1
|
Bekele BM, Gazzerro E, Schoenrath F, Falk V, Rost S, Hoerning S, Jelting Y, Zaum AK, Spuler S, Knierim J. Undetected Neuromuscular Disease in Patients after Heart Transplantation. Int J Mol Sci 2024; 25:7819. [PMID: 39063061 PMCID: PMC11277526 DOI: 10.3390/ijms25147819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Heart transplantation (HTX) improves the overall survival and functional status of end-stage heart failure patients with cardiomyopathies (CMPs). The majority of CMPs have genetic causes, and the overlap between CMPs and inherited myopathies is well documented. However, the long-term outcome in skeletal muscle function and possibility of an undiagnosed underlying genetic cause of both a cardiac and skeletal pathology remain unknown. (2) Thirty-nine patients were assessed using open and standardized interviews on muscle function, a quality-of-life (EuroQol EQ-5D-3L) questionnaire, and a physical examination (Medical Research Council Muscle scale). Whole-exome sequencing was completed in three stages for those with skeletal muscle weakness. (3) Seven patients (17.9%) reported new-onset muscle weakness and motor limitations. Objective muscle weakness in the upper and lower extremities was seen in four patients. In three of them, exome sequencing revealed pathogenic/likely pathogenic variants in the genes encoding nexilin, myosin heavy chain, titin, and SPG7. (4) Our findings support a positive long-term outcome of skeletal muscle function in HTX patients. However, 10% of patients showed clinical signs of myopathy due to a possible genetic cause. The integration of genetic testing and standardized neurological assessment of motor function during the peri-HTX period should be considered.
Collapse
Affiliation(s)
- Biniam Melese Bekele
- Muscle Research Unit, ECRC Experimental and Clinical Research Center, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, 13125 Berlin, Germany; (B.M.B.); (E.G.)
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany (J.K.)
- Deutsches Herzzentrum der Charité—Medical Heart Center of Charité and German Heart Institute Berlin, Department of Cardiothoracic and Vascular Surgery, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Elisabetta Gazzerro
- Muscle Research Unit, ECRC Experimental and Clinical Research Center, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, 13125 Berlin, Germany; (B.M.B.); (E.G.)
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Felix Schoenrath
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany (J.K.)
- Deutsches Herzzentrum der Charité—Medical Heart Center of Charité and German Heart Institute Berlin, Department of Cardiothoracic and Vascular Surgery, Augustenburger Platz 1, 13353 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Berlin, 13125 Berlin, Germany
| | - Volkmar Falk
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany (J.K.)
- Deutsches Herzzentrum der Charité—Medical Heart Center of Charité and German Heart Institute Berlin, Department of Cardiothoracic and Vascular Surgery, Augustenburger Platz 1, 13353 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Berlin, 13125 Berlin, Germany
- Translational Cardiovascular Technologies, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH), 8093 Zurich, Switzerland
| | - Simone Rost
- Institute for Human Genetics, University of Würzburg, 97074 Würzburg, Germany
| | - Selina Hoerning
- Institute for Human Genetics, University of Würzburg, 97074 Würzburg, Germany
| | - Yvonne Jelting
- Institute for Human Genetics, University of Würzburg, 97074 Würzburg, Germany
| | - Ann-Kathrin Zaum
- Institute for Human Genetics, University of Würzburg, 97074 Würzburg, Germany
| | - Simone Spuler
- Muscle Research Unit, ECRC Experimental and Clinical Research Center, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, 13125 Berlin, Germany; (B.M.B.); (E.G.)
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jan Knierim
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany (J.K.)
