1
|
Yu S, Qiao X, Yang Y, Gu X, Sun W, Liu X, Zhang D, Wang L, Song L. An ATP-binding cassette transporter G2 (CgABCG2) regulates the haemocyte proliferation by modulating the G1/S phase transition of cell cycle in oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2023; 136:108441. [PMID: 36403705 DOI: 10.1016/j.fsi.2022.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
ATP-binding cassette transporter G2 (ABCG2) is a half-transporter of the G subfamily in ATP-binding cassette transporters (ABC transporter), which is involved in the regulation of multidrug-resistant, cell cycle, and cell proliferation. In the present study, a homologue of ABCG2 (named as CgABCG2) with the conserved AAA domain and ABC2 membrane domain was identified from the Pacific oyster Crassostrea gigas. The open reading frame (ORF) of CgABCG2 was of 1956 bp encoding a predicted polypeptide of 652 amino acids, which shared 56.7%-65.7% sequence similarities with previously identified ABCG2s from other animals. The mRNA transcripts of CgABCG2 were detected in all the tested tissues with higher expression levels in gonad and haemocytes (19.31-fold and 11.23-fold of that in adductor muscle respectively, p < 0.05). CgABCG2 was mainly distributed on the cell membrane of the haemocytes with a partial distribution in the cytoplasm and nucleus. After Vibrio splendidus stimulation, the mRNA expression level of CgABCG2 in haemocytes was significantly up-regulated at 3 h and 6 h, which was 5.22-fold and 8.60-fold (p < 0.05) of that in control, respectively. After the expression of CgABCG2 was interfered by RNAi, the number of cells with EdU positive signals was reduced in both haemocytes and the potential hematopoietic sites. And the mRNA expression level of CgPCNA, CgGATA3, CgRunx, CgSCL and CgC-kit decreased significantly (p < 0.05), which were about 0.66-, 0.37-, 0.32-, 0.50-, and 0.50-fold of that in the negative control group, respectively. While the mRNA expression level of CgCDK2 increased significantly (1.84-fold to that in control, p < 0.05) and that of stem cell-related factor CgSOX2 did not change significantly in the si-CgABCG2 oysters. Moreover, the cell cycle of haemocytes was detected by flow cytometry, which was arrested at G0/G1 phase in the si-CgABCG2 oysters. All the results collectively suggested that CgABCG2 might involve the proliferation of haemocytes by regulating the expression of haematopoiesis related transcription factors and the G1/S phase transition of the cell cycle in oyster C. gigas.
Collapse
Affiliation(s)
- Simiao Yu
- School of Life Science, Liaoning Normal University, Dalian, 116029, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Ying Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Xiaoyu Gu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Wending Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Xiyang Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Dan Zhang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
2
|
Grigoreva TA, Sagaidak AV, Novikova DS, Tribulovich VG. Implication of ABC transporters in non-proliferative diseases. Eur J Pharmacol 2022; 935:175327. [DOI: 10.1016/j.ejphar.2022.175327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022]
|
3
|
Kyei B, Li L, Yang L, Zhan S, Zhang H. CDR1as/miRNAs-related regulatory mechanisms in muscle development and diseases. Gene 2020; 730:144315. [PMID: 31904497 DOI: 10.1016/j.gene.2019.144315] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/18/2022]
Abstract
Muscles are critical tissues for mammals due to their close association with movement and physiology. Myogenesis involves proliferation, differentiation, and fusion of myoblast, in which many well-known protein-coding genes, as well as linear non-coding RNAs such as microRNAs (miRNAs), are involved. Recently, circular RNAs (circRNAs) have attracted much attention since several circRNAs are known to play significant roles in muscle development and diseases through limited mechanisms, particularly through sponging miRNAs. Through advanced researches, increasing evidence suggests that Cerebellar Degeneration-Related protein 1 antisense (CDR1as) is an important circRNA that regulates the levels of mRNAs expression via competitively sponged miRNAs. Here, we reviewed the robust expression and base pairing relationships of CDR1as and several myogenic miRNAs, as well as these miRNAs and their targeted genes in muscles or some muscle-related diseases. These potential CDR1as/miRNAs/mRNA pathways will provide the basis for further research on the function of CDR1as in muscle development, and eventually extend the versatile roles of CDR1as in mammals.
