1
|
Menon RG, Yepuri G, Martel D, Quadri N, Hasan SN, Manigrasso MB, Shekhtman A, Schmidt AM, Ramasamy R, Regatte RR. Assessment of cardiac and skeletal muscle metabolites using 1H-MRS and chemical-shift encoded magnetic resonance imaging: Impact of diabetes, RAGE, and DIAPH1. NMR IN BIOMEDICINE 2025; 38:e5275. [PMID: 39468867 DOI: 10.1002/nbm.5275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024]
Abstract
Diabetes affects metabolism and metabolite concentrations in multiple organs. Previous preclinical studies have shown that receptor for advanced glycation end products (RAGE, gene symbol Ager) and its cytoplasmic domain binding partner, Diaphanous-1 (DIAPH1), are key mediators of diabetic micro- and macro-vascular complications. In this study, we used 1H-Magnetic Resonance Spectroscopy (MRS) and chemical shift encoded (CSE) Magnetic Resonance Imaging (MRI) to investigate the metabolite and water-fat fraction in the heart and hind limb muscle in a murine model of type 1 diabetes (T1D) and to determine if the metabolite changes in the heart and hind limb are influenced by (a) deletion of Ager or Diaph1 and (b) pharmacological blockade of RAGE-DIAPH1 interaction in mice. Nine cohorts of male mice, with six mice per cohort, were used: wild type non-diabetic control mice (WT-NDM), WT-diabetic (WT-DM) mice, Ager knockout non-diabetic (RKO-NDM) and diabetic mice (RKO-DM), Diaph1 knockout non-diabetic (DKO-NDM), and diabetic mice (DKO-DM), WT-NDM mice treated with vehicle, WT-DM mice treated with vehicle, and WT-DM mice treated with RAGE229 (antagonist of RAGE-DIAPH1 interaction). A Point Resolved Spectroscopy (PRESS) sequence for 1H-MRS, and multi-echo gradient recalled echo (GRE) for CSE were employed. Triglycerides, and free fatty acids in the heart and hind limb obtained from MRS and MRI were compared to those measured using biochemical assays. Two-sided t-test, non-parametric Kruskal-Wallis Test, and one-way ANOVA were employed for statistical analysis. We report that the results were well-correlated with significant differences using MRI and biochemical assays between WT-NDM and WT-DM, as well as within the non-diabetic groups, and within the diabetic groups. Deletion of Ager or Diaph1, or treatment with RAGE229 attenuated diabetes-associated increases in triglycerides in the heart and hind limb in mice. These results suggest that the employment of 1H-MRS/MRI is a feasible non-invasive modality to monitor metabolic dysfunction in T1D and the metabolic consequences of interventions that block RAGE and DIAPH1.
Collapse
Affiliation(s)
- Rajiv G Menon
- Department of Radiology, Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Gautham Yepuri
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Dimitri Martel
- Department of Radiology, Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Nosirudeen Quadri
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Syed Nurul Hasan
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Michaele B Manigrasso
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Ann Marie Schmidt
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Ravichandran Ramasamy
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Ravinder R Regatte
- Department of Radiology, Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
2
|
Li Q, Fu J, Park K, Shah H, Li Q, Wu IH, King GL. Insulin receptors in vascular smooth muscle cells regulate plaque stability of atherosclerosis. Cardiovasc Res 2024; 120:2017-2030. [PMID: 39197028 PMCID: PMC11646105 DOI: 10.1093/cvr/cvae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/09/2024] [Accepted: 07/05/2024] [Indexed: 08/30/2024] Open
Abstract
AIMS Increased prevalence of acute myocardial infarction related to diabetes and insulin resistance is associated with an elevated risk of unstable atherosclerotic plaques, which are characterized by reduced vascular smooth muscle cells (VSMCs) and extracellular matrix (ECM) and increased inflammation. Thus, insulin resistance may reduce plaque stability, as deleting insulin receptors (IRs) in VSMCs decreases their proliferation and enhances apoptosis. METHODS AND RESULTS Direct effects of insulin on VSMCs to alter plaque composition were studied using mice with double knockout of ApoE and IR genes in VSMCs with SMIRKO/ApoE-/-, Myh11-CreERT2EYFP+/ApoE-/-, and Myh11-CreERT2EYFP+IRKO/ApoE-/- mice, which were also used for lineage tracing studies. Compared with ApoE-/- mice, SMIRKO/ApoE-/- mice exhibited more atherosclerotic plaques, which contained less VSMCs and collagen but increased levels of VSMC apoptosis and necrotic areas. Lineage tracing studies showed that Icam1+ Vcam1+ VSMC was inflammatory, which increased in the aortas of Myh11-CreERT2EYFP+IRKO/ApoE-/- mice compared with control mice. Isolated VSMCs lacking IRs expressed higher inflammatory cytokines than cells with IRs. Cell-based studies indicated that insulin's anti-apoptotic and pro-proliferative effects in VSMCs were mediated via activation of the IR/Akt pathway, which were decreased in VSMCs from SMIRKO or high-fat diet mice. An analysis of the IR targets that regulated inflammatory cytokines in VSMCs showed that thrombospondin 1 (Thbs1) and Mmp2 were consistently increased with a loss of IRs. Insulin inhibited Thbs1 expression, but not Mmp2 expression, through p-Akt/p-FoxO1 pathways in VSMCs from ApoE-/- mice, and was impaired in cells from SMIRKO/ApoE-/- mice. Thbs1 further induced Icam1 and Mmp2 expressions in VSMCs. CONCLUSION Insulin via IRs has significant actions in VSMCs to decrease inflammation, apoptosis, and ECM turnover via the activation of Akt and FoxO1 pathways. The inhibition of insulin actions and related pathways related to insulin resistance and diabetes may contribute to the formation of unstable atherosclerotic plaques.
Collapse
MESH Headings
- Animals
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Plaque, Atherosclerotic
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Atherosclerosis/pathology
- Atherosclerosis/metabolism
- Atherosclerosis/genetics
- Apoptosis
- Mice, Knockout, ApoE
- Disease Models, Animal
- Signal Transduction
- Receptor, Insulin/metabolism
- Receptor, Insulin/genetics
- Aortic Diseases/pathology
- Aortic Diseases/metabolism
- Aortic Diseases/genetics
- Aortic Diseases/prevention & control
- Mice, Inbred C57BL
- Cell Proliferation
- Insulin/metabolism
- Male
- Cells, Cultured
- Rupture, Spontaneous
- Insulin Resistance
- Proto-Oncogene Proteins c-akt/metabolism
- Thrombospondin 1/metabolism
- Thrombospondin 1/genetics
- Aorta/pathology
- Aorta/metabolism
- Matrix Metalloproteinase 2/metabolism
- Matrix Metalloproteinase 2/genetics
- Inflammation Mediators/metabolism
- Necrosis
- Apolipoproteins E/genetics
- Apolipoproteins E/deficiency
- Extracellular Matrix/metabolism
- Extracellular Matrix/pathology
- Mice
- Receptor, IGF Type 1
Collapse
Affiliation(s)
- Qian Li
- Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
| | - Jialin Fu
- Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
| | - Kyoungmin Park
- Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
| | - Hetal Shah
- Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
| | - Qin Li
- Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
| | - I Hsien Wu
- Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
| | - George L King
- Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
| |
Collapse
|
3
|
Khalid M, Adem A. The dynamic roles of advanced glycation end products. VITAMINS AND HORMONES 2024; 125:1-29. [PMID: 38997161 DOI: 10.1016/bs.vh.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Advanced glycation end products (AGEs) are a heterogeneous group of potentially harmful molecules that can form as a result of a non-enzymatic reaction between reducing sugars and proteins, lipids, or nucleic acids. The total body pool of AGEs reflects endogenously produced AGEs as well as exogeneous AGEs that come from sources such as diet and the environment. Engagement of AGEs with their cellular receptor, the receptor for advanced glycation end products (RAGE), which is expressed on the surface of various cell types, converts a brief pulse of cellular activation to sustained cellular dysfunction and tissue destruction. The AGEs/RAGE interaction triggers a cascade of intracellular signaling pathways such as mitogen-activated protein kinase/extracellular signal-regulated kinase, phosphoinositide 3-kinases, transforming growth factor beta, c-Jun N-terminal kinases (JNK), and nuclear factor kappa B, which leads to the production of pro-inflammatory cytokines, chemokines, adhesion molecules, and oxidative stress. All these events contribute to the progression of several chronic diseases. This chapter will provide a comprehensive understanding of the dynamic roles of AGEs in health and disease which is crucial to develop interventions that prevent and mitigate the deleterious effects of AGEs accumulation.
Collapse
Affiliation(s)
- Mariyam Khalid
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Abdu Adem
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
4
|
Jarosławska J, Kordas B, Miłowski T, Juranek JK. Mammalian Diaphanous1 signalling in neurovascular complications of diabetes. Eur J Neurosci 2024; 59:2628-2645. [PMID: 38491850 DOI: 10.1111/ejn.16310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/18/2024] [Indexed: 03/18/2024]
Abstract
Over the past few decades, diabetes gradually has become one of the top non-communicable disorders, affecting 476.0 million in 2017 and is predicted to reach 570.9 million people in 2025. It is estimated that 70 to 100% of all diabetic patients will develop some if not all, diabetic complications over the course of the disease. Despite different symptoms, mechanisms underlying the development of diabetic complications are similar, likely stemming from deficits in both neuronal and vascular components supplying hyperglycaemia-susceptible tissues and organs. Diaph1, protein diaphanous homolog 1, although mainly known for its regulatory role in structural modification of actin and related cytoskeleton proteins, in recent years attracted research attention as a cytoplasmic partner of the receptor of advanced glycation end-products (RAGE) a signal transduction receptor, whose activation triggers an increase in proinflammatory molecules, oxidative stressors and cytokines in diabetes and its related complications. Both Diaph1 and RAGE are also a part of the RhoA signalling cascade, playing a significant role in the development of neurovascular disturbances underlying diabetes-related complications. In this review, based on the existing knowledge as well as compelling findings from our past and present studies, we address the role of Diaph1 signalling in metabolic stress and neurovascular degeneration in diabetic complications. In light of the most recent developments in biochemical, genomic and transcriptomic research, we describe current theories on the aetiology of diabetes complications, highlighting the function of the Diaph1 signalling system and its role in diabetes pathophysiology.
Collapse
Affiliation(s)
- Julia Jarosławska
- Department of Biological Functions of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Bernard Kordas
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Tadeusz Miłowski
- Department of Emergency Medicine, School of Public Health, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Judyta K Juranek
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
5
|
Dobrucki IT, Miskalis A, Nelappana M, Applegate C, Wozniak M, Czerwinski A, Kalinowski L, Dobrucki LW. Receptor for advanced glycation end-products: Biological significance and imaging applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1935. [PMID: 37926944 DOI: 10.1002/wnan.1935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/25/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023]
Abstract
The receptor for advanced glycation end-products (RAGE or AGER) is a transmembrane, immunoglobulin-like receptor that, due to its multiple isoform structures, binds to a diverse range of endo- and exogenous ligands. RAGE activation caused by the ligand binding initiates a cascade of complex pathways associated with producing free radicals, such as reactive nitric oxide and oxygen species, cell proliferation, and immunoinflammatory processes. The involvement of RAGE in the pathogenesis of disorders such as diabetes, inflammation, tumor progression, and endothelial dysfunction is dictated by the accumulation of advanced glycation end-products (AGEs) at pathologic states leading to sustained RAGE upregulation. The involvement of RAGE and its ligands in numerous pathologies and diseases makes RAGE an interesting target for therapy focused on the modulation of both RAGE expression or activation and the production or exogenous administration of AGEs. Despite the known role that the RAGE/AGE axis plays in multiple disease states, there remains an urgent need to develop noninvasive, molecular imaging approaches that can accurately quantify RAGE levels in vivo that will aid in the validation of RAGE and its ligands as biomarkers and therapeutic targets. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
- Iwona T Dobrucki
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Academy of Medical and Social Applied Sciences, Elblag, Poland
| | - Angelo Miskalis
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Michael Nelappana
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
| | - Catherine Applegate
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Cancer Center at Illinois, Urbana, Illinois, USA
| | - Marcin Wozniak
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Division of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdansk, Poland
| | - Andrzej Czerwinski
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
| | - Leszek Kalinowski
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Division of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdansk, Poland
- BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, Gdansk, Poland
| | - Lawrence W Dobrucki
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, Urbana, Illinois, USA
- Division of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
6
|
Ramasamy R, Shekhtman A, Schmidt AM. RAGE/DIAPH1 and atherosclerosis through an evolving lens: Viewing the cell from the "Inside - Out". Atherosclerosis 2023; 394:117304. [PMID: 39492058 PMCID: PMC11309734 DOI: 10.1016/j.atherosclerosis.2023.117304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/11/2023] [Accepted: 09/15/2023] [Indexed: 08/13/2024]
Abstract
BACKGROUND AND AIMS In hyperglycemia, inflammation, oxidative stress and aging, Damage Associated Molecular Patterns (DAMPs) accumulate in conditions such as atherosclerosis. Binding of DAMPs to receptors such as the receptor for advanced glycation end products (RAGE) activates signal transduction cascades that contribute to cellular stress. The cytoplasmic domain (tail) of RAGE (ctRAGE) binds to the formin Diaphanous1 (DIAPH1), which is important for RAGE signaling. This Review will detail the evidence linking the RAGE/DIAPH1 signaling pathway to atherosclerosis and envisages future therapeutic opportunities from the "inside-out" point of view in affected cells. METHODS PubMed was searched using a variety of search terms, including "receptor for advanced glycation end products" along with various combinations including "and atherosclerosis," "soluble RAGE and atherosclerosis," "statins and RAGE," "PPAR and RAGE" and "SGLT2 inhibitor and RAGE." RESULTS In non-diabetic and diabetic mice, antagonism or global deletion of Ager (the gene encoding RAGE) retards progression and accelerates regression of atherosclerosis. Global deletion of Diaph1 in mice devoid of the low density lipoprotein receptor (Ldlr) significantly attenuates atherosclerosis; mice devoid of both Diaph1 and Ldlr display significantly lower plasma and liver concentrations of cholesterol and triglyceride compared to mice devoid of Ldlr. Associations between RAGE pathway and human atherosclerosis have been identified based on relationships between plasma/serum concentrations of RAGE ligands, soluble RAGEs and atherosclerosis. CONCLUSIONS Efforts to target RAGE/DIAPH1 signaling through a small molecule antagonist therapeutic strategy hold promise to quell accelerated atherosclerosis in diabetes and in other forms of cardiovascular disease.