- Sana Paulinenkrankenhaus, Department of Internal Medicine and Cardiology, Dickensweg 25-39, 14055 Berlin, Germany
| |
Collapse
|
2
|
Lawrence RL, Veluswamy B, Dobben EA, Klochko CL, Soliman SB. Predictors of infraspinatus muscle degeneration in individuals with an isolated supraspinatus tendon tear. Skeletal Radiol 2023; 52:695-703. [PMID: 36195776 PMCID: PMC10332804 DOI: 10.1007/s00256-022-04201-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Determine the demographic and clinical factors that predict infraspinatus muscle degeneration in individuals with an isolated supraspinatus tendon tear. MATERIALS AND METHODS A retrospective analysis was performed using the medical records of patients who had a shoulder MRI interpreted by 1 of 3 fellowship-trained musculoskeletal radiologists since the implementation of a standardized MRI 3 T protocol within our healthcare system. Demographic (e.g., age, sex) and clinical data (e.g., tear size, muscle degeneration, co-morbidities) were collected. Patients with an isolated supraspinatus tendon tear (n = 121) were assigned to one of two groups based on whether any infraspinatus muscle degeneration was present. Logistic regression was used to assess the univariate relationships between infraspinatus muscle degeneration and patient and clinical data, while least absolute shrinkage and selector operator (LASSO) logistic regression was used to assess the multivariable relationship. RESULTS Of the patients with an isolated supraspinatus tendon tear, 16.5% had evidence of infraspinatus muscle degeneration. The presence of infraspinatus muscle degeneration was independently associated with cardiovascular disease (P = 0.01), supraspinatus muscle degeneration (P < 0.01), and subscapularis muscle degeneration (P = 0.01). When the multivariable relationship is assessed, supraspinatus muscle degeneration emerged as the only variable of significant importance for detecting infraspinatus muscle degeneration (specificity: 87.1%, sensitivity: 80.0%). CONCLUSION Infraspinatus muscle degeneration is not uncommon in individuals with an isolated supraspinatus tear and is most associated with concomitant supraspinatus muscle degeneration. These findings highlight the need for clinicians to specifically assess the status of each rotator cuff muscle, even when the tendon itself is intact.
Collapse
Affiliation(s)
- Rebekah L Lawrence
- Division of Orthopedic Surgery, Department of Orthopedics, Henry Ford Hospital, Detroit, MI, USA
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO, USA
| | - Balaji Veluswamy
- Division of Musculoskeletal Radiology, Department of Radiology, Henry Ford Hospital, Detroit, MI, USA
| | - Elizabeth A Dobben
- Division of Musculoskeletal Radiology, Department of Radiology, Henry Ford Hospital, Detroit, MI, USA
| | - Chad L Klochko
- Division of Musculoskeletal Radiology, Department of Radiology, Henry Ford Hospital, Detroit, MI, USA
| | - Steven B Soliman
- Division of Musculoskeletal Radiology, Department of Radiology, Henry Ford Hospital, Detroit, MI, USA.
| |
Collapse
|
3
|
Cobb MS, Tao S, Shortt K, Girgis M, Hauptman J, Schriewer J, Chin Z, Dorfman E, Campbell K, Heruth DP, Shohet RV, Dawn B, Konorev EA. Smad3 promotes adverse cardiovascular remodeling and dysfunction in doxorubicin-treated hearts. Am J Physiol Heart Circ Physiol 2022; 323:H1091-H1107. [PMID: 36269647 PMCID: PMC9678413 DOI: 10.1152/ajpheart.00312.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/26/2022] [Accepted: 10/14/2022] [Indexed: 01/21/2023]
Abstract
Many anticancer therapies cause serious cardiovascular complications that degrade quality of life and cause early mortality in treated patients. Specifically, doxorubicin is known as an effective anticancer agent that causes cardiomyopathy in treated patients. There has been growing interest in defining the role of endothelial cells in cardiac damage by doxorubicin. We have shown in the present study that endothelial nuclei accumulate more intravenously administered doxorubicin than other cardiac cell types. Doxorubicin enhanced cardiac production of the transforming growth factor-β (TGF-β) ligands and nuclear translocation of phospho-Smad3 in both cultured and in vivo cardiac endothelial cells. To examine the role of the TGF-β/mothers against decapentaplegic homolog 3 (Smad3) pathway in cardiac damage by doxorubicin, we used both Smad3 shRNA stable endothelial cell lines and Smad3-knockout mice. We demonstrated using endothelial transcriptome analysis that upregulation of the TGF-β and inflammatory cytokine/cytokine receptor pathways, as well as suppression of cell cycle and angiogenesis by doxorubicin, were alleviated in Smad3-deficient endothelial cells. The results of transcriptomic analysis were validated using qPCR, immunoblotting, and ex vivo aortic ring sprouting assays. Similarly, increased cardiac expression of cytokines and chemokines observed in treated wild-type mice was diminished in treated Smad3-knockout animals. We also detected increased end-diastolic diameter and depressed systolic function in doxorubicin-treated wild-type but not Smad3-knockout mice. This work provides evidence for the critical role of the canonical TGF-β/Smad3 pathway in cardiac damage by doxorubicin.NEW & NOTEWORTHY Microvascular endothelial cells in the heart accumulate more intravenously administered doxorubicin than nonendothelial cardiac cell types. The treatment enhanced the TGF-β/Smad3 pathway and elicited endothelial cell senescence and inflammatory responses followed by adverse cardiac remodeling and dysfunction in wild-type but not Smad3-deficient animals. Our study suggests that the TGF-β/Smad3 pathway contributes to the development of doxorubicin cardiomyopathy and the potential value of novel approaches to ameliorate cardiotoxicity by targeting the Smad3 transcription factor.
