Norway
- Bjørknes University College, Oslo, Norway
| | - Einar Sjaastad Nordén
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Center for Cardiac Research and Center for Heart Failure Research, University of Oslo, Oslo, Norway
- Bjørknes University College, Oslo, Norway
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Center for Cardiac Research and Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Emil K. S. Espe
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Center for Cardiac Research and Center for Heart Failure Research, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
16
|
Rademakers FE. Regional Myocardial Contractility. Circ Cardiovasc Imaging 2017; 10:CIRCIMAGING.117.006906. [DOI: 10.1161/circimaging.117.006906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Frank E. Rademakers
- From the Department of Cardiovascular Sciences, University Hospitals Leuven, KU Leuven, Belgium
| |
Collapse
|