1
|
Bocancia-Mateescu LA, Stan D, Mirica AC, Ghita MG, Stan D, Ruta LL. Nanobodies as Diagnostic and Therapeutic Tools for Cardiovascular Diseases (CVDs). Pharmaceuticals (Basel) 2023; 16:863. [PMID: 37375810 PMCID: PMC10301117 DOI: 10.3390/ph16060863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The aim of this review is to summarize some of the most recent work in the field of cardiovascular disease (CVD) diagnosis and therapy, focusing mainly on the role of nanobodies in the development of non-invasive imaging methods, diagnostic devices, and advanced biotechnological therapy tools. In the context of the increased number of people suffering from CVDs due to a variety of factors such as sedentariness, poor nutrition, stress, and smoking, there is an urgent need for new and improved diagnostic and therapeutic methods. Nanobodies can be easily produced in prokaryotes, lower eukaryotes, and plant and mammalian cells, and offer great advantages. In the diagnosis domain, they are mainly used as labeled probes that bind to certain surface receptors or other target molecules and give important information on the severity and extent of atherosclerotic lesions, using imaging methods such as contrast-enhanced ultrasound molecular imaging (CEUMI), positron emission tomography (PET), single-photon emission computed tomography coupled with computed tomography (SPECT/CT), and PET/CT. As therapy tools, nanobodies have been used either for transporting drug-loaded vesicles to specific targets or as inhibitors for certain enzymes and receptors, demonstrated to be involved in various CVDs.
Collapse
Affiliation(s)
| | - Dana Stan
- DDS Diagnostic, 7 Vulcan Judetu, 031427 Bucharest, Romania; (L.-A.B.-M.); (D.S.); (A.-C.M.); (M.G.G.); (D.S.)
- Medicine Doctoral School, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Andreea-Cristina Mirica
- DDS Diagnostic, 7 Vulcan Judetu, 031427 Bucharest, Romania; (L.-A.B.-M.); (D.S.); (A.-C.M.); (M.G.G.); (D.S.)
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1–7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Miruna Gabriela Ghita
- DDS Diagnostic, 7 Vulcan Judetu, 031427 Bucharest, Romania; (L.-A.B.-M.); (D.S.); (A.-C.M.); (M.G.G.); (D.S.)
| | - Diana Stan
- DDS Diagnostic, 7 Vulcan Judetu, 031427 Bucharest, Romania; (L.-A.B.-M.); (D.S.); (A.-C.M.); (M.G.G.); (D.S.)
| | - Lavinia Liliana Ruta
- Faculty of Chemistry, University of Bucharest, 90-92 Panduri Street, 050663 Bucharest, Romania
| |
Collapse
|
2
|
Küppers J, Kürpig S, Bundschuh RA, Essler M, Lütje S. Radiolabeling Strategies of Nanobodies for Imaging Applications. Diagnostics (Basel) 2021; 11:1530. [PMID: 34573872 PMCID: PMC8471529 DOI: 10.3390/diagnostics11091530] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/30/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023] Open
Abstract
Nanobodies are small recombinant antigen-binding fragments derived from camelid heavy-chain only antibodies. Due to their compact structure, pharmacokinetics of nanobodies are favorable compared to full-size antibodies, allowing rapid accumulation to their targets after intravenous administration, while unbound molecules are quickly cleared from the circulation. In consequence, high signal-to-background ratios can be achieved, rendering radiolabeled nanobodies high-potential candidates for imaging applications in oncology, immunology and specific diseases, for instance in the cardiovascular system. In this review, a comprehensive overview of central aspects of nanobody functionalization and radiolabeling strategies is provided.
Collapse
Affiliation(s)
- Jim Küppers
- Department of Nuclear Medicine, University Hospital Bonn, 53127 Bonn, Germany; (S.K.); (R.A.B.); (M.E.); (S.L.)
| | | | | | | | | |
Collapse
|
5
|
Reimann C, Brangsch J, Colletini F, Walter T, Hamm B, Botnar RM, Makowski MR. Molecular imaging of the extracellular matrix in the context of atherosclerosis. Adv Drug Deliv Rev 2017; 113:49-60. [PMID: 27639968 DOI: 10.1016/j.addr.2016.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/01/2016] [Accepted: 09/07/2016] [Indexed: 12/25/2022]
Abstract
This review summarizes the current status of molecular imaging of the extracellular matrix (ECM) in the context of atherosclerosis. Apart from cellular components, the ECM of the atherosclerotic plaque plays a relevant role during the initiation of atherosclerosis and its' subsequent progression. Important structural and signaling components of the ECM include elastin, collagen and fibrin. However, the ECM not only plays a structural role in the arterial wall but also interacts with different cell types and has important biological signaling functions. Molecular imaging of the ECM has emerged as a new diagnostic tool to characterize biological aspects of atherosclerotic plaques, which cannot be characterized by current clinically established imaging techniques, such as X-ray angiography. Different types of molecular probes can be detected in vivo by imaging modalities such as magnetic resonance imaging (MRI), positron emission tomography (PET) and single photon emission computed tomography (SPECT). The modality specific signaling component of the molecular probe provides information about its spatial location and local concentration. The successful introduction of molecular imaging into clinical practice and guidelines could open new pathways for an earlier detection of disease processes and a better understanding of the disease state on a biological level. Quantitative in vivo molecular parameters could also contribute to the development and evaluation of novel cardiovascular therapeutic interventions and the assessment of response to treatment.