Collapse
Affiliation(s)
- Melissa S Cobb
- Department of Basic Sciences, Kansas City University, Kansas City, Missouri
| | - Shixin Tao
- Department of Basic Sciences, Kansas City University, Kansas City, Missouri
| | - Katherine Shortt
- Ambry Genetics, Department of Advanced Analytics, Aliso Viejo, California
| | - Magdy Girgis
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at UNLV, Las Vegas, Nevada
| | - Jeryl Hauptman
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at UNLV, Las Vegas, Nevada
| | - Jill Schriewer
- Department of Basic Sciences, Kansas City University, Kansas City, Missouri
| | - Zaphrirah Chin
- Department of Basic Sciences, Kansas City University, Kansas City, Missouri
| | - Edward Dorfman
- Department of Basic Sciences, Kansas City University, Kansas City, Missouri
| | - Kyle Campbell
- Department of Basic Sciences, Kansas City University, Kansas City, Missouri
| | - Daniel P Heruth
- The Children's Mercy Research Institute, Kansas City, Missouri
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Ralph V Shohet
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Buddhadeb Dawn
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at UNLV, Las Vegas, Nevada
| | - Eugene A Konorev
- Department of Basic Sciences, Kansas City University, Kansas City, Missouri
| |
Collapse
|
4
|
Alvarado G, Tóth A, Csősz É, Kalló G, Dankó K, Csernátony Z, Smith A, Gram M, Akerström B, Édes I, Balla G, Papp Z, Balla J. Heme-Induced Oxidation of Cysteine Groups of Myofilament Proteins Leads to Contractile Dysfunction of Permeabilized Human Skeletal Muscle Fibres. Int J Mol Sci 2020; 21:ijms21218172. [PMID: 33142923 PMCID: PMC7663642 DOI: 10.3390/ijms21218172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/21/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023] Open
Abstract
Heme released from red blood cells targets a number of cell components including the cytoskeleton. The purpose of the present study was to determine the impact of free heme (20–300 µM) on human skeletal muscle fibres made available during orthopedic surgery. Isometric force production and oxidative protein modifications were monitored in permeabilized skeletal muscle fibre segments. A single heme exposure (20 µM) to muscle fibres decreased Ca2+-activated maximal (active) force (Fo) by about 50% and evoked an approximately 3-fold increase in Ca2+-independent (passive) force (Fpassive). Oxidation of sulfhydryl (SH) groups was detected in structural proteins (e.g., nebulin, α-actinin, meromyosin 2) and in contractile proteins (e.g., myosin heavy chain and myosin-binding protein C) as well as in titin in the presence of 300 µM heme. This SH oxidation was not reversed by dithiothreitol (50 mM). Sulfenic acid (SOH) formation was also detected in the structural proteins (nebulin, α-actinin, meromyosin). Heme effects on SH oxidation and SOH formation were prevented by hemopexin (Hpx) and α1-microglobulin (A1M). These data suggest that free heme has a significant impact on human skeletal muscle fibres, whereby oxidative alterations in structural and contractile proteins limit contractile function. This may explain and or contribute to the weakness and increase of skeletal muscle stiffness in chronic heart failure, rhabdomyolysis, and other hemolytic diseases. Therefore, therapeutic use of Hpx and A1M supplementation might be effective in preventing heme-induced skeletal muscle alterations.
Collapse
Affiliation(s)
- Gerardo Alvarado
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, H-4032 Debrecen, Hungary; (G.A.); (A.T.)
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Attila Tóth
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, H-4032 Debrecen, Hungary; (G.A.); (A.T.)
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Éva Csősz
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.C.); (G.K.)
| | - Gergő Kalló
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.C.); (G.K.)
| | - Katalin Dankó
- Department of Rheumatology, Institute of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Zoltán Csernátony
- Department of Orthopedics, Faculty of Medicine, University of Debrecen, H-4012 Debrecen, Hungary;
| | - Ann Smith
- Department of Cell and Molecular Biology and Biochemistry, School of Biological and Chemical Sciences, University of Missouri-Kansas City, Missouri, MO 64110, USA;
| | - Magnus Gram
- Department of Clinical Sciences Lund, Pediatrics, Lund University, 22184 Lund, Sweden;
| | - Bo Akerström
- Department of Clinical Sciences Lund, Infection Medicine, Lund University, 22184 Lund, Sweden;
| | - István Édes
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary;
| | - György Balla
- Institute of Pediatrics, Faculty of Medicine, University of Debrecen, H-4012 Debrecen, Hungary;
| | - Zoltán Papp
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, H-4032 Debrecen, Hungary; (G.A.); (A.T.)