Collapse
Affiliation(s)
- Ravichandran Ramasamy
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, NYU Langone Medical Center, NY, USA
| | - Alexander Shekhtman
- Department of Chemistry, The State University of New York at Albany, Albany, NY, USA
| | - Ann Marie Schmidt
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, NYU Langone Medical Center, NY, USA.
| |
Collapse
|
7
|
Yuan P, Sun T, Han Z, Chen Y. Identifying potential cross-talk signatures for the occurrence of atherosclerosis in diabetic erectile dysfunction. Andrology 2023; 11:1031-1043. [PMID: 36542411 DOI: 10.1111/andr.13366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/21/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Erectile dysfunction and atherosclerosis are common cardiovascular complications in diseases. Clinical associations between erectile dysfunction and atherosclerosis have been noticed, but the specific mechanisms are not illustrated adequately. OBJECTIVES The aim of the study was to further mine associated pathological mechanisms and genetic alterations of atherosclerosis in diabetes mellitus-related erectile dysfunction. MATERIALS AND METHODS Significant atherosclerosis-related genes were identified from transcriptome data of diabetes mellitus-related erectile dysfunction and atherosclerosis-related gene sets from DisGeNET and GeneCard databases. Functional enrichment and immune infiltration analyses were performed to clarify the biological roles and pathways as well as immune responses of significant atherosclerosis-related gene sets. A protein-protein interaction network was constructed, and gene clusters were performed. Then, data of diabetic plaques and high-glucose cavernosum endothelial cells were analyzed for validation. And hub atherosclerosis-related gene sets were identified. Finally, expressed pattern of hub atherosclerosis-related gene sets were explored by single-cell profiling and immune analysis. RESULTS In total, 202 significant atherosclerosis-related gene sets including 100 upregulated and 102 downregulated genes were identified. These genes were related to endothelial cell migration, inflammatory response, regulation of oxidative stress, and immune response. In immune infiltration, immature dendritic cells and monocytes showed differential expression between the diabetes mellitus-related erectile dysfunction and control groups, A protein-protein interaction network containing 135 nodes was constructed. A hub atherosclerosis-related gene set signature consisting of HBEGF, LOX, NQO1, and VLDLR was obtained by multi-omics validation. In addition, Functional enrichment analysis revealed that hub atherosclerosis-related gene sets were involved in oxidoreductase activity and extracellular matrix organization. DISCUSSION AND CONCLUSION We explored atherosclerosis-related genetic changes and signaling pathways in diabetes mellitus-related erectile dysfunction. HBEGF, LOX, NQO1, and VLDLR were identified as hub atherosclerosis-related gene sets. These may serve as potential biomarkers for the clinical management of atherosclerosis and preventing further cardiovascular risks in diabetes mellitus-related erectile dysfunction.
Collapse
Affiliation(s)
- Penghui Yuan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Taotao Sun
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhengyang Han
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yinwei Chen
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
8
|
Shu M, Cheng W, Jia X, Bai X, Zhao Y, Lu Y, Zhu L, Zhu Y, Wang L, Shu Y, Song Y, Jin S. AGEs promote atherosclerosis by increasing LDL transcytosis across endothelial cells via RAGE/NF-κB/Caveolin-1 pathway. Mol Med 2023; 29:113. [PMID: 37605109 PMCID: PMC10463687 DOI: 10.1186/s10020-023-00715-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023] Open
Abstract
OBJECTIVE To elucidate the mechanism whereby advanced glycation end products (AGEs) accelerate atherosclerosis (AS) and to explore novel therapeutic strategies for atherosclerotic cardiovascular disease. METHODS AND RESULTS The effect of AGEs on low-density lipoprotein (LDL) transcytosis across endothelial cells (ECs) was assessed using an in vitro model of LDL transcytosis. We observed that AGEs activated the receptor for advanced glycation end products (RAGE) on the surface of ECs and consequently upregulated Caveolin-1, which in turn increased caveolae-mediated LDL transcytosis and accelerated AS progression. Our molecular assessment revealed that AGEs activate the RAGE-NF-κB signaling, which then recruits the NF-κB subunit p65 to the RAGE promoter and consequently enhances RAGE transcription, thereby forming a positive feedback loop between the NF-κB signaling and RAGE expression. Increased NF-κB signaling ultimately upregulated Caveolin-1, promoting LDL transcytosis, and inhibition of RAGE suppressed AGE-induced LDL transcytosis. In ApoE-/- mice on a high-fat diet, atherosclerotic plaque formation was accelerated by AGEs but suppressed by EC-specific knockdown of RAGE. CONCLUSION AGEs accelerate the development of diabetes-related AS by increasing the LDL transcytosis in ECs through the activation of the RAGE/NF-κB/Caveolin-1 axis, which may be targeted to prevent or treat diabetic macrovascular complications.
Collapse
Affiliation(s)
- Meng Shu
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, 430077, Hubei, China
| | - Wenzhuo Cheng
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, 430077, Hubei, China
| | - Xiong Jia
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, 430077, Hubei, China
| | - Xiangli Bai
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, 430077, Hubei, China
| | - Ying Zhao
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, 430077, Hubei, China
| | - Yajing Lu
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, 430077, Hubei, China
| | - Lin Zhu
- Department of Pediatrics, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Zhu
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, 430077, Hubei, China
| | - Li Wang
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, 430077, Hubei, China
| | - Yan Shu
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, 430077, Hubei, China
| | - Yi Song
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, 430077, Hubei, China
| | - Si Jin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, 430077, Hubei, China.
| |
Collapse
|
9
|
Senatus L, Egaña-Gorroño L, López-Díez R, Bergaya S, Aranda JF, Amengual J, Arivazhagan L, Manigrasso MB, Yepuri G, Nimma R, Mangar KN, Bernadin R, Zhou B, Gugger PF, Li H, Friedman RA, Theise ND, Shekhtman A, Fisher EA, Ramasamy R, Schmidt AM. DIAPH1 mediates progression of atherosclerosis and regulates hepatic lipid metabolism in mice. Commun Biol 2023; 6:280. [PMID: 36932214 PMCID: PMC10023694 DOI: 10.1038/s42003-023-04643-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/01/2023] [Indexed: 03/19/2023] Open
Abstract
Atherosclerosis evolves through dysregulated lipid metabolism interwoven with exaggerated inflammation. Previous work implicating the receptor for advanced glycation end products (RAGE) in atherosclerosis prompted us to explore if Diaphanous 1 (DIAPH1), which binds to the RAGE cytoplasmic domain and is important for RAGE signaling, contributes to these processes. We intercrossed atherosclerosis-prone Ldlr-/- mice with mice devoid of Diaph1 and fed them Western diet for 16 weeks. Compared to male Ldlr-/- mice, male Ldlr-/- Diaph1-/- mice displayed significantly less atherosclerosis, in parallel with lower plasma concentrations of cholesterol and triglycerides. Female Ldlr-/- Diaph1-/- mice displayed significantly less atherosclerosis compared to Ldlr-/- mice and demonstrated lower plasma concentrations of cholesterol, but not plasma triglycerides. Deletion of Diaph1 attenuated expression of genes regulating hepatic lipid metabolism, Acaca, Acacb, Gpat2, Lpin1, Lpin2 and Fasn, without effect on mRNA expression of upstream transcription factors Srebf1, Srebf2 or Mxlipl in male mice. We traced DIAPH1-dependent mechanisms to nuclear translocation of SREBP1 in a manner independent of carbohydrate- or insulin-regulated cues but, at least in part, through the actin cytoskeleton. This work unveils new regulators of atherosclerosis and lipid metabolism through DIAPH1.
Collapse
Affiliation(s)
- Laura Senatus
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Lander Egaña-Gorroño
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Raquel López-Díez
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Sonia Bergaya
- The Leon H. Charney Division of Cardiology, Department of Medicine, The Marc and Ruti Bell Program in Vascular Biology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Juan Francisco Aranda
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Jaume Amengual
- The Leon H. Charney Division of Cardiology, Department of Medicine, The Marc and Ruti Bell Program in Vascular Biology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Lakshmi Arivazhagan
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Michaele B Manigrasso
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Gautham Yepuri
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Ramesh Nimma
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Kaamashri N Mangar
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Rollanda Bernadin
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Boyan Zhou
- Department of Population Health, Division of Biostatistics, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Paul F Gugger
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Huilin Li
- Department of Population Health, Division of Biostatistics, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Richard A Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center and Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
| | - Neil D Theise
- Department of Pathology, NYU Grossman School of Medicine, NYU Langone Health, New York, USA
| | - Alexander Shekhtman
- Department of Chemistry, The State University of New York at Albany, Albany, NY, USA
| | - Edward A Fisher
- The Leon H. Charney Division of Cardiology, Department of Medicine, The Marc and Ruti Bell Program in Vascular Biology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Ravichandran Ramasamy
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Ann Marie Schmidt
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
10
|
Lipoxin and glycation in SREBP signaling: Insight into diabetic cardiomyopathy and associated lipotoxicity. Prostaglandins Other Lipid Mediat 2023; 164:106698. [PMID: 36379414 DOI: 10.1016/j.prostaglandins.2022.106698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022]
Abstract
Diabetes and cardiovascular diseases are the leading cause of morbidity and mortality worldwide. Diabetes increases cardiovascular risk through hyperglycemia and atherosclerosis. Chronic hyperglycemia accelerates glycation reaction, which forms advanced glycation end products (AGEs). Additionally, hyperglycemia with enhanced levels of cholesterol, native and oxidized low-density lipoproteins, free fatty acids, and oxidative stress induces lipotoxicity. Accelerated glycation and disturbed lipid metabolism are characteristic features of diabetic heart failure. SREBP signaling plays a significant role in lipid and glucose homeostasis. AGEs increase lipotoxicity in diabetic cardiomyopathy by inhibiting SREBP signaling. While anti-inflammatory lipid mediators, lipoxins resolve inflammation caused by lipotoxicity by upregulating the PPARγ expression and regulating CD36. PPARγ connects the bridge between glycation and lipoxin in SREBP signaling. A summary of treatment modalities against diabetic cardiomyopathy is given in brief. This review indicates the novel therapeutic approach in the crosstalk between glycation and lipoxin in SREBP signaling.
Collapse
|
11
|
Ye H, Wang R, Wei J, Wang Y, Wang L, Zhang X. HADH may be the target molecule of early vascular endothelial impairment in T2DM. Front Cardiovasc Med 2022; 9:963916. [PMID: 36035955 PMCID: PMC9399638 DOI: 10.3389/fcvm.2022.963916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) will significantly increase the risk of atherosclerosis (AS). Vascular endothelial cell dysfunction (VECD) is the foundation of AS. Early identification and intervention of VECD caused by T2DM can help us effectively delay or even suppress the occurrence of AS. Methods We downloaded the gene expression profiles from the Gene Expression Omnibus (GEO). The differential expression genes (DEGs) were identified in R software and weighted gene co-expression network analysis (WGCNA) was performed to further screen the target genes. In addition, we used the receiver operating characteristic curve (ROC curve) to verify the diagnostic efficiency of target genes. Finally, target genes were validated by quantitative polymerase chain reaction (qPCR). Results Four target genes (CLUH, COG4, HADH, and MPZL2) were discovered in early vascular endothelial impairment caused by T2DM through differential expression analysis and WGCNA. The ROC curve of target genes showed that HADH had the best diagnostic efficacy in VECD and AS. qPCR showed that the mRNA level expression of HADH and MPZL2 were decreased in human coronary artery endothelial cells (HCAECs) treated with high glucose and palmitic acid. Conclusion HADH may be the target gene in early VECD caused by T2DM.
Collapse
Affiliation(s)
- Haowen Ye
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ruxin Wang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jinjing Wei
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ying Wang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lihong Wang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Jinan University, Guangzhou, China
- *Correspondence: Lihong Wang
| | - Xiaofang Zhang
- Department Clinical Experimental Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Xiaofang Zhang
| |
Collapse
|
12
|
Arivazhagan L, López-Díez R, Shekhtman A, Ramasamy R, Schmidt AM. Glycation and a Spark of ALEs (Advanced Lipoxidation End Products) - Igniting RAGE/Diaphanous-1 and Cardiometabolic Disease. Front Cardiovasc Med 2022; 9:937071. [PMID: 35811725 PMCID: PMC9263181 DOI: 10.3389/fcvm.2022.937071] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/30/2022] [Indexed: 12/25/2022] Open
Abstract
Obesity and non-alcoholic fatty liver disease (NAFLD) are on the rise world-wide; despite fervent advocacy for healthier diets and enhanced physical activity, these disorders persist unabated and, long-term, are major causes of morbidity and mortality. Numerous fundamental biochemical and molecular pathways participate in these events at incipient, mid- and advanced stages during atherogenesis and impaired regression of established atherosclerosis. It is proposed that upon the consumption of high fat/high sugar diets, the production of receptor for advanced glycation end products (RAGE) ligands, advanced glycation end products (AGEs) and advanced lipoxidation end products (ALEs), contribute to the development of foam cells, endothelial injury, vascular inflammation, and, ultimately, atherosclerosis and its consequences. RAGE/Diaphanous-1 (DIAPH1) increases macrophage foam cell formation; decreases cholesterol efflux and causes foam cells to produce and release damage associated molecular patterns (DAMPs) molecules, which are also ligands of RAGE. DAMPs stimulate upregulation of Interferon Regulatory Factor 7 (IRF7) in macrophages, which exacerbates vascular inflammation and further perturbs cholesterol metabolism. Obesity and NAFLD, characterized by the upregulation of AGEs, ALEs and DAMPs in the target tissues, contribute to insulin resistance, hyperglycemia and type two diabetes. Once in motion, a vicious cycle of RAGE ligand production and exacerbation of RAGE/DIAPH1 signaling ensues, which, if left unchecked, augments cardiometabolic disease and its consequences. This Review focuses on RAGE/DIAPH1 and its role in perturbation of metabolism and processes that converge to augur cardiovascular disease.