Collapse
Affiliation(s)
| | | | | | - Thula Walter
- Department of Radiology, Charité, Berlin, Germany
| | - Bernd Hamm
- Department of Radiology, Charité, Berlin, Germany
| | - Rene M Botnar
- King's College London, Division of Imaging Sciences, United Kingdom; Wellcome Trust and EPSRC Medical Engineering Center, United Kingdom; BHF Centre of Excellence, King's College London, London, United Kingdom; NIHR Biomedical Research Centre, King's College London, London, United Kingdom
| | - Marcus R Makowski
- Department of Radiology, Charité, Berlin, Germany; King's College London, Division of Imaging Sciences, United Kingdom.
| |
Collapse
|
6
|
Posokhov Y. Fluorescent probes sensitive to changes in the cholesterol-to-phospholipids molar ratio in human platelet membranes during atherosclerosis. Methods Appl Fluoresc 2016; 4:034013. [PMID: 28355159 DOI: 10.1088/2050-6120/4/3/034013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Environment-sensitive fluorescent probes were used for the spectroscopic visualization of pathological changes in human platelet membranes during cerebral atherosclerosis. It has been estimated that the ratiometric probes 2-(2'-hydroxyphenyl)-5-phenyl-1,3,4-oxadiazole and 2-phenyl-phenanthr[9,10]oxazole can detect changes in the cholesterol-to-phospholipids molar ratio in human platelet membranes during the disease.
Collapse
Affiliation(s)
- Yevgen Posokhov
- Institute of Chemistry, V.N. Karazin Kharkiv National University, Kharkiv 61022, Ukraine
| |
Collapse
|
7
|
Abstract
Molecular imaging offers great potential for noninvasive visualization and quantitation of the cellular and molecular components involved in atherosclerotic plaque stability. In this chapter, we review emerging molecular imaging modalities and approaches for quantitative, noninvasive detection of early biological processes in atherogenesis, including vascular endothelial permeability, endothelial adhesion molecule up-regulation, and macrophage accumulation, with special emphasis on mouse models. We also highlight a number of targeted imaging nanomaterials for assessment of advanced atherosclerotic plaques, including extracellular matrix degradation, proteolytic enzyme activity, and activated platelets using mouse models of atherosclerosis. The potential for clinical translation of molecular imaging nanomaterials for assessment of atherosclerotic plaque biology, together with multimodal approaches is also discussed.
Collapse
|
8
|
Bala G, Blykers A, Xavier C, Descamps B, Broisat A, Ghezzi C, Fagret D, Van Camp G, Caveliers V, Vanhove C, Lahoutte T, Droogmans S, Cosyns B, Devoogdt N, Hernot S. Targeting of vascular cell adhesion molecule-1 by 18F-labelled nanobodies for PET/CT imaging of inflamed atherosclerotic plaques. Eur Heart J Cardiovasc Imaging 2016; 17:1001-8. [PMID: 26800768 DOI: 10.1093/ehjci/jev346] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/12/2015] [Indexed: 12/30/2022] Open
Abstract
AIMS Positron emission tomography-computed tomography (PET-CT) is a highly sensitive clinical molecular imaging modality to study atherosclerotic plaque biology. Therefore, we sought to develop a new PET tracer, targeting vascular cell adhesion molecule (VCAM)-1 and validate it in a murine atherosclerotic model as a potential agent to detect atherosclerotic plaque inflammation. METHODS AND RESULTS The anti-VCAM-1 nanobody (Nb) (cAbVCAM-1-5) was radiolabelled with Fluorine-18 ((18)F), with a radiochemical purity of >98%. In vitro cell-binding studies showed specific binding of the tracer to VCAM-1 expressing cells. In vivo PET/CT imaging of ApoE(-/-) mice fed a Western diet or control mice was performed at 2h30 post-injection of [(18)F]-FB-cAbVCAM-1-5 or (18)F-control Nb. Additionally, plaque uptake in different aorta segments was evaluated ex vivo based on extent of atherosclerosis. Atherosclerotic lesions in the aortic arch of ApoE(-/-) mice, injected with [(18)F]-FB-anti-VCAM-1 Nb, were successfully identified using PET/CT imaging, while background signal was observed in the control groups. These results were confirmed by ex vivo analyses where uptake of [(18)F]-FB-cAbVCAM-1-5 in atherosclerotic lesions was significantly higher compared with control groups. Moreover, uptake increased with the increasing extent of atherosclerosis (Score 0: 0.68 ± 0.10, Score 1: 1.18 ± 0.36, Score 2: 1.49 ± 0.37, Score 3: 1.48 ± 0.38%ID/g, Spearman's r(2) = 0.675, P < 0.0001). High lesion-to-heart, lesion-to-blood, and lesion-to-control vessel ratios were obtained (12.4 ± 0.4, 3.3 ± 0.4, and 3.1 ± 0.6, respectively). CONCLUSION The [(18)F]-FB-anti-VCAM-1 Nb, cross-reactive for both mouse and human VCAM-1, allows non-invasive PET/CT imaging of VCAM-1 expression in atherosclerotic plaques in a murine model and may represent an attractive tool for imaging vulnerable atherosclerotic plaques in patients.