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary;
- Correspondence: (Z.P.); (J.B.); Tel./Fax: +36-(52)-411717 (Z.P.); +36-(52)-413653 (J.B.)
| | - József Balla
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, H-4032 Debrecen, Hungary; (G.A.); (A.T.)
- Department of Nephrology, Institute of Medicine, Faculty of Medicine, University of Debrecen, H-4012 Debrecen, Hungary
- Correspondence: (Z.P.); (J.B.); Tel./Fax: +36-(52)-411717 (Z.P.); +36-(52)-413653 (J.B.)
| |
Collapse
|
5
|
Kreipke RE, Kwon YV, Shcherbata HR, Ruohola-Baker H. Drosophila melanogaster as a Model of Muscle Degeneration Disorders. Curr Top Dev Biol 2016; 121:83-109. [PMID: 28057309 DOI: 10.1016/bs.ctdb.2016.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Drosophila melanogaster provides a powerful platform with which researchers can dissect complex genetic questions and biochemical pathways relevant to a vast array of human diseases and disorders. Of particular interest, much work has been done with flies to elucidate the molecular mechanisms underlying muscle degeneration diseases. The fly is particularly useful for modeling muscle degeneration disorders because there are no identified satellite muscle cells to repair adult muscle following injury. This allows for the identification of endogenous processes of muscle degeneration as discrete events, distinguishable from phenotypes due to the lack of stem cell-based regeneration. In this review, we will discuss the ways in which the fruit fly provides a powerful platform with which to study human muscle degeneration disorders.
Collapse
Affiliation(s)
- R E Kreipke
- University of Washington, School of Medicine, Seattle, WA, United States; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, United States
| | - Y V Kwon
- University of Washington, School of Medicine, Seattle, WA, United States
| | - H R Shcherbata
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - H Ruohola-Baker
- University of Washington, School of Medicine, Seattle, WA, United States; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, United States.
| |
Collapse
|
6
|
Sun Z, Schriewer J, Tang M, Marlin J, Taylor F, Shohet RV, Konorev EA. The TGF-β pathway mediates doxorubicin effects on cardiac endothelial cells. J Mol Cell Cardiol 2015; 90:129-38. [PMID: 26686989 DOI: 10.1016/j.yjmcc.2015.12.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/05/2015] [Accepted: 12/09/2015] [Indexed: 12/19/2022]
Abstract
Elevated ALK4/5 ligands including TGF-β and activins have been linked to cardiovascular remodeling and heart failure. Doxorubicin (Dox) is commonly used as a model of cardiomyopathy, a condition that often precedes cardiovascular remodeling and heart failure. In 7-8-week-old C57Bl/6 male mice treated with Dox we found decreased capillary density, increased levels of ALK4/5 ligand and Smad2/3 transcripts, and increased expression of Smad2/3 transcriptional targets. Human cardiac microvascular endothelial cells (HCMVEC) treated with Dox also showed increased levels of ALK4/5 ligands, Smad2/3 transcriptional targets, a decrease in proliferation and suppression of vascular network formation in a HCMVEC and human cardiac fibroblasts co-culture assay. Our hypothesis is that the deleterious effects of Dox on endothelial cells are mediated in part by the activation of the TGF-β pathway. We used the inhibitor of ALK4/5 kinases SB431542 (SB) in concert with Dox to ascertain the role of TGF-β pathway activation in doxorubicin induced endothelial cell defects. SB prevented the suppression of HCMVEC proliferation in the presence of TGF-β2 and activin A, and alleviated the inhibition of HCMVEC proliferation by Dox. SB also prevented the suppression of vascular network formation in co-cultures of HCMVEC and human cardiac fibroblasts treated with Dox. Our results show that the inhibition of the TGF-β pathway alleviates the detrimental effects of Dox on endothelial cells in vitro.