Collapse
Affiliation(s)
- Lakshmi Arivazhagan
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| | - Raquel López-Díez
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| | - Alexander Shekhtman
- Department of Chemistry, The State University of New York at Albany, Albany, NY, United States
| | - Ravichandran Ramasamy
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| | - Ann Marie Schmidt
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States,*Correspondence: Ann Marie Schmidt
| |
Collapse
|
13
|
Zhao Y, Jia X, Yang X, Bai X, Lu Y, Zhu L, Cheng W, Shu M, Zhu Y, Du X, Wang L, Shu Y, Song Y, Jin S. Deacetylation of Caveolin-1 by Sirt6 induces autophagy and retards high glucose-stimulated LDL transcytosis and atherosclerosis formation. Metabolism 2022; 131:155162. [PMID: 35167876 DOI: 10.1016/j.metabol.2022.155162] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/20/2022] [Accepted: 02/07/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Atherosclerosis (AS) is the basis of diabetic macrovascular complications. The plasma low-density lipoprotein (LDL) particles transcytosis across endothelial cells (ECs) and deposition under the endothelium is the initiation step of AS. We previously reported that high glucose inhibits the autophagic degradation of Caveolin-1 and promote LDL transcytosis across ECs, which in turn accelerates atherosclerotic progression. Since Sirt6 is a chromatin-associated protein with deacetylation activity, whether it can regulate Caveolin-1 acetylation and regulating the autophagic degradation of Caveolin-1 remains elusive. METHODS Autophagy and histone acetylation were assessed in the umbilical cords of patients with gestational diabetes mellitus (GDM) by immunohistochemistry. An in vitro model of LDL transcytosis was established, and the role of Sirt6 in LDL transcytosis across endothelial cells was clarified. The effect of Sirt6 on the autophagic degradation of Caveolin-1 under hyperglycemic conditions was explored in a streptozotocin (STZ)-induced diabetic AS model established using the ApoE-/- mice. RESULTS Caveolin-1 and acetylated histone H3 levels were significantly increased, while LC3B and Sirt6 were downregulated in the monolayer of the vascular wall from GDM and type 2 diabetes mellitus (T2DM) patients. Immunoprecipitation assays showed that Sirt6 interacts with Caveolin-1 and specifically mediated its acetylation levels. Immuno-electron microscopy (EM) further indicated that Sirt6 overexpression triggered the autophagic lysosomal degradation of Caveolin-1. ECs-specific overexpression of Sirt6 by adeno-associated viral vector serotype 9 (AAV9) induced autophagy, reduced Caveolin-1 expression, and ameliorated atherosclerotic plaque formation in STZ-induced diabetic ApoE-/- mice. CONCLUSION Sirt6-mediated acetylation of Caveolin-1 activates its autophagic degradation and inhibits high glucose-stimulated LDL transcytosis. Thus, the Sirt6/Caveolin-1 autophagic pathway plays a crucial role in diabetic AS, and the overexpression or activation of Sirt6 is a novel therapeutic strategy.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, China
| | - Xiong Jia
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, China
| | - Xiaoyan Yang
- Department of Pharmacology, the Key Laboratory of Drug Target Researches and Pharmacodynamics Evaluation of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiangli Bai
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, China
| | - Yajing Lu
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, China
| | - Lin Zhu
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, China
| | - Wenzhuo Cheng
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, China
| | - Meng Shu
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, China
| | - Yan Zhu
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, China
| | - Xiaolong Du
- Department of Thyroid Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Li Wang
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, China
| | - Yan Shu
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, China
| | - Yi Song
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, China
| | - Si Jin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, China.
| |
Collapse
|
14
|
Gao F, Wang XC, Luo ZD, Hu GQ, Ma MQ, Liang Y, Xu BL, Lin XH. LncRNA HOXA11-AS promotes vascular endothelial cell injury in atherosclerosis by regulating the miR-515-5p/ROCK1 axis. ESC Heart Fail 2022; 9:2259-2271. [PMID: 35578440 PMCID: PMC9288755 DOI: 10.1002/ehf2.13815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 12/17/2021] [Accepted: 01/11/2022] [Indexed: 12/18/2022] Open
Abstract
AIMS Long non-coding RNA HOXA11-AS participated in heart disease. In this study, we aim to evaluate the potential roles of HOXA11-AS in atherosclerosis and its underlying mechanisms. METHODS AND RESULTS The expression levels of HOXA11-AS in ox-LDL-treated HUVECs and arch tissues of high-fat diet-fed ApoE-/- mice (n = 10) were assessed by qRT-PCR. The effects of HOXA11-AS knockdown on the development of atherosclerosis were evaluated using in vitro and in vivo models. Luciferase reporter and RNA immunoprecipitation (RIP) assays verified the potential relationships between HOXA11-AS or ROCK1 and miR-515-5p. The interactive roles between HOXA11-AS and miR-515-5p and between miR-515-5p and ROCK1 were further characterized in ox-LDL-treated HUVECs. Our data showed that HOXA11-AS was significantly up-regulated (P < 0.001), whereas miR-515-5p was dramatically down-regulated in AS mice tissues (P < 0.001) and ox-LDL-treated HUVECs (P < 0.01). Ox-LDL could induce endothelial injuries by inhibiting cell proliferation (P < 0.001) and SOD synthesis (P < 0.001), promoting apoptosis (P < 0.01), ROS (P < 0.001), and MDA production (P < 0.001), increasing Bax (P < 0.001) and cleaved Caspase-3 (P < 0.001), and decreasing Bcl-2 (P < 0.001) and phosphorylated eNOS (P < 0.01). HOXA11-AS knockdown attenuated endothelial injuries via increasing eNOS phosphorylation. Luciferase assay and RIP results confirmed that miR-515-5p is directly bound to HOXA11-AS and ROCK1. HOXA11-AS promoted ox-LDL-induced HUVECs injury by directly inhibiting miR-515-5p from increasing ROCK1 expression and subsequently decreasing the expression and phosphorylation of eNOS. MiR-515-5p mimics could partially reverse the effects of HOXA11-AS knockdown. CONCLUSIONS HOXA11-AS contributed to atherosclerotic injuries by directly regulating the miR-515-5p/ROCK1 axis. This study provided new evidence that HOXA11-AS might be a candidate for atherosclerosis therapy.
Collapse
Affiliation(s)
- Feng Gao
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230601, China
| | - Xiao-Chen Wang
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230601, China
| | - Zhi-Dan Luo
- Department of Geriatrics, Chongqing People's Hospital, Chongqing, China
| | - Guang-Quan Hu
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230601, China
| | - Meng-Qing Ma
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230022, China
| | - Yi Liang
- Houston Methodist Research Institute, Center for Cardiovascular Regeneration, Houston, TX, USA
| | - Bang-Long Xu
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230601, China
| | - Xian-He Lin
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230022, China
| |
Collapse
|
15
|
Gaul S, Shahzad K, Medert R, Gadi I, Mäder C, Schumacher D, Wirth A, Ambreen S, Fatima S, Boeckel JN, Khawaja H, Haas J, Brune M, Nawroth PP, Isermann B, Laufs U, Freichel M. Novel Nongenetic Murine Model of Hyperglycemia and Hyperlipidemia-Associated Aggravated Atherosclerosis. Front Cardiovasc Med 2022; 9:813215. [PMID: 35350534 PMCID: PMC8957812 DOI: 10.3389/fcvm.2022.813215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/02/2022] [Indexed: 01/24/2023] Open
Abstract
Objective Atherosclerosis, the main pathology underlying cardiovascular diseases is accelerated in diabetic patients. Genetic mouse models require breeding efforts which are time-consuming and costly. Our aim was to establish a new nongenetic model of inducible metabolic risk factors that mimics hyperlipidemia, hyperglycemia, or both and allows the detection of phenotypic differences dependent on the metabolic stressor(s). Methods and Results Wild-type mice were injected with gain-of-function PCSK9D377Y (proprotein convertase subtilisin/kexin type 9) mutant adeno-associated viral particles (AAV) and streptozotocin and fed either a high-fat diet (HFD) for 12 or 20 weeks or a high-cholesterol/high-fat diet (Paigen diet, PD) for 8 weeks. To evaluate atherosclerosis, two different vascular sites (aortic sinus and the truncus of the brachiocephalic artery) were examined in the mice. Combined hyperlipidemic and hyperglycemic (HGHCi) mice fed a HFD or PD displayed characteristic features of aggravated atherosclerosis when compared to hyperlipidemia (HCi HFD or PD) mice alone. Atherosclerotic plaques of HGHCi HFD animals were larger, showed a less stable phenotype (measured by the increased necrotic core area, reduced fibrous cap thickness, and less α-SMA-positive area) and had more inflammation (increased plasma IL-1β level, aortic pro-inflammatory gene expression, and MOMA-2-positive cells in the BCA) after 20 weeks of HFD. Differences between the HGHCi and HCi HFD models were confirmed using RNA-seq analysis of aortic tissue, revealing that significantly more genes were dysregulated in mice with combined hyperlipidemia and hyperglycemia than in the hyperlipidemia-only group. The HGHCi-associated genes were related to pathways regulating inflammation (increased Cd68, iNos, and Tnfa expression) and extracellular matrix degradation (Adamts4 and Mmp14). When comparing HFD with PD, the PD aggravated atherosclerosis to a greater extent in mice and showed plaque formation after 8 weeks. Hyperlipidemic and hyperglycemic mice fed a PD (HGHCi PD) showed less collagen (Sirius red) and increased inflammation (CD68-positive cells) within aortic plaques than hyperlipidemic mice (HCi PD). HGHCi-PD mice represent a directly inducible hyperglycemic atherosclerosis model compared with HFD-fed mice, in which atherosclerosis is severe by 8 weeks. Conclusion We established a nongenetically inducible mouse model allowing comparative analyses of atherosclerosis in HCi and HGHCi conditions and its modification by diet, allowing analyses of multiple metabolic hits in mice.
Collapse
Affiliation(s)
- Susanne Gaul
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Khurrum Shahzad
- Department of Diagnostics, Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital Leipzig, Leipzig, Germany
| | - Rebekka Medert
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - Ihsan Gadi
- Department of Diagnostics, Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital Leipzig, Leipzig, Germany
| | - Christina Mäder
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Dagmar Schumacher
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - Angela Wirth
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Saira Ambreen
- Department of Diagnostics, Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital Leipzig, Leipzig, Germany
| | - Sameen Fatima
- Department of Diagnostics, Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital Leipzig, Leipzig, Germany
| | - Jes-Niels Boeckel
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Hamzah Khawaja
- Department of Diagnostics, Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital Leipzig, Leipzig, Germany
| | - Jan Haas
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
- Department of Internal Medicine III, Heidelberg University, Heidelberg, Germany
| | - Maik Brune
- Internal Medicine I and Clinical Chemistry, German Diabetes Center (DZD), Heidelberg University, Heidelberg, Germany
| | - Peter P. Nawroth
- Internal Medicine I and Clinical Chemistry, German Diabetes Center (DZD), Heidelberg University, Heidelberg, Germany
| | - Berend Isermann
- Department of Diagnostics, Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital Leipzig, Leipzig, Germany
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| |
Collapse
|
16
|
Mao L, Yin R, Yang L, Zhao D. Role of advanced glycation end products on vascular smooth muscle cells under diabetic atherosclerosis. Front Endocrinol (Lausanne) 2022; 13:983723. [PMID: 36120471 PMCID: PMC9470882 DOI: 10.3389/fendo.2022.983723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease and leading cause of cardiovascular diseases. The progression of AS is a multi-step process leading to high morbidity and mortality. Hyperglycemia, dyslipidemia, advanced glycation end products (AGEs), inflammation and insulin resistance which strictly involved in diabetes are closely related to the pathogenesis of AS. A growing number of studies have linked AGEs to AS. As one of the risk factors of cardiac metabolic diseases, dysfunction of VSMCs plays an important role in AS pathogenesis. AGEs are increased in diabetes, participate in the occurrence and progression of AS through multiple molecular mechanisms of vascular cell injury. As the main functional cells of vascular, vascular smooth muscle cells (VSMCs) play different roles in each stage of atherosclerotic lesions. The interaction between AGEs and receptor for AGEs (RAGE) accelerates AS by affecting the proliferation and migration of VSMCs. In addition, increasing researches have reported that AGEs promote osteogenic transformation and macrophage-like transformation of VSMCs, and affect the progression of AS through other aspects such as autophagy and cell cycle. In this review, we summarize the effect of AGEs on VSMCs in atherosclerotic plaque development and progression. We also discuss the AGEs that link AS and diabetes mellitus, including oxidative stress, inflammation, RAGE ligands, small noncoding RNAs.
Collapse
Affiliation(s)
| | | | | | - Dong Zhao
- *Correspondence: Longyan Yang, ; Dong Zhao,
| |
Collapse
|
17
|
Natarajan K, Sundaramoorthy A, Shanmugam N. HnRNPK and lysine specific histone demethylase-1 regulates IP-10 mRNA stability in monocytes. Eur J Pharmacol 2021; 920:174683. [PMID: 34914972 DOI: 10.1016/j.ejphar.2021.174683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 12/27/2022]
Abstract
Altered mRNA metabolism is a feature of many inflammatory diseases. Post transcriptional regulation of interferon-γ-inducible protein (IP)-10 has been uncharacterized in diabetes conditions. RNA-affinity capture method and RNA immuno-precipitation revealed S100b treatment increased the binding of heterogeneous nuclear ribonucleoprotein (hnRNP)K to the IP-10 3'UTR and increased IP-10 mRNA accumulation. Luciferase activity assay using reporter plasmids showed involvement of IP-10 3'UTR. Knocking down of hnRNPK destabilized S100b induced IP-10 mRNA accumulation. S100b promoted the translocation of hnRNPK from nucleus to the cytoplasm and this was confirmed by phosphomimetic S284/353D mutant and non-phosphatable S284/353A hnRNPK mutant. S100b treatment demethylates hnRNPK at Lys219 by Lysine Specific Demethylase (LSD)-1. HnRNPKK219I, a demethylation defective mutant increased IP-10 mRNA stability. Apparently, triple mutant hnRNPKK219I/S284D/353D promoted IP-10 mRNA stability. Interestingly, knocking down LSD-1 abolished S100b induced IP-10 mRNA accumulation. These observations show for the first time that IP-10 mRNA stability is dynamically regulated by Lysine demethylation of hnRNPK by LSD-1. These results indicate that hnRNPK plays an important role in IP-10 mRNA stability induced by S100b which could exacerbate monocyte activation, relevant to the pathogenesis of diabetic complications like atherosclerosis.
Collapse
Affiliation(s)
- Kartiga Natarajan
- Diabetes and Cardiovascular Research Laboratory, Department of Biomedical Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamilnadu, India
| | - Arun Sundaramoorthy
- Diabetes and Cardiovascular Research Laboratory, Department of Biomedical Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamilnadu, India.
| | - Narkunaraja Shanmugam
- Diabetes and Cardiovascular Research Laboratory, Department of Biomedical Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamilnadu, India.
| |
Collapse
|
18
|
Molecular Characteristics of RAGE and Advances in Small-Molecule Inhibitors. Int J Mol Sci 2021; 22:ijms22136904. [PMID: 34199060 PMCID: PMC8268101 DOI: 10.3390/ijms22136904] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022] Open
Abstract
Receptor for advanced glycation end-products (RAGE) is a member of the immunoglobulin superfamily. RAGE binds and mediates cellular responses to a range of DAMPs (damage-associated molecular pattern molecules), such as AGEs, HMGB1, and S100/calgranulins, and as an innate immune sensor, can recognize microbial PAMPs (pathogen-associated molecular pattern molecules), including bacterial LPS, bacterial DNA, and viral and parasitic proteins. RAGE and its ligands stimulate the activations of diverse pathways, such as p38MAPK, ERK1/2, Cdc42/Rac, and JNK, and trigger cascades of diverse signaling events that are involved in a wide spectrum of diseases, including diabetes mellitus, inflammatory, vascular and neurodegenerative diseases, atherothrombosis, and cancer. Thus, the targeted inhibition of RAGE or its ligands is considered an important strategy for the treatment of cancer and chronic inflammatory diseases.