Collapse
Affiliation(s)
- Bismark Kyei
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Liu Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Siyuan Zhan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongping Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
4
|
Gurusamy N, Alsayari A, Rajasingh S, Rajasingh J. Adult Stem Cells for Regenerative Therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 160:1-22. [PMID: 30470288 DOI: 10.1016/bs.pmbts.2018.07.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell therapy has been identified as an effective method to regenerate damaged tissue. Adult stem cells, also known as somatic stem cells or resident stem cells, are a rare population of undifferentiated cells, located within a differentiated organ, in a specialized structure, called a niche, which maintains the microenvironments that regulate the growth and development of adult stem cells. The adult stem cells are self-renewing, clonogenic, and multipotent in nature, and their main role is to maintain the tissue homeostasis. They can be activated to proliferate and differentiate into the required type of cells, upon the loss of cells or injury to the tissue. Adult stem cells have been identified in many tissues including blood, intestine, skin, muscle, brain, and heart. Extensive preclinical and clinical studies have demonstrated the structural and functional regeneration capabilities of these adult stem cells, such as bone marrow-derived mononuclear cells, hematopoietic stem cells, mesenchymal stromal/stem cells, resident adult stem cells, induced pluripotent stem cells, and umbilical cord stem cells. In this review, we focus on the human therapies, utilizing adult stem cells for their regenerative capabilities in the treatment of cardiac, brain, pancreatic, and eye disorders.
Collapse
Affiliation(s)
- Narasimman Gurusamy
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Sheeja Rajasingh
- Department of Internal Medicine, University of Kansas Medical Center, Kansas, KS, United States
| | - Johnson Rajasingh
- Department of Internal Medicine, University of Kansas Medical Center, Kansas, KS, United States.
| |
Collapse
|
5
|
Mochizuki M, Lorenz V, Ivanek R, Della Verde G, Gaudiello E, Marsano A, Pfister O, Kuster GM. Polo-Like Kinase 2 is Dynamically Regulated to Coordinate Proliferation and Early Lineage Specification Downstream of Yes-Associated Protein 1 in Cardiac Progenitor Cells. J Am Heart Assoc 2017; 6:e005920. [PMID: 29066438 PMCID: PMC5721832 DOI: 10.1161/jaha.117.005920] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/01/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Recent studies suggest that adult cardiac progenitor cells (CPCs) can produce new cardiac cells. Such cell formation requires an intricate coordination of progenitor cell proliferation and commitment, but the molecular cues responsible for this regulation in CPCs are ill defined. METHODS AND RESULTS Extracellular matrix components are important instructors of cell fate. Using laminin and fibronectin, we induced two slightly distinct CPC phenotypes differing in proliferation rate and commitment status and analyzed the early transcriptomic response to CPC adhesion (<2 hours). Ninety-four genes were differentially regulated on laminin versus fibronectin, consisting of mostly downregulated genes that were enriched for Yes-associated protein (YAP) conserved signature and TEA domain family member 1 (TEAD1)-related genes. This early gene regulation was preceded by the rapid cytosolic sequestration and degradation of YAP on laminin. Among the most strongly regulated genes was polo-like kinase 2 (Plk2). Plk2 expression depended on YAP stability and was enhanced in CPCs transfected with a nuclear-targeted mutant YAP. Phenotypically, the early downregulation of Plk2 on laminin was succeeded by lower cell proliferation, enhanced lineage gene expression (24 hours), and facilitated differentiation (3 weeks) compared with fibronectin. Finally, overexpression of Plk2 enhanced CPC proliferation and knockdown of Plk2 induced the expression of lineage genes. CONCLUSIONS Plk2 acts as coordinator of cell proliferation and early lineage commitment in CPCs. The rapid downregulation of Plk2 on YAP inactivation marks a switch towards enhanced commitment and facilitated differentiation. These findings link early gene regulation to cell fate and provide novel insights into how CPC proliferation and differentiation are orchestrated.