Collapse
Affiliation(s)
- Zuyue Sun
- College of Pharmacy, University of Hawaii-Hilo, USA
| | | | - Mingxin Tang
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii-Manoa, USA
| | - Jerry Marlin
- Division of Basic Sciences, Kansas City University, USA
| | | | - Ralph V Shohet
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii-Manoa, USA
| | | |
Collapse
|
7
|
Hasumi Y, Baba M, Hasumi H, Huang Y, Lang M, Reindorf R, Oh HB, Sciarretta S, Nagashima K, Haines DC, Schneider MD, Adelstein RS, Schmidt LS, Sadoshima J, Marston Linehan W. Folliculin (Flcn) inactivation leads to murine cardiac hypertrophy through mTORC1 deregulation. Hum Mol Genet 2014; 23:5706-19. [PMID: 24908670 DOI: 10.1093/hmg/ddu286] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cardiac hypertrophy, an adaptive process that responds to increased wall stress, is characterized by the enlargement of cardiomyocytes and structural remodeling. It is stimulated by various growth signals, of which the mTORC1 pathway is a well-recognized source. Here, we show that loss of Flcn, a novel AMPK-mTOR interacting molecule, causes severe cardiac hypertrophy with deregulated energy homeostasis leading to dilated cardiomyopathy in mice. We found that mTORC1 activity was upregulated in Flcn-deficient hearts, and that rapamycin treatment significantly reduced heart mass and ameliorated cardiac dysfunction. Phospho-AMP-activated protein kinase (AMPK)-alpha (T172) was reduced in Flcn-deficient hearts and nonresponsive to various stimulations including metformin and AICAR (5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide). ATP levels were elevated and mitochondrial function was increased in Flcn-deficient hearts, suggesting that excess energy resulting from up-regulated mitochondrial metabolism under Flcn deficiency might attenuate AMPK activation. Expression of Ppargc1a, a central molecule for mitochondrial metabolism, was increased in Flcn-deficient hearts and indeed, inactivation of Ppargc1a in Flcn-deficient hearts significantly reduced heart mass and prolonged survival. Ppargc1a inactivation restored phospho-AMPK-alpha levels and suppressed mTORC1 activity in Flcn-deficient hearts, suggesting that up-regulated Ppargc1a confers increased mitochondrial metabolism and excess energy, leading to inactivation of AMPK and activation of mTORC1. Rapamycin treatment did not affect the heart size of Flcn/Ppargc1a doubly inactivated hearts, further supporting the idea that Ppargc1a is the critical element leading to deregulation of the AMPK-mTOR-axis and resulting in cardiac hypertrophy under Flcn deficiency. These data support an important role for Flcn in cardiac homeostasis in the murine model.
Collapse
Affiliation(s)
- Yukiko Hasumi
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Masaya Baba
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hisashi Hasumi
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ying Huang
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Martin Lang
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rachel Reindorf
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hyoung-bin Oh
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sebastiano Sciarretta
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07101, USA, IRCCS Neuromed, Località Camerelle, 86077, Pozzilli (IS), Italy
| | | | | | - Michael D Schneider
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Robert S Adelstein
- Laboratory of Molecular Cardiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA and
| | - Laura S Schmidt
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07101, USA
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA,
| |
Collapse
|
8
|
Wasala NB, Bostick B, Yue Y, Duan D. Exclusive skeletal muscle correction does not modulate dystrophic heart disease in the aged mdx model of Duchenne cardiomyopathy. Hum Mol Genet 2013; 22:2634-41. [PMID: 23459935 DOI: 10.1093/hmg/ddt112] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is characterized by severe degeneration and necrosis of both skeletal and cardiac muscle. While many experimental therapies have shown great promise in treating skeletal muscle disease, an effective therapy for Duchenne cardiomyopathy remains a challenge in large animal models and human patients. The current views on cardiac consequences of skeletal muscle-centered therapy are controversial. Studies performed in young adult mdx mice (a mild DMD mouse model) have yielded opposing results. Since mdx mice do not develop dystrophic cardiomyopathy until ≥21 months of age, we reasoned that old mdx mice may represent a better model to assess the impact of skeletal muscle rescue on dystrophic heart disease. Here, we aged skeletal muscle-specific micro-dystrophin transgenic mdx mice to 23 months and examined the cardiac phenotype. As expected, transgenic mdx mice had minimal skeletal muscle disease and they also outperformed original mdx mice on treadmill running. On cardiac examination, the dystrophin-null heart of transgenic mdx mice displayed severe cardiomyopathy matching that of non-transgenic mdx mice. Specifically, both the strains showed similar heart fibrosis and cardiac function deterioration in systole and diastole. Cardiac output and ejection fraction were also equally compromised. Our results suggest that skeletal muscle rescue neither aggravates nor alleviates cardiomyopathy in aged mdx mice. These findings underscore the importance of treating both skeletal and cardiac muscles in DMD therapy.
Collapse
Affiliation(s)
- Nalinda B Wasala
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO 65212, USA
| | | | | | | |
Collapse
|
9
|
Circulation Research
Thematic Synopsis. Circ Res 2013. [DOI: 10.1161/circresaha.113.300982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|