Collapse
|
19
|
Senatus L, MacLean M, Arivazhagan L, Egaña-Gorroño L, López-Díez R, Manigrasso MB, Ruiz HH, Vasquez C, Wilson R, Shekhtman A, Gugger PF, Ramasamy R, Schmidt AM. Inflammation Meets Metabolism: Roles for the Receptor for Advanced Glycation End Products Axis in Cardiovascular Disease. IMMUNOMETABOLISM 2021; 3:e210024. [PMID: 34178389 PMCID: PMC8232874 DOI: 10.20900/immunometab20210024] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fundamental modulation of energy metabolism in immune cells is increasingly being recognized for the ability to impart important changes in cellular properties. In homeostasis, cells of the innate immune system, such as monocytes, macrophages and dendritic cells (DCs), are enabled to respond rapidly to various forms of acute cellular and environmental stress, such as pathogens. In chronic stress milieus, these cells may undergo a re-programming, thereby triggering processes that may instigate tissue damage and failure of resolution. In settings of metabolic dysfunction, moieties such as excess sugars (glucose, fructose and sucrose) accumulate in the tissues and may form advanced glycation end products (AGEs), which are signaling ligands for the receptor for advanced glycation end products (RAGE). In addition, cellular accumulation of cholesterol species such as that occurring upon macrophage engulfment of dead/dying cells, presents these cells with a major challenge to metabolize/efflux excess cholesterol. RAGE contributes to reduced expression and activities of molecules mediating cholesterol efflux. This Review chronicles examples of the roles that sugars and cholesterol, via RAGE, play in immune cells in instigation of maladaptive cellular signaling and the mediation of chronic cellular stress. At this time, emerging roles for the ligand-RAGE axis in metabolism-mediated modulation of inflammatory signaling in immune cells are being unearthed and add to the growing body of factors underlying pathological immunometabolism.
Collapse
Affiliation(s)
- Laura Senatus
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Michael MacLean
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Lakshmi Arivazhagan
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Lander Egaña-Gorroño
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Raquel López-Díez
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Michaele B. Manigrasso
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Henry H. Ruiz
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Carolina Vasquez
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Robin Wilson
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | | | - Paul F. Gugger
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ravichandran Ramasamy
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ann Marie Schmidt
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
20
|
Zhang Y, Zhang C, Chen Z, Wang M. Blocking circ_UBR4 suppressed proliferation, migration, and cell cycle progression of human vascular smooth muscle cells in atherosclerosis. Open Life Sci 2021; 16:419-430. [PMID: 33981849 PMCID: PMC8085462 DOI: 10.1515/biol-2021-0044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/06/2021] [Accepted: 01/21/2021] [Indexed: 12/22/2022] Open
Abstract
The circ_UBR4 (hsa_circ_0010283) is a novel abnormally overexpressed circRNA in oxidized low-density lipoprotein (ox-LDL)-induced model of atherosclerosis (AS) in human vascular smooth muscle cells (VSMCs). However, its role in the dysfunction of VSMCs remains to be further investigated. Here, we attempted to explore its role in ox-LDL-induced excessive proliferation and migration in VSMCs by regulating Rho/Rho-associated coiled-coil containing kinase 1 (ROCK1), a therapeutic target of AS. Expression of circ_UBR4 and ROCK1 was upregulated, whereas miR-107 was downregulated in human AS serum and ox-LDL-induced VSMCs. Depletion of circ_UBR4 arrested cell cycle, suppressed cell viability, colony-forming ability, and migration ability, and depressed expression of proliferating cell nuclear antigen and matrix metalloproteinase 2 in VSMCs in spite of the opposite effects of ox-LDL. Notably, ROCK1 upregulation mediated by plasmid transfection or miR-107 deletion could counteract the suppressive role of circ_UBR4 knockdown in ox-LDL-induced VSMCs proliferation, migration, and cell cycle progression. In mechanism, miR-107 was identified as a target of circ_UBR4 to mediate the regulatory effect of circ_UBR4 on ROCK1. circ_UBR4 might be a contributor in human AS partially by regulating VSMCs’ cell proliferation, migration, and cell cycle progression via circ_UBR4/miR-107/ROCK1 pathway.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Cardiology, Zhongshan Affiliated Hospital, Dalian University, No. 6, Zhonshan Road, Dalian, 116001, Liaoning, China
| | - Cheng Zhang
- Department of Cardiology, Zhongshan Affiliated Hospital, Dalian University, No. 6, Zhonshan Road, Dalian, 116001, Liaoning, China
| | - Zongwei Chen
- Department of Cardiology, Zhongshan Affiliated Hospital, Dalian University, No. 6, Zhonshan Road, Dalian, 116001, Liaoning, China
| | - Meilan Wang
- Department of Cardiology, Zhongshan Affiliated Hospital, Dalian University, No. 6, Zhonshan Road, Dalian, 116001, Liaoning, China
| |
Collapse
|
21
|
Yang Y, He X, Xia S, Liu F, Luo L. Porphyromonas gingivalis facilitated the foam cell formation via lysosomal integral membrane protein 2 (LIMP2). J Periodontal Res 2021; 56:265-274. [PMID: 33372271 DOI: 10.1111/jre.12812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/28/2020] [Accepted: 09/16/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The involvement of lysosomal integral membrane protein 2 (LIMP2) in cholesterol transport and formation of foam cells under the infection of Porphyromonas gingivalis (P. gingivalis) is yet to be elucidated. The current study verified the role and explored the mechanism of LIMP2 in promoting foam cell formation by P. gingivalis. BACKGROUND An association between periodontitis and atherosclerosis (AS) has been established. P. gingivalis is a key pathogen of periodontitis that promotes foam cell formation by regulating activities of CD36 scavenger receptors expressed on the macrophages. LIMP2, a member of CD36 superfamily, is involved in cholesterol efflux. However, whether LIMP2 is involved in the formation of foam cells promoted by P. gingivalis remains unclear. METHODS The formation of foam cells was examined by Oil Red O staining. The knockdown of limp2 was identified by qRT-PCR. The accumulation of cholesterol was monitored by Cholesterol Assay Kit. The location of P. gingivalis was visualized by confocal microscopy. Cathepsin L activity was monitored with Magic Red Cathepsin L Assay Kit. The key genes and pathways in P. gingivalis-infected macrophages were explored by RNA sequencing. The protein level was investigated by Western blotting. RESULTS Porphyromonas gingivalis increases foam cells formation and upregulates the expression of LIMP2 in foam cells. The knockdown of limp2 decreases the number of foam cells and increases cholesterol export, which is related to lysosomal functions. In addition, the interaction between LIMP2 and caveolin-1(CAV1) might contribute to this process, and NF-κB and JNK activity is required for increased expression of P. gingivalis-induced LIMP2. CONCLUSIONS This study suggested that LIMP2 is involved in the foam cells formation facilitated by P. gingivalis, which favors a close connection between periodontitis and atherosclerosis (AS).
Collapse
Affiliation(s)
- Yanan Yang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Department of Periodontics, School of Stomatology, Tongji University, Shanghai, China
| | - Xiaoli He
- Dental Diseases Prevention & Treatment Center of Jiading District, Shanghai, China
| | - Siying Xia
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Department of Periodontics, School of Stomatology, Tongji University, Shanghai, China
| | - Feng Liu
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology, Therapy Center for Obstructive Sleep Apnea, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lijun Luo
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Department of Periodontics, School of Stomatology, Tongji University, Shanghai, China
| |
Collapse
|
22
|
Nieves-Cintrón M, Flores-Tamez VA, Le T, Baudel MMA, Navedo MF. Cellular and molecular effects of hyperglycemia on ion channels in vascular smooth muscle. Cell Mol Life Sci 2021; 78:31-61. [PMID: 32594191 PMCID: PMC7765743 DOI: 10.1007/s00018-020-03582-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 06/10/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022]
Abstract
Diabetes affects millions of people worldwide. This devastating disease dramatically increases the risk of developing cardiovascular disorders. A hallmark metabolic abnormality in diabetes is hyperglycemia, which contributes to the pathogenesis of cardiovascular complications. These cardiovascular complications are, at least in part, related to hyperglycemia-induced molecular and cellular changes in the cells making up blood vessels. Whereas the mechanisms mediating endothelial dysfunction during hyperglycemia have been extensively examined, much less is known about how hyperglycemia impacts vascular smooth muscle function. Vascular smooth muscle function is exquisitely regulated by many ion channels, including several members of the potassium (K+) channel superfamily and voltage-gated L-type Ca2+ channels. Modulation of vascular smooth muscle ion channels function by hyperglycemia is emerging as a key contributor to vascular dysfunction in diabetes. In this review, we summarize the current understanding of how diabetic hyperglycemia modulates the activity of these ion channels in vascular smooth muscle. We examine underlying mechanisms, general properties, and physiological relevance in the context of myogenic tone and vascular reactivity.
Collapse
Affiliation(s)
- Madeline Nieves-Cintrón
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Víctor A Flores-Tamez
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Thanhmai Le
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | | | - Manuel F Navedo
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
23
|
AGEs-RAGE axis causes endothelial-to-mesenchymal transition in early calcific aortic valve disease via TGF-β1 and BMPR2 signaling. Exp Gerontol 2020; 141:111088. [DOI: 10.1016/j.exger.2020.111088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/24/2020] [Accepted: 09/03/2020] [Indexed: 01/08/2023]
|
24
|
Machado-Lima A, López-Díez R, Iborra RT, Pinto RDS, Daffu G, Shen X, Nakandakare ER, Machado UF, Corrêa-Giannella MLC, Schmidt AM, Passarelli M. RAGE Mediates Cholesterol Efflux Impairment in Macrophages Caused by Human Advanced Glycated Albumin. Int J Mol Sci 2020; 21:ijms21197265. [PMID: 33019603 PMCID: PMC7582519 DOI: 10.3390/ijms21197265] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/26/2020] [Accepted: 07/17/2020] [Indexed: 12/24/2022] Open
Abstract
We addressed the involvement of the receptor for advanced glycation end products (RAGE) in the impairment of the cellular cholesterol efflux elicited by glycated albumin. Albumin was isolated from type 1 (DM1) and type 2 (DM2) diabetes mellitus (HbA1c > 9%) and non-DM subjects (C). Moreover, albumin was glycated in vitro (AGE-albumin). Macrophages from Ager null and wild-type (WT) mice, or THP-1 transfected with siRNA-AGER, were treated with C, DM1, DM2, non-glycated or AGE-albumin. The cholesterol efflux was reduced in WT cells exposed to DM1 or DM2 albumin as compared to C, and the intracellular lipid content was increased. These events were not observed in Ager null cells, in which the cholesterol efflux and lipid staining were, respectively, higher and lower when compared to WT cells. In WT, Ager, Nox4 and Nfkb1, mRNA increased and Scd1 and Abcg1 diminished after treatment with DM1 and DM2 albumin. In Ager null cells treated with DM-albumin, Nox4, Scd1 and Nfkb1 were reduced and Jak2 and Abcg1 increased. In AGER-silenced THP-1, NOX4 and SCD1 mRNA were reduced and JAK2 and ABCG1 were increased even after treatment with AGE or DM-albumin. RAGE mediates the deleterious effects of AGE-albumin in macrophage cholesterol efflux.
Collapse
MESH Headings
- Adult
- Animals
- Case-Control Studies
- Cell Line
- Cholesterol, HDL/blood
- Cholesterol, LDL/blood
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Female
- Fibroblasts/cytology
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Gene Expression Regulation
- Glycated Hemoglobin/genetics
- Glycated Hemoglobin/metabolism
- Glycation End Products, Advanced/blood
- Glycation End Products, Advanced/pharmacology
- Humans
- Janus Kinase 2/genetics
- Janus Kinase 2/metabolism
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- NADPH Oxidase 4/genetics
- NADPH Oxidase 4/metabolism
- NF-kappa B p50 Subunit/genetics
- NF-kappa B p50 Subunit/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Receptor for Advanced Glycation End Products/antagonists & inhibitors
- Receptor for Advanced Glycation End Products/deficiency
- Receptor for Advanced Glycation End Products/genetics
- Receptor for Advanced Glycation End Products/metabolism
- Serum Albumin, Human/metabolism
- Serum Albumin, Human/pharmacology
- THP-1 Cells
- Triglycerides/blood
Collapse
Affiliation(s)
- Adriana Machado-Lima
- Laboratório de Lípides (LIM 10), Hospital das Clínicas (HCFMUSP), Faculdade de Medicina da Universidade de São Paulo, São Paulo CEP 01246-000, Brazil; (A.M.-L.); (R.T.I.); (R.d.S.P.); (E.R.N.)
- Programa de Pós-Graduação em Ciências do Envelhecimento, Universidade São Judas Tadeu, São Paulo CEP 03166-000, Brazil
| | - Raquel López-Díez
- Department of Medicine, Diabetes Research Program, New York University Langone Health, New York, NY 10016, USA; (R.L.-D.); (G.D.); (X.S.); (A.M.S.)
| | - Rodrigo Tallada Iborra
- Laboratório de Lípides (LIM 10), Hospital das Clínicas (HCFMUSP), Faculdade de Medicina da Universidade de São Paulo, São Paulo CEP 01246-000, Brazil; (A.M.-L.); (R.T.I.); (R.d.S.P.); (E.R.N.)
- Programa de Pós-Graduação em Ciências do Envelhecimento, Universidade São Judas Tadeu, São Paulo CEP 03166-000, Brazil
| | - Raphael de Souza Pinto
- Laboratório de Lípides (LIM 10), Hospital das Clínicas (HCFMUSP), Faculdade de Medicina da Universidade de São Paulo, São Paulo CEP 01246-000, Brazil; (A.M.-L.); (R.T.I.); (R.d.S.P.); (E.R.N.)
- Curso de Biomedicina, Centro Universitário CESMAC, Maceió, Alagoas CEP 57051-160, Brazil
| | - Gurdip Daffu
- Department of Medicine, Diabetes Research Program, New York University Langone Health, New York, NY 10016, USA; (R.L.-D.); (G.D.); (X.S.); (A.M.S.)
| | - Xiaoping Shen
- Department of Medicine, Diabetes Research Program, New York University Langone Health, New York, NY 10016, USA; (R.L.-D.); (G.D.); (X.S.); (A.M.S.)
| | - Edna Regina Nakandakare
- Laboratório de Lípides (LIM 10), Hospital das Clínicas (HCFMUSP), Faculdade de Medicina da Universidade de São Paulo, São Paulo CEP 01246-000, Brazil; (A.M.-L.); (R.T.I.); (R.d.S.P.); (E.R.N.)
| | - Ubiratan Fabres Machado
- Laboratório de Metabolismo e Endocrinologia, Instituto de Ciências Biomédicas da Universidade de São Paulo, São Paulo CEP 05508-000, Brazil;
| | - Maria Lucia Cardillo Corrêa-Giannella
- Laboratório de Carboidratos e Radioimunoensaio (LIM 18), Hospital das Clínicas (HCFMUSP), Faculdade de Medicina da Universidade de São Paulo, São Paulo CEP 01246-000, Brazil;
- Programa de Pós-Graduação em Medicina, Universidade Nove de Julho, São Paulo CEP 01225-000, Brazil
| | - Ann Marie Schmidt
- Department of Medicine, Diabetes Research Program, New York University Langone Health, New York, NY 10016, USA; (R.L.-D.); (G.D.); (X.S.); (A.M.S.)
| | - Marisa Passarelli
- Laboratório de Lípides (LIM 10), Hospital das Clínicas (HCFMUSP), Faculdade de Medicina da Universidade de São Paulo, São Paulo CEP 01246-000, Brazil; (A.M.-L.); (R.T.I.); (R.d.S.P.); (E.R.N.)