Collapse
Affiliation(s)
- Michika Mochizuki
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Vera Lorenz
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Robert Ivanek
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Giacomo Della Verde
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Emanuele Gaudiello
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Anna Marsano
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Otmar Pfister
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
- Division of Cardiology, University Hospital Basel, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Gabriela M Kuster
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
- Division of Cardiology, University Hospital Basel, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
6
|
Psaltis PJ, Schwarz N, Toledo-Flores D, Nicholls SJ. Cellular Therapy for Heart Failure. Curr Cardiol Rev 2016; 12:195-215. [PMID: 27280304 PMCID: PMC5011188 DOI: 10.2174/1573403x12666160606121858] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/18/2015] [Accepted: 12/31/1969] [Indexed: 12/12/2022] Open
Abstract
The pathogenesis of cardiomyopathy and heart failure (HF) is underpinned by complex changes at subcellular, cellular and extracellular levels in the ventricular myocardium. For all of the gains that conventional treatments for HF have brought to mortality and morbidity, they do not adequately address the loss of cardiomyocyte numbers in the remodeling ventricle. Originally conceived to address this problem, cellular transplantation for HF has already gone through several stages of evolution over the past two decades. Various cell types and delivery routes have been implemented to positive effect in preclinical models of ischemic and nonischemic cardiomyopathy, with pleiotropic benefits observed in terms of myocardial remodeling, systolic and diastolic performance, perfusion, fibrosis, inflammation, metabolism and electrophysiology. To a large extent, these salubrious effects are now attributed to the indirect, paracrine capacity of transplanted stem cells to facilitate endogenous cardiac repair processes. Promising results have also followed in early phase human studies, although these have been relatively modest and somewhat inconsistent. This review details the preclinical and clinical evidence currently available regarding the use of pluripotent stem cells and adult-derived progenitor cells for cardiomyopathy and HF. It outlines the important lessons that have been learned to this point in time, and balances the promise of this exciting field against the key challenges and questions that still need to be addressed at all levels of research, to ensure that cell therapy realizes its full potential by adding to the armamentarium of HF management.
Collapse
Affiliation(s)
- Peter J Psaltis
- Co-Director of Vascular Research Centre, Heart Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, South Australia, Australia 5000.
| | | | | | | |
Collapse
|
7
|
Yellamilli A, van Berlo JH. The Role of Cardiac Side Population Cells in Cardiac Regeneration. Front Cell Dev Biol 2016; 4:102. [PMID: 27679798 PMCID: PMC5020051 DOI: 10.3389/fcell.2016.00102] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/29/2016] [Indexed: 12/12/2022] Open
Abstract
The heart has a limited ability to regenerate. It is important to identify therapeutic strategies that enhance cardiac regeneration in order to replace cardiomyocytes lost during the progression of heart failure. Cardiac progenitor cells are interesting targets for new regenerative therapies because they are self-renewing, multipotent cells located in the heart. Cardiac side population cells (cSPCs), the first cardiac progenitor cells identified in the adult heart, have the ability to differentiate into cardiomyocytes, endothelial cells, smooth muscle cells, and fibroblasts. They become activated in response to cardiac injury and transplantation of cSPCs into the injured heart improves cardiac function. In this review, we will discuss the current literature on the progenitor cell properties and therapeutic potential of cSPCs. This body of work demonstrates the great promise cSPCs hold as targets for new regenerative strategies.