Collapse
Affiliation(s)
- Gezim Bala
- Centrum voor Hart-en Vaatziekten (CHVZ), UZ Brussel, Brussels, Belgium In Vivo Cellular and Molecular Imaging (ICMI), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels B-1090, Belgium
| | - Anneleen Blykers
- In Vivo Cellular and Molecular Imaging (ICMI), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels B-1090, Belgium
| | - Catarina Xavier
- In Vivo Cellular and Molecular Imaging (ICMI), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels B-1090, Belgium
| | - Benedicte Descamps
- iMinds-IBiTech-MEDISIP, Department of Electronics and Information Systems, Universiteit Gent, Ghent, Belgium
| | - Alexis Broisat
- Radiopharmaceutiques Biocliniques, INSERM, 1039-Université de Grenoble, La Tronche, France
| | - Catherine Ghezzi
- Radiopharmaceutiques Biocliniques, INSERM, 1039-Université de Grenoble, La Tronche, France
| | - Daniel Fagret
- Radiopharmaceutiques Biocliniques, INSERM, 1039-Université de Grenoble, La Tronche, France
| | - Guy Van Camp
- In Vivo Cellular and Molecular Imaging (ICMI), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels B-1090, Belgium
| | - Vicky Caveliers
- In Vivo Cellular and Molecular Imaging (ICMI), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels B-1090, Belgium Nuclear Medicine Department, UZ Brussel, Brussels, Belgium
| | - Christian Vanhove
- iMinds-IBiTech-MEDISIP, Department of Electronics and Information Systems, Universiteit Gent, Ghent, Belgium
| | - Tony Lahoutte
- In Vivo Cellular and Molecular Imaging (ICMI), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels B-1090, Belgium Nuclear Medicine Department, UZ Brussel, Brussels, Belgium
| | - Steven Droogmans
- Centrum voor Hart-en Vaatziekten (CHVZ), UZ Brussel, Brussels, Belgium In Vivo Cellular and Molecular Imaging (ICMI), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels B-1090, Belgium
| | - Bernard Cosyns
- Centrum voor Hart-en Vaatziekten (CHVZ), UZ Brussel, Brussels, Belgium In Vivo Cellular and Molecular Imaging (ICMI), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels B-1090, Belgium
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging (ICMI), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels B-1090, Belgium
| | - Sophie Hernot
- In Vivo Cellular and Molecular Imaging (ICMI), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels B-1090, Belgium
| |
Collapse
|
9
|
Chakravarty R, Goel S, Cai W. Nanobody: the "magic bullet" for molecular imaging? Am J Cancer Res 2014; 4:386-98. [PMID: 24578722 PMCID: PMC3936291 DOI: 10.7150/thno.8006] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/07/2014] [Indexed: 12/13/2022] Open
Abstract
Molecular imaging involves the non-invasive investigation of biological processes in vivo at the cellular and molecular level, which can play diverse roles in better understanding and treatment of various diseases. Recently, single domain antigen-binding fragments known as 'nanobodies' were bioengineered and tested for molecular imaging applications. Small molecular size (~15 kDa) and suitable configuration of the complementarity determining regions (CDRs) of nanobodies offer many desirable features suitable for imaging applications, such as rapid targeting and fast blood clearance, high solubility, high stability, easy cloning, modular nature, and the capability of binding to cavities and difficult-to-access antigens. Using nanobody-based probes, several imaging techniques such as radionuclide-based, optical and ultrasound have been employed for visualization of target expression in various disease models. This review summarizes the recent developments in the use of nanobody-based probes for molecular imaging applications. The preclinical data reported to date are quite promising, and it is expected that nanobody-based molecular imaging agents will play an important role in the diagnosis and management of various diseases.
Collapse
|