- Programa de Pós-Graduação em Medicina, Universidade Nove de Julho, São Paulo CEP 01225-000, Brazil
- Correspondence:
| |
Collapse
|
25
|
Abstract
Receptor for advanced glycation end products (RAGE) is an immunoglobulin-like receptor present on cell surface. RAGE binds to an array of structurally diverse ligands, acts as a pattern recognition receptor (PRR) and is expressed on cells of different origin performing different functions. RAGE ligation leads to the initiation of a cascade of signaling events and is implicated in diseases, such as inflammation, cancer, diabetes, vascular dysfunctions, retinopathy, and neurodegenerative diseases. Because of the significant involvement of RAGE in the progression of numerous diseases, RAGE signaling has been targeted through use of inhibitors and anti-RAGE antibodies as a treatment strategy and therapy. Here in this review, we have summarized the physical and physiological aspects of RAGE biology in mammalian system and the importance of targeting this molecule in the treatment of various RAGE mediated pathologies. Highlights Receptor for advanced glycation end products (RAGE) is a member of immunoglobulin superfamily of receptors and involved in many pathophysiological conditions. RAGE ligation with its ligands leads to initiation of distinct signaling cascades and activation of numerous transcription factors. Targeting RAGE signaling through inhibitors and anti-RAGE antibodies can be promising treatment strategy.
Collapse
Affiliation(s)
- Nitish Jangde
- Laboratory of Vascular Immunology, Institute of Life Sciences, Bhubaneswar, India.,Manipal Academy of Higher Education, Manipal, India
| | - Rashmi Ray
- Laboratory of Vascular Immunology, Institute of Life Sciences, Bhubaneswar, India
| | - Vivek Rai
- Laboratory of Vascular Immunology, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
26
|
Wang J, Du A, Wang H, Li Y. MiR-599 regulates LPS-mediated apoptosis and inflammatory responses through the JAK2/STAT3 signalling pathway via targeting ROCK1 in human umbilical vein endothelial cells. Clin Exp Pharmacol Physiol 2020; 47:1420-1428. [PMID: 32248560 DOI: 10.1111/1440-1681.13316] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 12/17/2022]
Abstract
MicroRNA plays an integral role in the development of atherosclerosis. Our study aimed to investigate the roles of miR-599 in lipopolysaccharide (LPS)-induced endothelial damage in human umbilical vein endothelial cells (HUVECs). HUVECs were transfected with a miR-599 mimic and negative control, and then exposed to LPS. The expression of miR-599 was detected by quantitative real time-polymerase chain reaction (RT-qPCR). Cell viability was analyzed by CCK-8 assay and trypan blue exclusion assay; the formation of DNA fragments was tested by Cell Death Detection ELISA Plus kit; the incidence of apoptosis was detected by flow cytometry; the expression of p53 and cleaved-caspase 3 (c-caspase 3) was evaluated by western blot. Moreover, the mRNA levels and concentrations of tumour necrosis factor (TNF)-α, interleukin (IL)-6, ICAM-1 and VCAM-1 were assayed by RT-qPCR and ELISA. The results showed that overexpression of miR-599 increased cell viability, reduced DNA fragments, the incidence of apoptosis, as well as the protein levels of p53 and c-caspase 3 in the presence of LPS. TNF-α, IL-6, ICAM-1 and VCAM-1 mRNA levels and concentrations were also decreased upon miR-599 upregulation. In addition, the dual luciferase reporter assay demonstrated that ROCK1 is a direct target of miR-599. MiR-599 overexpression inhibited ROCK1 expression. Induced expression of ROCK1 reversed the roles of miR-599 in apoptosis and inflammation. The gain function of miR-599 function inhibited activation of the JAK2/STAT3 signalling pathway, which was abrogated by overexpression of ROCK1. Taken together, our results indicate that miR-599 attenuates LPS-caused cell apoptosis and inflammatory responses through the JAK2/STAT3 signalling pathway via targeting ROCK1.
Collapse
Affiliation(s)
- Jia Wang
- Department of Cardiology, Nursing Department, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Aolin Du
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hexilin Wang
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yang Li
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
27
|
Senatus L, López-Díez R, Egaña-Gorroño L, Liu J, Hu J, Daffu G, Li Q, Rahman K, Vengrenyuk Y, Barrett TJ, Dewan MZ, Guo L, Fuller D, Finn AV, Virmani R, Li H, Friedman RA, Fisher EA, Ramasamy R, Schmidt AM. RAGE impairs murine diabetic atherosclerosis regression and implicates IRF7 in macrophage inflammation and cholesterol metabolism. JCI Insight 2020; 5:137289. [PMID: 32641587 PMCID: PMC7406264 DOI: 10.1172/jci.insight.137289] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/21/2020] [Indexed: 12/27/2022] Open
Abstract
Despite advances in lipid-lowering therapies, people with diabetes continue to experience more limited cardiovascular benefits. In diabetes, hyperglycemia sustains inflammation and preempts vascular repair. We tested the hypothesis that the receptor for advanced glycation end-products (RAGE) contributes to these maladaptive processes. We report that transplantation of aortic arches from diabetic, Western diet-fed Ldlr-/- mice into diabetic Ager-/- (Ager, the gene encoding RAGE) versus WT diabetic recipient mice accelerated regression of atherosclerosis. RNA-sequencing experiments traced RAGE-dependent mechanisms principally to the recipient macrophages and linked RAGE to interferon signaling. Specifically, deletion of Ager in the regressing diabetic plaques downregulated interferon regulatory factor 7 (Irf7) in macrophages. Immunohistochemistry studies colocalized IRF7 and macrophages in both murine and human atherosclerotic plaques. In bone marrow-derived macrophages (BMDMs), RAGE ligands upregulated expression of Irf7, and in BMDMs immersed in a cholesterol-rich environment, knockdown of Irf7 triggered a switch from pro- to antiinflammatory gene expression and regulated a host of genes linked to cholesterol efflux and homeostasis. Collectively, this work adds a new dimension to the immunometabolic sphere of perturbations that impair regression of established diabetic atherosclerosis and suggests that targeting RAGE and IRF7 may facilitate vascular repair in diabetes.
Collapse
Affiliation(s)
- Laura Senatus
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Raquel López-Díez
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Lander Egaña-Gorroño
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Jianhua Liu
- Marc and Ruti Bell Program in Vascular Biology, Leon H. Charney Division of Cardiology, Department of Medicine
| | - Jiyuan Hu
- Division of Biostatistics, Department of Population Health, and Department of Environmental Medicine, and
| | - Gurdip Daffu
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Qing Li
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Karishma Rahman
- Marc and Ruti Bell Program in Vascular Biology, Leon H. Charney Division of Cardiology, Department of Medicine
| | - Yuliya Vengrenyuk
- Marc and Ruti Bell Program in Vascular Biology, Leon H. Charney Division of Cardiology, Department of Medicine
| | - Tessa J. Barrett
- Marc and Ruti Bell Program in Vascular Biology, Leon H. Charney Division of Cardiology, Department of Medicine
| | - M. Zahidunnabi Dewan
- Experimental Pathology Research Laboratory, Department of Pathology, New York University (NYU) Langone Medical Center, New York, New York, USA
| | - Liang Guo
- CVPath Institute, Gaithersburg, Maryland, USA
| | | | | | | | - Huilin Li
- Division of Biostatistics, Department of Population Health, and Department of Environmental Medicine, and
| | - Richard A. Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center, and Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, New York, USA
| | - Edward A. Fisher
- Marc and Ruti Bell Program in Vascular Biology, Leon H. Charney Division of Cardiology, Department of Medicine
| | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| |
Collapse
|
28
|
Isenberg JS, Roberts DD. Thrombospondin-1 in maladaptive aging responses: a concept whose time has come. Am J Physiol Cell Physiol 2020; 319:C45-C63. [PMID: 32374675 DOI: 10.1152/ajpcell.00089.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Numerous age-dependent alterations at the molecular, cellular, tissue and organ systems levels underlie the pathophysiology of aging. Herein, the focus is upon the secreted protein thrombospondin-1 (TSP1) as a promoter of aging and age-related diseases. TSP1 has several physiological functions in youth, including promoting neural synapse formation, mediating responses to ischemic and genotoxic stress, minimizing hemorrhage, limiting angiogenesis, and supporting wound healing. These acute functions of TSP1 generally require only transient expression of the protein. However, accumulating basic and clinical data reinforce the view that chronic diseases of aging are associated with accumulation of TSP1 in the extracellular matrix, which is a significant maladaptive contributor to the aging process. Identification of the relevant cell types that chronically produce and respond to TSP1 and the molecular mechanisms that mediate the resulting maladaptive responses could direct the development of therapeutic agents to delay or revert age-associated maladies.
Collapse
Affiliation(s)
| | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
29
|
Egaña-Gorroño L, López-Díez R, Yepuri G, Ramirez LS, Reverdatto S, Gugger PF, Shekhtman A, Ramasamy R, Schmidt AM. Receptor for Advanced Glycation End Products (RAGE) and Mechanisms and Therapeutic Opportunities in Diabetes and Cardiovascular Disease: Insights From Human Subjects and Animal Models. Front Cardiovasc Med 2020; 7:37. [PMID: 32211423 PMCID: PMC7076074 DOI: 10.3389/fcvm.2020.00037] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/25/2020] [Indexed: 12/21/2022] Open
Abstract
Obesity and diabetes are leading causes of cardiovascular morbidity and mortality. Although extensive strides have been made in the treatments for non-diabetic atherosclerosis and its complications, for patients with diabetes, these therapies provide less benefit for protection from cardiovascular disease (CVD). These considerations spur the concept that diabetes-specific, disease-modifying therapies are essential to identify, especially as the epidemics of obesity and diabetes continue to expand. Hence, as hyperglycemia is a defining feature of diabetes, it is logical to probe the impact of the specific consequences of hyperglycemia on the vessel wall, immune cell perturbation, and endothelial dysfunction-all harbingers to the development of CVD. In this context, high levels of blood glucose stimulate the formation of the irreversible advanced glycation end products, the products of non-enzymatic glycation and oxidation of proteins and lipids. AGEs accumulate in diabetic circulation and tissues and the interaction of AGEs with their chief cellular receptor, receptor for AGE or RAGE, contributes to vascular and immune cell perturbation. The cytoplasmic domain of RAGE lacks endogenous kinase activity; the discovery that this intracellular domain of RAGE binds to the formin, DIAPH1, and that DIAPH1 is essential for RAGE ligand-mediated signal transduction, identifies the specific cellular means by which RAGE functions and highlights a new target for therapeutic interruption of RAGE signaling. In human subjects, prominent signals for RAGE activity include the presence and levels of two forms of soluble RAGE, sRAGE, and endogenous secretory (es) RAGE. Further, genetic studies have revealed single nucleotide polymorphisms (SNPs) of the AGER gene (AGER is the gene encoding RAGE) and DIAPH1, which display associations with CVD. This Review presents current knowledge regarding the roles for RAGE and DIAPH1 in the causes and consequences of diabetes, from obesity to CVD. Studies both from human subjects and animal models are presented to highlight the breadth of evidence linking RAGE and DIAPH1 to the cardiovascular consequences of these metabolic disorders.
Collapse
Affiliation(s)
- Lander Egaña-Gorroño
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Raquel López-Díez
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Gautham Yepuri
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Lisa S. Ramirez
- Department of Chemistry, University of Albany, State University of New York, Albany, NY, United States
| | - Sergey Reverdatto
- Department of Chemistry, University of Albany, State University of New York, Albany, NY, United States
| | - Paul F. Gugger
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Alexander Shekhtman
- Department of Chemistry, University of Albany, State University of New York, Albany, NY, United States
| | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
30
|
Ramasamy R, Friedman RA, Shekhtman A, Schmidt AM. The receptor for advanced glycation end products (RAGE) and DIAPH1: unique mechanisms and healing the wounded vascular system. Expert Rev Proteomics 2019; 16:471-474. [PMID: 30324836 PMCID: PMC6467738 DOI: 10.1080/14789450.2018.1536551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/11/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology,
Diabetes and Metabolism, Department of Medicine, New York University School of
Medicine, 435 East 30 Street, New Science Building 623, New York, N.Y.
10016
| | - Richard A. Friedman
- Biomedical Informatics Shared Resource, Herbert Irving
Comprehensive Cancer Center, and Department of Biomedical Informatics, Columbia
University Irving Medical Center, Room 825, 1130 St. Nicholas Avenue, New York, NY
10032
| | - Alexander Shekhtman
- Department of Chemistry, University at Albany, State
University of New York, 1400 Washington Avenue, Albany, N.Y. 12222
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology,
Diabetes and Metabolism, Department of Medicine, New York University School of
Medicine, 435 East 30 Street, New Science Building 623, New York, N.Y.
10016
| |
Collapse
|
31
|
Schmidt AM. Diabetes Mellitus and Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2019; 39:558-568. [PMID: 30786741 PMCID: PMC6532416 DOI: 10.1161/atvbaha.119.310961] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/11/2019] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease remains a leading cause of morbidity and mortality in people with types 1 or 2 diabetes mellitus. Although beneficial roles for strict control of hyperglycemia have been suggested, such a strategy is not without liabilities. Specifically, the risk of hypoglycemia and its consequences remain an omnipresent threat with such approaches. The advent of the CVOT (Cardiovascular Outcomes Trials) for new antidiabetes mellitus treatments has uncovered unexpected benefits of cardiovascular protection in some of the new classes of agents, such as the GLP-1 RAs (glucagon-like peptide-1 receptor agonists) and the SGLT-2 (sodium-glucose cotransporter-2) inhibitors. Further, state-of-the-art approaches, such as antibodies to PCKSK9 (proprotein convertase subtilisin-kexin type 9); RNA therapeutics; agents targeting distinct components of the immune/inflammatory response; and novel small molecules that block the actions of RAGE (receptor for advanced glycation end products) signaling, also hold potential as new therapies for diabetes mellitus and cardiovascular disease. Finally, interventions such as weight loss, through bariatric surgery, may hold promise for benefit in diabetes and cardiovascular disease. In this Brief Review, some of the novel approaches and emerging targets for the treatment of diabetes mellitus and cardiovascular disease are discussed. Ultimately, identification of the optimal timing and combinations of such interventions, especially in the context of personalized approaches, together with emerging disease-modifying agents, holds great promise to reduce the burden that diabetes poses to the cardiovascular system.