Collapse
Affiliation(s)
- Amritha Yellamilli
- Stem Cell Institute, University of MinnesotaMinneapolis, MN, USA; Lillehei Heart Institute, University of MinnesotaMinneapolis, MN, USA; Department of Integrative Biology and Physiology, University of MinnesotaMinneapolis, MN, USA
| | - Jop H van Berlo
- Stem Cell Institute, University of MinnesotaMinneapolis, MN, USA; Lillehei Heart Institute, University of MinnesotaMinneapolis, MN, USA; Department of Integrative Biology and Physiology, University of MinnesotaMinneapolis, MN, USA; Department of Medicine/Cardiology, University of MinnesotaMinneapolis, MN, USA
| |
Collapse
|
8
|
Apáti Á, Szebényi K, Erdei Z, Várady G, Orbán TI, Sarkadi B. The importance of drug transporters in human pluripotent stem cells and in early tissue differentiation. Expert Opin Drug Metab Toxicol 2015; 12:77-92. [DOI: 10.1517/17425255.2016.1121382] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Qiu Y, Bayomy AF, Gomez MV, Bauer M, Du P, Yang Y, Zhang X, Liao R. A role for matrix stiffness in the regulation of cardiac side population cell function. Am J Physiol Heart Circ Physiol 2015; 308:H990-7. [PMID: 25724498 DOI: 10.1152/ajpheart.00935.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/23/2015] [Indexed: 11/22/2022]
Abstract
The mechanical properties of the local microenvironment may have important influence on the fate and function of adult tissue progenitor cells, altering the regenerative process. This is particularly critical following a myocardial infarction, in which the normal, compliant myocardial tissue is replaced with fibrotic, stiff scar tissue. In this study, we examined the effects of matrix stiffness on adult cardiac side population (CSP) progenitor cell behavior. Ovine and murine CSP cells were isolated and cultured on polydimethylsiloxane substrates, replicating the elastic moduli of normal and fibrotic myocardium. Proliferation capacity and cell cycling were increased in CSP cells cultured on the stiff substrate with an associated reduction in cardiomyogeneic differentiation and accelerated cell ageing. In addition, culture on stiff substrate stimulated upregulation of extracellular matrix and adhesion proteins gene expression in CSP cells. Collectively, we demonstrate that microenvironment properties, including matrix stiffness, play a critical role in regulating progenitor cell functions of endogenous resident CSP cells. Understanding the effects of the tissue microenvironment on resident cardiac progenitor cells is a critical step toward achieving functional cardiac regeneration.
Collapse
Affiliation(s)
- Yiling Qiu
- Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ahmad F Bayomy
- Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Department of Orthopedics and Sports Medicine, School of Medicine, University of Washington, Seattle, Washington; and
| | - Marcus V Gomez
- Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Michael Bauer
- Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ping Du
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts
| | - Yanfei Yang
- Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Xin Zhang
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts
| | - Ronglih Liao
- Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts;
| |
Collapse
|
10
|
Zheng D, Liao S, Zhu G, Luo G, Xiao S, He J, Pei Z, Li G, Zhou Y. CD38 is a putative functional marker for side population cells in human nasopharyngeal carcinoma cell lines. Mol Carcinog 2015; 55:300-11. [PMID: 25630761 DOI: 10.1002/mc.22279] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 11/21/2014] [Accepted: 12/05/2014] [Indexed: 11/09/2022]
Abstract
Cancer stem cells (CSCs) are thought to be responsible for cancer progression and therapeutic resistance but identification of this subpopulation requires selective markers. Fortunately, side population (SP) cells analysis brings a novel method to CSCs study. In this study, we identified SP cells, which are demonstrated rich in CSCs, in four nasopharyngeal carcinoma (NPC) cell lines. We investigated SP cells from HK-1 NPC cell line and showed CSCs characteristics in this subpopulation. SP cells displayed greater proliferation and invasion and expressed high levels of CSCs markers than NSP cells. Furthermore, our microRNA microarray analysis of SP versus NSP cells revealed that CD38-related miRNAs were down-regulated in SP cell, but the mRNA and protein level of CD38 were highly expressed in SP cells. We further searched for molecules interacting with CD38 and identified ZAP70, which was also well expressed in SP cells at both mRNA and protein levels. Our results uncover a CD38 pathway that may regulate the proliferation and migration of SP cells from HK-1 NPC cell line.