Collapse
Affiliation(s)
- Ann Marie Schmidt
- From the Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York
| |
Collapse
|
32
|
Jangde N, Ray R, Sinha S, Rana K, Singh SK, Khandagale P, Acharya N, Rai V. Cysteine mediated disulfide bond formation in RAGE V domain facilitates its functionally relevant dimerization. Biochimie 2018; 154:55-61. [PMID: 30076903 DOI: 10.1016/j.biochi.2018.07.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/30/2018] [Indexed: 02/06/2023]
Abstract
Receptor for Advanced Glycation End product (RAGE) is a multiligand receptor implicated in diverse pathological conditions such as diabetes, atherosclerosis, cancer and neural diseases. Extracellular, RAGE consists of V, C1 and C2 domains. Here, we show RAGE exists as a monomer in equilibrium with a fraction of a covalently linked dimer of monomers via its V domain through cysteine. In order to understand the functional implication of this dimer, we examined the binding capacity and functional potential of RAGE dimer via advanced glycation end products (AGEs) which shows enhanced binding capacity towards V domain, ERK phosphorylation, cytokine release and actin polymerization ability of the dimeric form for AGEs compared with the reduced monomeric form. Our data, suggests that the dimeric state of RAGE controls its function and ligand mediated signaling which may play important role in RAGE mediated various diseases.
Collapse
Affiliation(s)
- Nitish Jangde
- Laboratory of Vascular Immunology, Institute of Life Sciences, Bhubaneswar, 751023, India; Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Rashmi Ray
- Laboratory of Vascular Immunology, Institute of Life Sciences, Bhubaneswar, 751023, India; Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sunita Sinha
- Laboratory of Vascular Immunology, Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Khokan Rana
- Laboratory of Vascular Immunology, Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Satyendra Kumar Singh
- Laboratory of Vascular Immunology, Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Prashant Khandagale
- Laboratory of Genomic Instability and Diseases, Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Narottam Acharya
- Laboratory of Genomic Instability and Diseases, Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Vivek Rai
- Laboratory of Vascular Immunology, Institute of Life Sciences, Bhubaneswar, 751023, India.
| |
Collapse
|
33
|
Das A, Samidurai A, Salloum FN. Deciphering Non-coding RNAs in Cardiovascular Health and Disease. Front Cardiovasc Med 2018; 5:73. [PMID: 30013975 PMCID: PMC6036139 DOI: 10.3389/fcvm.2018.00073] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/29/2018] [Indexed: 12/16/2022] Open
Abstract
After being long considered as “junk” in the human genome, non-coding RNAs (ncRNAs) currently represent one of the newest frontiers in cardiovascular disease (CVD) since they have emerged in recent years as potential therapeutic targets. Different types of ncRNAs exist, including small ncRNAs that have fewer than 200 nucleotides, which are mostly known as microRNAs (miRNAs), and long ncRNAs that have more than 200 nucleotides. Recent discoveries on the role of ncRNAs in epigenetic and transcriptional regulation, atherosclerosis, myocardial ischemia/reperfusion (I/R) injury and infarction (MI), adverse cardiac remodeling and hypertrophy, insulin resistance, and diabetic cardiomyopathy prompted vast interest in exploring candidate ncRNAs for utilization as potential therapeutic targets and/or diagnostic/prognostic biomarkers in CVDs. This review will discuss our current knowledge concerning the roles of different types of ncRNAs in cardiovascular health and disease and provide some insight on the cardioprotective signaling pathways elicited by the non-coding genome. We will highlight important basic and clinical breakthroughs that support employing ncRNAs for treatment or early diagnosis of a variety of CVDs, and also depict the most relevant limitations that challenge this novel therapeutic approach.
Collapse
Affiliation(s)
- Anindita Das
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Arun Samidurai
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Fadi N Salloum
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
34
|
The Impact of Uremic Toxins on Vascular Smooth Muscle Cell Function. Toxins (Basel) 2018; 10:toxins10060218. [PMID: 29844272 PMCID: PMC6024314 DOI: 10.3390/toxins10060218] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/26/2018] [Accepted: 05/27/2018] [Indexed: 12/18/2022] Open
Abstract
Chronic kidney disease (CKD) is associated with profound vascular remodeling, which accelerates the progression of cardiovascular disease. This remodeling is characterized by intimal hyperplasia, accelerated atherosclerosis, excessive vascular calcification, and vascular stiffness. Vascular smooth muscle cell (VSMC) dysfunction has a key role in the remodeling process. Under uremic conditions, VSMCs can switch from a contractile phenotype to a synthetic phenotype, and undergo abnormal proliferation, migration, senescence, apoptosis, and calcification. A growing body of data from experiments in vitro and animal models suggests that uremic toxins (such as inorganic phosphate, indoxyl sulfate and advanced-glycation end products) may directly impact the VSMCs’ physiological functions. Chronic, low-grade inflammation and oxidative stress—hallmarks of CKD—are also strong inducers of VSMC dysfunction. Here, we review current knowledge about the impact of uremic toxins on VSMC function in CKD, and the consequences for pathological vascular remodeling.
Collapse
|
35
|
Tang H, Zhu M, Zhao G, Fu W, Shi Z, Ding Y, Tang X, Guo D. Loss of CLOCK under high glucose upregulates ROCK1-mediated endothelial to mesenchymal transition and aggravates plaque vulnerability. Atherosclerosis 2018; 275:58-67. [PMID: 29860109 DOI: 10.1016/j.atherosclerosis.2018.05.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 05/19/2018] [Accepted: 05/23/2018] [Indexed: 10/16/2022]
Abstract
BACKGROUND AND AIMS Carotid atherosclerotic plaque is one of the main sources of ischemic stroke, and endothelial-to-mesenchymal transition (EndMT) is a major feature of atherosclerosis. Rho-associated coiled-coil-containing protein kinase 1 (ROCK1) activation, stimulated by high glucose, plays an important role in EndMT, and circadian locomotor output cycles protein kaput (Clock) deficiency leads to hyperglycemia and enhanced atherosclerosis in ClockΔ19/Δ19apolipoprotein E (ApoE)-/- mice. These findings point to a mechanism whereby CLOCK exerts a protective effect against EndMT and atherosclerotic plaque accumulation. METHODS Cultured human umbilical vein endothelial cells (HUVECs) were stimulated with 66 mM glucose for 120 h to induce EndMT. The expression of CLOCK and ROCK1 was assayed, as were their effects on EndMT. We also conducted molecular and morphometric examination of carotid artery plaques from patients with carotid artery stenosis to assess the clinical relevance of these findings. RESULTS Upon EndMT, HUVECs exhibited decreased CLOCK expression and increased ROCK1 expression. Notably, CLOCK silencing increased high glucose-induced EndMT, migration ability, and ROCK1 activation, while overexpressing CLOCK attenuated these characteristics. Moreover, inhibition of ROCK1 largely blocked EndMT induced by high-glucose or transforming growth factor (TGF)-β1 but failed to rescue the reduced CLOCK expression. The vulnerability of human carotid artery plaque was strongly correlated with loss of CLOCK expression, activation of TGF-β/ROCK1 signaling, and the extent of EndMT. CONCLUSIONS The data indicate that loss of protective endothelial CLOCK expression aggravates TGF-β/ROCK1-modulated EndMT progression, which contributes to the vulnerability of human carotid plaque.
Collapse
Affiliation(s)
- Hanfei Tang
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengjiao Zhu
- Department of Orthodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Gefei Zhao
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weiguo Fu
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhenyu Shi
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yong Ding
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiao Tang
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Daqiao Guo
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
36
|
Inman CK, Aljunaibi A, Koh H, Abdulle A, Ali R, Alnaeemi A, Al Zaabi E, Oumeziane N, Al Bastaki M, Al-Houqani M, Al-Maskari F, Al Dhaheri A, Shah SM, Abdel Wareth L, Al Mahmeed W, Alsafar H, Al Anouti F, Al Hosani A, Haji M, Galani D, O'Connor MJ, Ahn J, Kirchhoff T, Sherman S, Hayes RB, Li H, Ramasamy R, Schmidt AM. The AGE-RAGE axis in an Arab population: The United Arab Emirates Healthy Futures (UAEHFS) pilot study. J Clin Transl Endocrinol 2017; 10:1-8. [PMID: 29204365 PMCID: PMC5691216 DOI: 10.1016/j.jcte.2017.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/31/2017] [Accepted: 08/06/2017] [Indexed: 12/18/2022] Open
Abstract
AIMS The transformation of the United Arab Emirates (UAE) from a semi-nomadic to a high income society has been accompanied by increasing rates of obesity and Type 2 diabetes mellitus. We examined if the AGE-RAGE (receptor for advanced glycation endproducts) axis is associated with obesity and diabetes mellitus in the pilot phase of the UAE Healthy Futures Study (UAEHFS). METHODS 517 Emirati subjects were enrolled and plasma/serum levels of AGE, carboxy methyl lysine (CML)-AGE, soluble (s)RAGE and endogenous secretory (es)RAGE were measured along with weight, height, waist and hip circumference (WC/HC), blood pressure, HbA1c, Vitamin D levels and routine chemistries. The relationship between the AGE-RAGE axis and obesity and diabetes mellitus was tested using proportional odds models and linear regression. RESULTS After covariate adjustment, AGE levels were significantly associated with diabetes status. Levels of sRAGE and esRAGE were associated with BMI and levels of sRAGE were associated with WC/HC. CONCLUSIONS The AGE-RAGE axis is associated with diabetes status and obesity in this Arab population. Prospective serial analysis of this axis may identify predictive biomarkers of obesity and cardiometabolic dysfunction in the UAEHFS.
Collapse
Affiliation(s)
- Claire K. Inman
- Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Abdullah Aljunaibi
- Department of Pediatrics, Zayed Military Hospital, Abu Dhabi, United Arab Emirates
| | - Hyunwook Koh
- Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Abdishakur Abdulle
- Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Raghib Ali
- Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Abdullah Alnaeemi
- Department of Cardiology, Zayed Military Hospital, Abu Dhabi, United Arab Emirates
| | - Eiman Al Zaabi
- Department of Pathology, Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
| | | | | | - Mohammed Al-Houqani
- Department of Medicine, College of Medicine and Health Sciences, UAE University, Al-Ain, United Arab Emirates
| | - Fatma Al-Maskari
- Institute of Public Health, College of Medicine and Health Sciences, UAE University, Al-Ain, United Arab Emirates
| | - Ayesha Al Dhaheri
- Department of Nutrition, College of Architecture, UAE University, Al-Ain, United Arab Emirates
| | - Syed M. Shah
- Institute of Public Health, College of Medicine and Health Sciences, UAE University, Al-Ain, United Arab Emirates
| | - Laila Abdel Wareth
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, Abu Dhabi, United Arab Emirates
| | - Wael Al Mahmeed
- Department of Cardiovascular Medicine, Cleveland Clinic, Abu Dhabi, United Arab Emirates
| | - Habiba Alsafar
- Center for Biotechnology, Khalifa University of Science, Technology & Research, Abu Dhabi, United Arab Emirates
- Biomedical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Fatme Al Anouti
- College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
| | - Ayesha Al Hosani
- Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Muna Haji
- Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Divya Galani
- Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | | | - Jiyoung Ahn
- Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Tomas Kirchhoff
- Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Scott Sherman
- Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Richard B. Hayes
- Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Huilin Li
- Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine New York University School of Medicine, New York, NY, USA
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine New York University School of Medicine, New York, NY, USA
| |
Collapse
|
37
|
Xu S. Transcriptome Profiling in Systems Vascular Medicine. Front Pharmacol 2017; 8:563. [PMID: 28970795 PMCID: PMC5609594 DOI: 10.3389/fphar.2017.00563] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/08/2017] [Indexed: 02/06/2023] Open
Abstract
In the post-genomic, big data era, our understanding of vascular diseases has been deepened by multiple state-of-the-art “–omics” approaches, including genomics, epigenomics, transcriptomics, proteomics, lipidomics and metabolomics. Genome-wide transcriptomic profiling, such as gene microarray and RNA-sequencing, emerges as powerful research tools in systems medicine and revolutionizes transcriptomic analysis of the pathological mechanisms and therapeutics of vascular diseases. In this article, I will highlight the workflow of transcriptomic profiling, outline basic bioinformatics analysis, and summarize recent gene profiling studies performed in vascular cells as well as in human and mice diseased samples. Further mining of these public repository datasets will shed new light on our understanding of the cellular basis of vascular diseases and offer novel potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Suowen Xu
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, RochesterNY, United States
| |
Collapse
|
38
|
Zhu T, He Y, Yang J, Fu W, Xu X, Si Y. MYBPH inhibits vascular smooth muscle cell migration and attenuates neointimal hyperplasia in a rat carotid balloon-injury model. Exp Cell Res 2017; 359:154-162. [PMID: 28800959 DOI: 10.1016/j.yexcr.2017.07.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 07/20/2017] [Accepted: 07/30/2017] [Indexed: 12/12/2022]
Abstract
Vascular smooth muscle cell (VSMC) migration is implicated in restenosis. Myosin binding protein H (MYBPH) is capable of reducing cell motility and metastasis. In this study, we sought to determine whether MYBPH is involved in VSMC migration and neointima formation in response to vascular injury. To determine the expression of MYBPH in injured artery, we used a standard rat carotid artery balloon-injury model. In vivo studies have demonstrated that MYBPH is upregulated after vascular injury. VSMCs treated with platelet-derived growth factor (PDGF)-BB displayed increased MYBPH mRNA and protein levels. PDGF-induced VSMC migration was inhibited by adenovirus-mediated expression of MYBPH whereas it was enhanced by small interfering RNA knockdown of MYBPH. The activation of ROCK1 was repressed by MYBPH. Luminal delivery of MYBPH adenovirus to carotid arteries decreased neointimal hyperplasia in vivo. MYBPH may, therefore, serve as a novel therapeutic target for postangioplasty restenosis.