Collapse
Affiliation(s)
- Danwei Zheng
- Human Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Shan Liao
- Human Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Guangchao Zhu
- Human Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Gengqiu Luo
- Department of Pathology, Basic School of Medicine, Central South University, Changsha, Hunan Province, P. R. China
| | - Songshu Xiao
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Junyu He
- Human Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Zhen Pei
- Human Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Guiyuan Li
- Human Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Yanhong Zhou
- Human Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| |
Collapse
|
11
|
Natarajan K, Baer MR, Ross DD. Role of Breast Cancer Resistance Protein (BCRP, ABCG2) in Cancer Outcomes and Drug Resistance. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2015. [DOI: 10.1007/978-3-319-09801-2_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Williams R. Circulation Research
“In This Issue” Anthology. Circ Res 2014. [DOI: 10.1161/res.0000000000000042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Goichberg P, Chang J, Liao R, Leri A. Cardiac stem cells: biology and clinical applications. Antioxid Redox Signal 2014; 21:2002-17. [PMID: 24597850 PMCID: PMC4208604 DOI: 10.1089/ars.2014.5875] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Heart disease is the primary cause of death in the industrialized world. Cardiac failure is dictated by an uncompensated reduction in the number of viable and fully functional cardiomyocytes. While current pharmacological therapies alleviate the symptoms associated with cardiac deterioration, heart transplantation remains the only therapy for advanced heart failure. Therefore, there is a pressing need for novel therapeutic modalities. Cell-based therapies involving cardiac stem cells (CSCs) constitute a promising emerging approach for the replenishment of the lost tissue and the restoration of cardiac contractility. RECENT ADVANCES CSCs reside in the adult heart and govern myocardial homeostasis and repair after injury by producing new cardiomyocytes and vascular structures. In the last decade, different classes of immature cells expressing distinct stem cell markers have been identified and characterized in terms of their growth properties, differentiation potential, and regenerative ability. Phase I clinical trials, employing autologous CSCs in patients with ischemic cardiomyopathy, are being completed with encouraging results. CRITICAL ISSUES Accumulating evidence concerning the role of CSCs in heart regeneration imposes a reconsideration of the mechanisms of cardiac aging and the etiology of heart failure. Deciphering the molecular pathways that prevent activation of CSCs in their environment and understanding the processes that affect CSC survival and regenerative function with cardiac pathologies, commonly accompanied by alterations in redox conditions, are of great clinical importance. FUTURE DIRECTIONS Further investigations of CSC biology may be translated into highly effective and novel therapeutic strategies aiming at the enhancement of the endogenous healing capacity of the diseased heart.
Collapse
Affiliation(s)
- Polina Goichberg
- Departments of Anesthesia and Medicine, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts
| | | | | | | |
Collapse
|
14
|
Tang Y, Hou J, Li G, Song Z, Li X, Yang C, Liu W, Hu Y, Xu Y. ABCG2 regulates the pattern of self-renewing divisions in cisplatin-resistant non-small cell lung cancer cell lines. Oncol Rep 2014; 32:2168-74. [PMID: 25200103 DOI: 10.3892/or.2014.3470] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/22/2014] [Indexed: 11/06/2022] Open
Abstract
Overexpression of ABCG2 is considered a major mechanism of cancer drug resistance. Recent studies have shown that ABCG2 can regulate the switch between symmetric and asymmetric cell division in adult stem cells; however, the relationship between ABCG2 and cell division in drug-resistant cancer cells remains to be determined. In the present study, we demonstrated that ABCG2 is involved in the cell division of drug-resistant cancer cells. We first established drug-resistant H460 and A549 cell lines by repeated exposure to cisplatin and found that the expression of ABCG2 in these cell lines was significantly increased. As evidenced by PKH-26 staining, these drug-resistant cell lines favored symmetric division, which differed from the asymmetric division of the parental cells. Furthermore, we established stable ABCG2‑overexpressing and stable shRNA-ABCG2‑knockdown cell lines to evaluate the potential role of ABCG2 in cancer cell division. The results showed that overexpression of ABCG2 in A549 parental cells significantly increased the proportion of symmetric division, whereas knockdown of ABCG2 in drug-resistant A549 cells significantly increased the proportion of asymmetric division. Taken together, our findings suggest that ABCG2 is involved in the modulation of cancer drug resistance by regulating the pattern of cell division. The present study provides novel insight into the role of ABCG2 in cancer treatment resistance.