Collapse
Affiliation(s)
- Ting Zhu
- Department of Vascular Surgery, Fudan University Zhongshan Hospital, 200032, China
| | - Yi He
- Department of Cardiovascular Surgery, Shanghai Jiao Tong University, 200092, China
| | - Jue Yang
- Department of Vascular Surgery, Fudan University Zhongshan Hospital, 200032, China
| | - Weiguo Fu
- Department of Vascular Surgery, Fudan University Zhongshan Hospital, 200032, China
| | - Xin Xu
- Department of Vascular Surgery, Fudan University Zhongshan Hospital, 200032, China.
| | - Yi Si
- Department of Vascular Surgery, Fudan University Zhongshan Hospital, 200032, China.
| |
Collapse
|
39
|
Schmidt AM. 22016 ATVB Plenary Lecture: Receptor for Advanced Glycation Endproducts and Implications for the Pathogenesis and Treatment of Cardiometabolic Disorders: Spotlight on the Macrophage. Arterioscler Thromb Vasc Biol 2017; 37:613-621. [PMID: 28183700 PMCID: PMC5364055 DOI: 10.1161/atvbaha.117.307263] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 01/30/2017] [Indexed: 12/23/2022]
Abstract
The receptor for advanced glycation endproducts (RAGE) interacts with a unique repertoire of ligands that form and collect in the tissues and circulation in diabetes mellitus, aging, inflammation, renal failure, and obesity. RAGE is expressed on multiple cell types linked to tissue perturbation in these settings. This brief review focuses on the role of RAGE in monocytes/macrophages and how RAGE ligand engagement on these cells mediates seminal changes in monocyte/macrophage migration, oxidative stress, cholesterol efflux, and pro- versus anti-inflammatory cues that signal to tissue damage. Studies using mice devoid of Ager (gene encoding RAGE) or pharmacological antagonists of RAGE are protective in animal models of diabetes mellitus, atherosclerosis, and high-fat diet-induced obesity, in least in part through key roles in monocytes/macrophages. RAGE signal transduction requires the interaction of RAGE cytoplasmic domain with the formin, DIAPH1 (diaphanous 1) and novel antagonists of this interaction show significant promise in attenuation of the maladaptive effects of RAGE ligands in cellular and in vivo models. Finally, this brief review discusses evidence for RAGE axis perturbation in human monocytes/macrophages and how tracing RAGE activity in these cells may identify target engagement biomarkers of RAGE antagonism for future clinical trials.
Collapse
Affiliation(s)
- Ann Marie Schmidt
- From the Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York.
| |
Collapse
|
40
|
Hu P, Wu X, Khandelwal AR, Yu W, Xu Z, Chen L, Yang J, Weisbrod RM, Lee KSS, Seta F, Hammock BD, Cohen RA, Zeng C, Tong X. Endothelial Nox4-based NADPH oxidase regulates atherosclerosis via soluble epoxide hydrolase. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1382-1391. [PMID: 28185955 DOI: 10.1016/j.bbadis.2017.02.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 01/05/2017] [Accepted: 02/02/2017] [Indexed: 12/17/2022]
Abstract
Nox4-based NADPH oxidase is a major reactive oxygen species-generating enzyme in the vasculature, but its role in atherosclerosis remains controversial. OBJECTIVE Our goal was to investigate the mechanisms of endothelial Nox4 in regulating atherosclerosis. APPROACH AND RESULTS Atherosclerosis-prone conditions (disturbed blood flow, type I diabetes, and Western diet) downregulated endothelial Nox4 mRNA in arteries. To address whether the downregulated endothelial Nox4 was directly involved in the development of atherosclerosis, we generated mice carrying a human Nox4 P437H dominant negative mutation (Nox4DN), driven by the endothelial specific promoter Tie-2, on atherosclerosis-prone genetic background (ApoE deficient mice) to mimic the effect of decreased endothelial Nox4. Nox4DN significantly increased type I diabetes-induced aortic stiffness and atherosclerotic lesions. Gene analysis indicated that soluble epoxide hydrolase 2 (sEH) was significantly upregulated in Nox4DN endothelial cells (EC). Inhibition of sEH activity in Nox4DN EC suppressed inflammation and macrophage adhesion to EC. On the contrary, overexpression of endothelial wild type Nox4 suppressed sEH, ameliorated Western diet-induced atherosclerosis and decreased aortic stiffness. CONCLUSIONS Atherosclerosis-prone conditions downregulated endothelial Nox4 to accelerate the progress of atherosclerosis, at least in part, by upregulating sEH to enhance inflammation.
Collapse
Affiliation(s)
- Pingping Hu
- Innovative Drug Research Centre, Chongqing University, Chongqing 401331, China
| | - Xiaojuan Wu
- Innovative Drug Research Centre, Chongqing University, Chongqing 401331, China
| | - Alok R Khandelwal
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Weimin Yu
- Innovative Drug Research Centre, Chongqing University, Chongqing 401331, China
| | - Zaicheng Xu
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Lili Chen
- Wuhan EasyDiagnosis Biomedicine Co., Ltd., Wuhan 430075, China
| | - Jian Yang
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Robert M Weisbrod
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Kin Sing Stephen Lee
- Department of Entomology & UCD Comprehensive Cancer Center, University of California-Davis, Davis, CA 95616, USA; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Francesca Seta
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Bruce D Hammock
- Department of Entomology & UCD Comprehensive Cancer Center, University of California-Davis, Davis, CA 95616, USA
| | - Richard A Cohen
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xiaoyong Tong
- Innovative Drug Research Centre, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
41
|
Zhou X, Li R, Liu X, Wang L, Hui P, Chan L, Saha PK, Hu Z. ROCK1 reduces mitochondrial content and irisin production in muscle suppressing adipocyte browning and impairing insulin sensitivity. Sci Rep 2016; 6:29669. [PMID: 27411515 PMCID: PMC4944137 DOI: 10.1038/srep29669] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/21/2016] [Indexed: 01/19/2023] Open
Abstract
Irisin reportedly promotes the conversion of preadipocytes into "brown-like" adipocytes within subcutaneous white adipose tissue (WAT) via a mechanism that stimulates UCP-1 expression. An increase in plasma irisin has been associated with improved obesity and insulin resistance in mice with type 2 diabetes. But whether a low level of irisin stimulates the development of obesity has not been determined. In studying mice with muscle-specific constitutive ROCK1 activation (mCaROCK1), we found that irisin production was down-regulated and the mice developed obesity and insulin resistance. Therefore, we studied the effects of irisin deficiency on energy metabolism in mCaROCK1 mice. Constitutively activation of ROCK1 in muscle suppressed irisin expression in muscle resulting in a low level of irisin in circulation. Irisin deficiency reduced heat production and decreased the expression of uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) and subcutaneous WAT. Moreover, mCaROCK1 mice also displayed impaired glucose tolerance. Notably, irisin replenishment in mCaROCK1 mice partially reversed insulin resistance and obesity and these changes were associated with increased expression of UCP1 and Pref-1 in subcutaneous WAT. These results demonstrate that irisin mediates muscle-adipose tissue communication and regulates energy and glucose homeostasis. Irisin administration can correct obesity and insulin resistance in mice.
Collapse
Affiliation(s)
- Xiaoshuang Zhou
- Nephrology Division, Shanxi Province People’s Hospital of Shanxi Medical University, Taiyuan, China
| | - Rongshan Li
- Nephrology Division, Shanxi Province People’s Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinyan Liu
- Nephrology Division, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Lihua Wang
- Nephrology Division, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Peng Hui
- Nephrology Division, The third affiliated hospital of Sun Yat-sen University, Guangzhou, China
| | - Lawrence Chan
- Endocrinology Division, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Pradip K. Saha
- Endocrinology Division, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Zhaoyong Hu
- Nephrology Division, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
42
|
Watts BA, George T, Badalamenti A, Good DW. High-mobility group box 1 inhibits HCO3- absorption in the medullary thick ascending limb through RAGE-Rho-ROCK-mediated inhibition of basolateral Na+/H+ exchange. Am J Physiol Renal Physiol 2016; 311:F600-13. [PMID: 27358052 DOI: 10.1152/ajprenal.00185.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/27/2016] [Indexed: 02/07/2023] Open
Abstract
High-mobility group box 1 (HMGB1) is a nuclear protein released extracellularly in response to infection or injury, where it activates immune responses and contributes to the pathogenesis of kidney dysfunction in sepsis and sterile inflammatory disorders. Recently, we demonstrated that HMGB1 inhibits HCO3 (-) absorption in perfused rat medullary thick ascending limbs (MTAL) through a basolateral receptor for advanced glycation end products (RAGE)-dependent pathway that is additive to Toll-like receptor 4 (TLR4)-ERK-mediated inhibition by LPS (Good DW, George T, Watts BA III. Am J Physiol Renal Physiol 309: F720-F730, 2015). Here, we examined signaling and transport mechanisms that mediate inhibition by HMGB1. Inhibition of HCO3 (-) absorption by HMGB1 was eliminated by the Rho-associated kinase (ROCK) inhibitor Y27632 and by a specific inhibitor of Rho, the major upstream activator of ROCK. HMGB1 increased RhoA and ROCK1 activity. HMGB1-induced ROCK1 activation was eliminated by the RAGE antagonist FPS-ZM1 and by inhibition of Rho. The Rho and ROCK inhibitors had no effect on inhibition of HCO3 (-) absorption by bath LPS. Inhibition of HCO3 (-) absorption by HMGB1 was eliminated by bath amiloride, 0 Na(+) bath, and the F-actin stabilizer jasplakinolide, three conditions that selectively prevent inhibition of MTAL HCO3 (-) absorption mediated through NHE1. HMGB1 decreased basolateral Na(+)/H(+) exchange activity through activation of ROCK. We conclude that HMGB1 inhibits HCO3 (-) absorption in the MTAL through a RAGE-RhoA-ROCK1 signaling pathway coupled to inhibition of NHE1. The HMGB1-RAGE-RhoA-ROCK1 pathway thus represents a potential target to attenuate MTAL dysfunction during sepsis and other inflammatory disorders. HMGB1 and LPS inhibit HCO3 (-) absorption through different receptor signaling and transport mechanisms, which enables these pathogenic mediators to act directly and independently to impair MTAL function.
Collapse
Affiliation(s)
- Bruns A Watts
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, Texas; and
| | - Thampi George
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, Texas; and
| | - Andrew Badalamenti
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, Texas; and
| | - David W Good
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, Texas; and Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
43
|
López-Díez R, Shekhtman A, Ramasamy R, Schmidt AM. Cellular mechanisms and consequences of glycation in atherosclerosis and obesity. Biochim Biophys Acta Mol Basis Dis 2016; 1862:2244-2252. [PMID: 27166197 DOI: 10.1016/j.bbadis.2016.05.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 04/28/2016] [Accepted: 05/05/2016] [Indexed: 02/07/2023]
Abstract
Post-translational modification of proteins imparts diversity to protein functions. The process of glycation represents a complex set of pathways that mediates advanced glycation endproduct (AGE) formation, detoxification, intracellular disposition, extracellular release, and induction of signal transduction. These processes modulate the response to hyperglycemia, obesity, aging, inflammation, and renal failure, in which AGE formation and accumulation is facilitated. It has been shown that endogenous anti-AGE protective mechanisms are thwarted in chronic disease, thereby amplifying accumulation and detrimental cellular actions of these species. Atop these considerations, receptor for advanced glycation endproducts (RAGE)-mediated pathways downregulate expression and activity of the key anti-AGE detoxification enzyme, glyoxalase-1 (GLO1), thereby setting in motion an interminable feed-forward loop in which AGE-mediated cellular perturbation is not readily extinguished. In this review, we consider recent work in the field highlighting roles for glycation in obesity and atherosclerosis and discuss emerging strategies to block the adverse consequences of AGEs. This article is part of a Special Issue entitled: The role of post-translational protein modifications on heart and vascular metabolism edited by Jason R.B. Dyck & Jan F.C. Glatz.
Collapse
Affiliation(s)
- Raquel López-Díez
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, NYU Langone Medical Center, New York, NY 10016, United States
| | - Alexander Shekhtman
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, NYU Langone Medical Center, New York, NY 10016, United States
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, NYU Langone Medical Center, New York, NY 10016, United States.
| |
Collapse
|
44
|
Xie K, Wang W, Chen H, Han H, Liu D, Wang G, Yu Y. Hydrogen-Rich Medium Attenuated Lipopolysaccharide-Induced Monocyte-Endothelial Cell Adhesion and Vascular Endothelial Permeability via Rho-Associated Coiled-Coil Protein Kinase. Shock 2016; 44:58-64. [PMID: 25895142 DOI: 10.1097/shk.0000000000000365] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Sepsis is the leading cause of death in critically ill patients. In recent years, molecular hydrogen, as an effective free radical scavenger, has been shown a selective antioxidant and anti-inflammatory effect, and it is beneficial in the treatment of sepsis. Rho-associated coiled-coil protein kinase (ROCK) participates in junction between normal cells, and regulates vascular endothelial permeability. In this study, we used lipopolysaccharide to stimulate vascular endothelial cells and explored the effects of hydrogen-rich medium on the regulation of adhesion of monocytes to endothelial cells and vascular endothelial permeability. We found that hydrogen-rich medium could inhibit adhesion of monocytes to endothelial cells and decrease levels of adhesion molecules, whereas the levels of transepithelial/endothelial electrical resistance values and the expression of vascular endothelial cadherin were increased after hydrogen-rich medium treatment. Moreover, hydrogen-rich medium could lessen the expression of ROCK, as a similar effect of its inhibitor Y-27632. In addition, hydrogen-rich medium could also inhibit adhesion of polymorphonuclear neutrophils to endothelial cells. In conclusion, hydrogen-rich medium could regulate adhesion of monocytes/polymorphonuclear neutrophils to endothelial cells and vascular endothelial permeability, and this effect might be related to the decreased expression of ROCK protein.
Collapse
Affiliation(s)
- Keliang Xie
- *Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, Tianjin, China; †Department of Anesthesiology, Tianjin Hospital, Tianjin, China; and ‡Institute of Acute Abdominal Disease, Tianjin Nan Kai Hospital, Tianjin, China
| | | | | | | | | | | | | |
Collapse
|
45
|
Hien TT, Turczyńska KM, Dahan D, Ekman M, Grossi M, Sjögren J, Nilsson J, Braun T, Boettger T, Garcia-Vaz E, Stenkula K, Swärd K, Gomez MF, Albinsson S. Elevated Glucose Levels Promote Contractile and Cytoskeletal Gene Expression in Vascular Smooth Muscle via Rho/Protein Kinase C and Actin Polymerization. J Biol Chem 2016; 291:3552-68. [PMID: 26683376 PMCID: PMC4751395 DOI: 10.1074/jbc.m115.654384] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 12/17/2015] [Indexed: 12/22/2022] Open
Abstract
Both type 1 and type 2 diabetes are associated with increased risk of cardiovascular disease. This is in part attributed to the effects of hyperglycemia on vascular endothelial and smooth muscle cells, but the underlying mechanisms are not fully understood. In diabetic animal models, hyperglycemia results in hypercontractility of vascular smooth muscle possibly due to increased activation of Rho-kinase. The aim of the present study was to investigate the regulation of contractile smooth muscle markers by glucose and to determine the signaling pathways that are activated by hyperglycemia in smooth muscle cells. Microarray, quantitative PCR, and Western blot analyses revealed that both mRNA and protein expression of contractile smooth muscle markers were increased in isolated smooth muscle cells cultured under high compared with low glucose conditions. This effect was also observed in hyperglycemic Akita mice and in diabetic patients. Elevated glucose activated the protein kinase C and Rho/Rho-kinase signaling pathways and stimulated actin polymerization. Glucose-induced expression of contractile smooth muscle markers in cultured cells could be partially or completely repressed by inhibitors of advanced glycation end products, L-type calcium channels, protein kinase C, Rho-kinase, actin polymerization, and myocardin-related transcription factors. Furthermore, genetic ablation of the miR-143/145 cluster prevented the effects of glucose on smooth muscle marker expression. In conclusion, these data demonstrate a possible link between hyperglycemia and vascular disease states associated with smooth muscle contractility.