Collapse
Affiliation(s)
- Ying Tang
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Jingming Hou
- Department of Orthopedics, Chinese PLA Beijing Army General Hospital, Beijing 100700, P.R. China
| | - Guanghui Li
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Zongchang Song
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Xiaojing Li
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Cui Yang
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Wenying Liu
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Yide Hu
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Yu Xu
- Institute of Respiratory Disease, Xinqiao Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
15
|
Jung J, Choi JH, Lee Y, Park JW, Oh IH, Hwang SG, Kim KS, Kim GJ. Human placenta-derived mesenchymal stem cells promote hepatic regeneration in CCl4 -injured rat liver model via increased autophagic mechanism. Stem Cells 2014; 31:1584-96. [PMID: 23592412 DOI: 10.1002/stem.1396] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 03/11/2013] [Accepted: 03/19/2013] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) have great potential for cell therapy in regenerative medicine, including liver disease. Even though ongoing research is dedicated to the goal of bringing MSCs to clinical applications, further understanding of the complex underlying mechanisms is required. Autophagy, a type II programmed cell death, controls cellular recycling through the lysosomal system in damaged cells or tissues. However, it is still unknown whether MSCs can trigger autophagy to enhance regeneration and/or to provide a therapeutic effect as cellular survival promoters. We therefore investigated autophagy's activation in carbon tetrachloride (CCl4 )-injured rat liver following transplantation with chorionic plate-derived MSCs (CP-MSCs) isolated from placenta. The expression markers for apoptosis, autophagy, cell survival, and liver regeneration were analyzed. Whereas caspase 3/7 activities were reduced (p < .05), the expression levels of hypoxia-inducible factor-1α (HIF-1α) and factors for autophagy, survival, and regeneration were significantly increased by CP-MSCs transplantation. Decreased necrotic cells (p < .05) and increased autophagic signals (p < .005) were observed in CCl4 -treated primary rat hepatocytes during in vitro coculture with CP-MSCs. Furthermore, the upregulation of HIF-1α promotes the regeneration of damaged hepatic cells through an autophagic mechanism marked by increased levels of light chain 3 II (LC 3II). These results suggest that the administration of CP-MSCs promotes repair by systemically concomitant mechanisms involving HIF-1α and autophagy. These findings provide further understanding of the mechanisms involved in these processes and will help develop new cell-based therapeutic strategies for regenerative medicine in liver disease.
Collapse
Affiliation(s)
- Jieun Jung
- Department of Biomedical Science, CHA University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Wang H, Sridhar B, Leinwand LA, Anseth KS. Characterization of cell subpopulations expressing progenitor cell markers in porcine cardiac valves. PLoS One 2013; 8:e69667. [PMID: 23936071 PMCID: PMC3720586 DOI: 10.1371/journal.pone.0069667] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/11/2013] [Indexed: 11/21/2022] Open
Abstract
Valvular interstitial cells (VICs) are the main population of cells found in cardiac valves. These resident fibroblastic cells play important roles in maintaining proper valve function, and their dysregulation has been linked to disease progression in humans. Despite the critical functions of VICs, their cellular composition is still not well defined for humans and other mammals. Given the limited availability of healthy human valves and the similarity in valve structure and function between humans and pigs, we characterized porcine VICs (pVICs) based on expression of cell surface proteins and sorted a specific subpopulation of pVICs to study its functions. We found that small percentages of pVICs express the progenitor cell markers ABCG2 (~5%), NG2 (~5%) or SSEA-4 (~7%), whereas another subpopulation (~5%) expresses OB–CDH, a type of cadherin expressed by myofibroblasts or osteo-progenitors. pVICs isolated from either aortic or pulmonary valves express most of these protein markers at similar levels. Interestingly, OB–CDH, NG2 and SSEA-4 all label distinct valvular subpopulations relative to each other; however, NG2 and ABCG2 are co-expressed in the same cells. ABCG2+ cells were further characterized and found to deposit more calcified matrix than ABCG2- cells upon osteogenic induction, suggesting that they may be involved in the development of osteogenic VICs during valve pathology. Cell profiling based on flow cytometry and functional studies with sorted primary cells provide not only new and quantitative information about the cellular composition of porcine cardiac valves, but also contribute to our understanding of how a subpopulation of valvular cells (ABCG2+ cells) may participate in tissue repair and disease progression.
Collapse
Affiliation(s)
- Huan Wang
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
- BioFrontiers Institute, University of Colorado, Boulder, Colorado, United States of America
| | - Balaji Sridhar
- BioFrontiers Institute, University of Colorado, Boulder, Colorado, United States of America
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado, United States of America
| | - Leslie A. Leinwand
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
- BioFrontiers Institute, University of Colorado, Boulder, Colorado, United States of America
| | - Kristi S. Anseth
- BioFrontiers Institute, University of Colorado, Boulder, Colorado, United States of America
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado, United States of America
- Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado, United States of America
- *
| |
Collapse
|