Collapse
MESH Headings
- Actin Cytoskeleton/metabolism
- Actin Cytoskeleton/pathology
- Aged
- Animals
- Atherosclerosis/enzymology
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Cells, Cultured
- Contractile Proteins/agonists
- Contractile Proteins/genetics
- Contractile Proteins/metabolism
- Cytoskeletal Proteins/agonists
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/metabolism
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 2/complications
- Diabetic Angiopathies/enzymology
- Diabetic Angiopathies/metabolism
- Diabetic Angiopathies/pathology
- Gene Expression Regulation
- Humans
- Male
- Mice, Knockout
- Mice, Mutant Strains
- MicroRNAs/metabolism
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Protein Kinase C/chemistry
- Protein Kinase C/metabolism
- Signal Transduction
- rho GTP-Binding Proteins/agonists
- rho GTP-Binding Proteins/metabolism
- rho-Associated Kinases/chemistry
- rho-Associated Kinases/metabolism
Collapse
Affiliation(s)
- Tran Thi Hien
- From the Departments of Experimental Medical Sciences and
| | | | - Diana Dahan
- From the Departments of Experimental Medical Sciences and
| | - Mari Ekman
- From the Departments of Experimental Medical Sciences and
| | - Mario Grossi
- From the Departments of Experimental Medical Sciences and
| | - Johan Sjögren
- Clinical Sciences, Lund University, BMC D12, SE-221 84 Lund, Sweden and
| | - Johan Nilsson
- Clinical Sciences, Lund University, BMC D12, SE-221 84 Lund, Sweden and
| | - Thomas Braun
- the Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany, and
| | - Thomas Boettger
- the Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany, and
| | - Eliana Garcia-Vaz
- the Department of Clinical Sciences in Malmö, Lund University, 205 02 Malmö, Sweden
| | - Karin Stenkula
- From the Departments of Experimental Medical Sciences and
| | - Karl Swärd
- From the Departments of Experimental Medical Sciences and
| | - Maria F Gomez
- the Department of Clinical Sciences in Malmö, Lund University, 205 02 Malmö, Sweden
| | | |
Collapse
|
46
|
Daffu G, Shen X, Senatus L, Thiagarajan D, Abedini A, Hurtado Del Pozo C, Rosario R, Song F, Friedman RA, Ramasamy R, Schmidt AM. RAGE Suppresses ABCG1-Mediated Macrophage Cholesterol Efflux in Diabetes. Diabetes 2015; 64:4046-60. [PMID: 26253613 PMCID: PMC4657581 DOI: 10.2337/db15-0575] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/23/2015] [Indexed: 01/13/2023]
Abstract
Diabetes exacerbates cardiovascular disease, at least in part through suppression of macrophage cholesterol efflux and levels of the cholesterol transporters ATP binding cassette transporter A1 (ABCA1) and ABCG1. The receptor for advanced glycation end products (RAGE) is highly expressed in human and murine diabetic atherosclerotic plaques, particularly in macrophages. We tested the hypothesis that RAGE suppresses macrophage cholesterol efflux and probed the mechanisms by which RAGE downregulates ABCA1 and ABCG1. Macrophage cholesterol efflux to apolipoprotein A1 and HDL and reverse cholesterol transport to plasma, liver, and feces were reduced in diabetic macrophages through RAGE. In vitro, RAGE ligands suppressed ABCG1 and ABCA1 promoter luciferase activity and transcription of ABCG1 and ABCA1 through peroxisome proliferator-activated receptor-γ (PPARG)-responsive promoter elements but not through liver X receptor elements. Plasma levels of HDL were reduced in diabetic mice in a RAGE-dependent manner. Laser capture microdissected CD68(+) macrophages from atherosclerotic plaques of Ldlr(-/-) mice devoid of Ager (RAGE) displayed higher levels of Abca1, Abcg1, and Pparg mRNA transcripts versus Ager-expressing Ldlr(-/-) mice independently of glycemia or plasma levels of total cholesterol and triglycerides. Antagonism of RAGE may fill an important therapeutic gap in the treatment of diabetic macrovascular complications.
Collapse
MESH Headings
- ATP Binding Cassette Transporter 1/genetics
- ATP Binding Cassette Transporter 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 1
- ATP-Binding Cassette Transporters/antagonists & inhibitors
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Animals
- Aorta/immunology
- Aorta/metabolism
- Aorta/pathology
- Biological Transport
- Cell Line
- Cells, Cultured
- Cholesterol/metabolism
- Diabetic Angiopathies/blood
- Diabetic Angiopathies/immunology
- Diabetic Angiopathies/metabolism
- Diabetic Angiopathies/pathology
- Glycation End Products, Advanced/blood
- Glycation End Products, Advanced/metabolism
- Humans
- Ligands
- Lipoproteins/antagonists & inhibitors
- Lipoproteins/genetics
- Lipoproteins/metabolism
- Macrophages/cytology
- Macrophages/immunology
- Macrophages/metabolism
- Macrophages/pathology
- Male
- Mice, Knockout
- PPAR gamma/genetics
- PPAR gamma/metabolism
- Plaque, Atherosclerotic/blood
- Plaque, Atherosclerotic/immunology
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- Promoter Regions, Genetic
- Receptor for Advanced Glycation End Products/agonists
- Receptor for Advanced Glycation End Products/blood
- Receptor for Advanced Glycation End Products/genetics
- Receptor for Advanced Glycation End Products/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
Collapse
Affiliation(s)
- Gurdip Daffu
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University School of Medicine, New York, NY
| | - Xiaoping Shen
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University School of Medicine, New York, NY
| | - Laura Senatus
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University School of Medicine, New York, NY
| | - Devi Thiagarajan
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University School of Medicine, New York, NY
| | - Andisheh Abedini
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University School of Medicine, New York, NY
| | - Carmen Hurtado Del Pozo
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University School of Medicine, New York, NY
| | - Rosa Rosario
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University School of Medicine, New York, NY
| | - Fei Song
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University School of Medicine, New York, NY
| | - Richard A Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center, and Department of Biomedical Informatics, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University School of Medicine, New York, NY
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University School of Medicine, New York, NY
| |
Collapse
|
47
|
Ramasamy R, Shekhtman A, Schmidt AM. The multiple faces of RAGE--opportunities for therapeutic intervention in aging and chronic disease. Expert Opin Ther Targets 2015; 20:431-46. [PMID: 26558318 DOI: 10.1517/14728222.2016.1111873] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION This review focuses on the multi-ligand receptor of the immunoglobulin superfamily--receptor for advanced glycation endproducts (RAGE). The accumulation of the multiple ligands of RAGE in cellular stress milieux links RAGE to the pathobiology of chronic disease and natural aging. AREAS COVERED In this review, we present a discussion on the ligands of RAGE and the implications of these ligand families in disease. We review the recent literature on the role of ligand-RAGE interaction in the consequences of natural aging; the macro- and microvascular complications of diabetes; obesity and insulin resistance; autoimmune disorders and chronic inflammation; and tumors and Alzheimer's disease. We discuss the mechanisms of RAGE signaling through its intracellular binding effector molecule--the formin DIAPH1. Physicochemical evidence of how the RAGE cytoplasmic domain binds to the FH1 (formin homology 1) domain of DIAPH1, and the consequences thereof, are also reviewed. EXPERT OPINION We discuss the modalities of RAGE antagonism currently in preclinical and clinical studies. Finally, we present the rationale behind potentially targeting the RAGE cytoplasmic domain-DIAPH1 interaction as a logical strategy for therapeutic intervention in the pathological settings of chronic diseases and aging wherein RAGE ligands accumulate and signal.
Collapse
Affiliation(s)
- Ravichandran Ramasamy
- a Diabetes Research Program, Division of Endocrinology, Department of Medicine , New York University Langone Medical Center , New York , NY 10016 , USA
| | - Alexander Shekhtman
- b Department of Chemistry , University at Albany, State University of New York , Albany , NY 12222 , USA
| | - Ann Marie Schmidt
- a Diabetes Research Program, Division of Endocrinology, Department of Medicine , New York University Langone Medical Center , New York , NY 10016 , USA
| |
Collapse
|
48
|
Good DW, George T, Watts BA. High-mobility group box 1 inhibits HCO(3)(-) absorption in medullary thick ascending limb through a basolateral receptor for advanced glycation end products pathway. Am J Physiol Renal Physiol 2015; 309:F720-30. [PMID: 26180239 DOI: 10.1152/ajprenal.00227.2015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/07/2015] [Indexed: 12/31/2022] Open
Abstract
High-mobility group box 1 (HMGB1) is a damage-associated molecule implicated in mediating kidney dysfunction in sepsis and sterile inflammatory disorders. HMGB1 is a nuclear protein released extracellularly in response to infection or injury, where it interacts with Toll-like receptor 4 (TLR4) and other receptors to mediate inflammation. Previously, we demonstrated that LPS inhibits HCO(3)(-) absorption in the medullary thick ascending limb (MTAL) through a basolateral TLR4-ERK pathway (Watts BA III, George T, Sherwood ER, Good DW. Am J Physiol Cell Physiol 301: C1296-C1306, 2011). Here, we examined whether HMGB1 could inhibit HCO(3)(-) absorption through the same pathway. Adding HMGB1 to the bath decreased HCO(3)(-) absorption by 24% in isolated, perfused rat and mouse MTALs. In contrast to LPS, inhibition by HMGB1 was preserved in MTALs from TLR4(-/-) mice and was unaffected by ERK inhibitors. Inhibition by HMGB1 was eliminated by the receptor for advanced glycation end products (RAGE) antagonist FPS-ZM1 and by neutralizing anti-RAGE antibody. Confocal immunofluorescence showed expression of RAGE in the basolateral membrane domain. Inhibition of HCO(3)(-) absorption by HMGB1 through RAGE was additive to inhibition by LPS through TLR4 and to inhibition by Gram-positive bacterial molecules through TLR2. Bath amiloride, which selectively prevents inhibition of MTAL HCO(3)(-) absorption mediated through Na⁺/H⁺ exchanger 1 (NHE1), eliminated inhibition by HMGB1. We conclude that HMGB1 inhibits MTAL HCO(3)(-) absorption through a RAGE-dependent pathway distinct from TLR4-mediated inhibition by LPS. These studies provide new evidence that HMGB1-RAGE signaling acts directly to impair the transport function of renal tubules. They reveal a novel paradigm for sepsis-induced renal tubule dysfunction, whereby exogenous pathogen-associated molecules and endogenous damage-associated molecules act directly and independently to inhibit MTAL HCO(3)(-) absorption through different receptor signaling pathways.
Collapse
Affiliation(s)
- David W Good
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, Texas; and Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, Texas
| | - Thampi George
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, Texas; and
| | - Bruns A Watts
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, Texas; and
| |
Collapse
|
49
|
Litwinoff E, Hurtado Del Pozo C, Ramasamy R, Schmidt AM. Emerging Targets for Therapeutic Development in Diabetes and Its Complications: The RAGE Signaling Pathway. Clin Pharmacol Ther 2015; 98:135-44. [PMID: 25974754 DOI: 10.1002/cpt.148] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 05/08/2015] [Accepted: 05/08/2015] [Indexed: 12/16/2022]
Abstract
Types 1 and 2 diabetes are on the rise worldwide. Although the treatment of hyperglycemia has benefited from recent advances, aggressive efforts to maintain euglycemia may be fraught with risk, especially in older subjects or in subjects vulnerable to hypoglycemic unawareness. Hence, strategies to prevent and treat the complications of hyperglycemia are essential. In this review we summarize recent updates on the biology of the receptor for advanced glycation endproducts (RAGE) in the pathogenesis of both micro- and macrovascular complications of diabetes, insights from the study of mouse models of obesity and diabetic complications, and from associative studies in human subjects. The study of the mechanisms and consequences of the interaction of the RAGE cytoplasmic domain with the formin, mDia1, in RAGE signal transduction, will be discussed. Lastly, we review the "state-of-the-art" on RAGE-directed therapeutics. Tackling RAGE/mDia1 may identify a novel class of therapeutics preventing diabetes and its complications.
Collapse
Affiliation(s)
- Ems Litwinoff
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - C Hurtado Del Pozo
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - R Ramasamy
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - A M Schmidt
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
50
|
Luo J, Liang M, Mitch WE, Danesh FR, Yu M, Cheng J. FSP-1 Impairs the Function of Endothelium Leading to Failure of Arteriovenous Grafts in Diabetic Mice. Endocrinology 2015; 156:2200-10. [PMID: 25774552 PMCID: PMC4430603 DOI: 10.1210/en.2014-1841] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To understand how endothelial cell (EC) dysfunction contributes to the failure of arteriovenous graft (AVG), we investigated the role of fibroblast-specific protein 1 (FSP-1) in cultured ECs and a mouse AVG model. In vitro, we uncovered a new FSP-1-dependent pathway that activates rho-associated, coiled-coil-containing protein kinase 1 (ROCK1) in ECs, leading to phosphorylation of myosin light chain 2 resulting in EC dysfunction. In cultured ECs, high glucose stimulated FSP-1 expression and increased permeability of an EC monolayer. The increase in permeability by the high glucose concentration was mediated by FSP-1 expression. Treatment of cultured ECs with FSP-1 caused leakage of the endothelial barrier plus increased expression of adhesion molecules and decreased expression of junction molecules. These responses were initiated by binding of FSP-1 to receptor for advanced glycation end products, which resulted in ROCK1 activation. In vivo, diabetes increased infiltration of inflammatory cells into AVGs and stimulated neointima formation. Increased FSP-1 expression and ROCK1 activation were found in AVGs of diabetic mice. Blocking FSP-1 suppressed diabetes-induced ROCK1 activation in AVGs. In mice with FSP-1 knockout or with ROCK1 knockout, accumulation of inflammatory cells and neointima formation in AVG were attenuated despite diabetes. Thus, mechanisms of inhibiting FSP-1 in ECs could improve AVG function.
Collapse
Affiliation(s)
- Jinlong Luo
- Nephrology Division (J.L., M.L., W.E.M., M.Y., J.C.), Baylor College of Medicine, Houston, Texas 77030; Emergency Medicine (F.R.D.), University of Texas MD Anderson Cancer Center, Houston, Texas 77030; and Department of Emergency (J.L.), Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China 430074
| | | | | | | | | | | |
Collapse
|