1
|
Serpooshan V, Liu YH, Buikema JW, Galdos FX, Chirikian O, Paige S, Venkatraman S, Kumar A, Rawnsley DR, Huang X, Pijnappels DA, Wu SM. Nkx2.5+ Cardiomyoblasts Contribute to Cardiomyogenesis in the Neonatal Heart. Sci Rep 2017; 7:12590. [PMID: 28974782 PMCID: PMC5626718 DOI: 10.1038/s41598-017-12869-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 09/15/2017] [Indexed: 01/26/2023] Open
Abstract
During normal lifespan, the mammalian heart undergoes limited renewal of cardiomyocytes. While the exact mechanism for this renewal remains unclear, two possibilities have been proposed: differentiated myocyte replication and progenitor/immature cell differentiation. This study aimed to characterize a population of cardiomyocyte precursors in the neonatal heart and to determine their requirement for cardiac development. By tracking the expression of an embryonic Nkx2.5 cardiac enhancer, we identified cardiomyoblasts capable of differentiation into striated cardiomyocytes in vitro. Genome-wide expression profile of neonatal Nkx2.5+ cardiomyoblasts showed the absence of sarcomeric gene and the presence of cardiac transcription factors. To determine the lineage contribution of the Nkx2.5+ cardiomyoblasts, we generated a doxycycline suppressible Cre transgenic mouse under the regulation of the Nkx2.5 enhancer and showed that neonatal Nkx2.5+ cardiomyoblasts mature into cardiomyocytes in vivo. Ablation of neonatal cardiomyoblasts resulted in ventricular hypertrophy and dilation, supporting a functional requirement of the Nkx2.5+ cardiomyoblasts. This study provides direct lineage tracing evidence that a cardiomyoblast population contributes to cardiogenesis in the neonatal heart. The cell population identified here may serve as a promising therapeutic for pediatric cardiac regeneration.
Collapse
Affiliation(s)
- Vahid Serpooshan
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuan-Hung Liu
- Cardiovascular Research Center and Department of Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA.,Division of Cardiology, Department of Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA.,Section of Cardiology, Cardiovascular Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Jan W Buikema
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.,Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Francisco X Galdos
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Orlando Chirikian
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.,Biology Program, California State University Channel Islands, Camarillo, CA, USA
| | - Sharon Paige
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.,Department of Pediatrics, Division of Pediatric Cardiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sneha Venkatraman
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.,Biology Program, California State University Channel Islands, Camarillo, CA, USA
| | - Anusha Kumar
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - David R Rawnsley
- Cardiovascular Research Center and Department of Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA
| | - Xiaojing Huang
- Cardiovascular Research Center and Department of Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA
| | - Daniël A Pijnappels
- Cardiovascular Research Center and Department of Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA.,Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sean M Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Medicine, Division of Cardiovascular Medicine, and Stanford University School of Medicine, Stanford, CA, USA. .,Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
2
|
Rusu MC, Vrapciu AD, Hostiuc S, Hariga CS. Brown adipocytes, cardiac protection and a common adipo- and myogenic stem precursor in aged human hearts. Med Hypotheses 2015; 85:212-4. [PMID: 25956736 DOI: 10.1016/j.mehy.2015.04.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 04/18/2015] [Accepted: 04/25/2015] [Indexed: 12/25/2022]
Abstract
New data on adult stem cells (ASCs) are continuously added by research for use in regenerative medicine. However organ-specific ASC markers are incompletely explored. It was demonstrated that in non-cardiac brown adipose tissue (BAT) CD133+ cells differentiate in cardiomyocytes, and such BAT-derived cells induce bone marrow-derived cells into cardiomyocytes, thus being a promising source for cardiac stem cell therapy. During embryogenesis the subepicardial fat derives from BAT. Although it was not specifically investigated in human adult or aged hearts, it is actually known that metabolically active BAT can be found in many adult humans, is related to antiobesity effects, and it may derive from stem/progenitor cells. Stro-1 can safely identify in situ cardiac stem cells (CSCs) with myogenic and adipogenic potential. It was therefore raised the hypothesis of subepicardial differentiation of CSCs in BAT in adult/aged hearts, which could be viewed, such as in infants, as a mechanism of protection. This could be determined by the reactivation of an embryologic differentiation pattern in which brown adipocytes and muscle cells derive from a common stem ancestor. Such quiescent common stem ancestors could be suggested in adult, or aged, human hearts, when subepicardial BAT is found, and if a Stro-1+/CD133+/Isl-1+ phenotype of CSCs is determined.
Collapse
Affiliation(s)
- M C Rusu
- Division of Anatomy, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania; MEDCENTER, Center of Excellence in Laboratory Medicine and Pathology, Bucharest, Romania; International Society of Regenerative Medicine and Surgery (ISRMS), Romania.
| | - A D Vrapciu
- Division of Anatomy, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - S Hostiuc
- Division of Legal Medicine and Bioethics, Department 2 Morphological Sciences, Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania; National Institute of Legal Medicine, Bucharest, Romania
| | - C S Hariga
- Department 11 Surgery, Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
3
|
Ge Z, Lal S, Le TYL, Dos Remedios C, Chong JJH. Cardiac stem cells: translation to human studies. Biophys Rev 2014; 7:127-139. [PMID: 28509972 DOI: 10.1007/s12551-014-0148-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/13/2014] [Indexed: 02/08/2023] Open
Abstract
The discovery of multiple classes of cardiac progenitor cells in the adult mammalian heart has generated hope for their use as a therapeutic in heart failure. However, successful results from animal models have not always yielded similar findings in human studies. Recent Phase I/II trials of c-Kit (SCIPIO) and cardiosphere-based (CADUCEUS) cardiac progenitor cells have demonstrated safety and some therapeutic efficacy. Gaps remain in our understanding of the origins, function and relationships between the different progenitor cell families, many of which are heterogeneous populations with overlapping definitions. Another challenge lies in the limitations of small animal models in replicating the human heart. Cryopreserved human cardiac tissue provides a readily available source of cardiac progenitor cells and may help address these questions. We review important findings and relative unknowns of the main classes of cardiac progenitor cells, highlighting differences between animal and human studies.
Collapse
Affiliation(s)
- Zijun Ge
- Bosch Institute, The University of Sydney, Sydney, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Sean Lal
- Bosch Institute, The University of Sydney, Sydney, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia.,Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Thi Y L Le
- Department of Cardiology Westmead Hospital, Sydney, NSW, Australia.,Centre for Heart Research, Westmead Millennium Institute for Medical Research, 176 Hawkesbury Road, Westmead, Sydney, NSW, Australia, 2145
| | | | - James J H Chong
- Department of Cardiology Westmead Hospital, Sydney, NSW, Australia. .,Sydney Medical School, University of Sydney, Sydney, NSW, Australia. .,Centre for Heart Research, Westmead Millennium Institute for Medical Research, 176 Hawkesbury Road, Westmead, Sydney, NSW, Australia, 2145.
| |
Collapse
|
4
|
Fuentes TI, Appleby N, Tsay E, Martinez JJ, Bailey L, Hasaniya N, Kearns-Jonker M. Human neonatal cardiovascular progenitors: unlocking the secret to regenerative ability. PLoS One 2013; 8:e77464. [PMID: 24204836 PMCID: PMC3810469 DOI: 10.1371/journal.pone.0077464] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 09/03/2013] [Indexed: 01/07/2023] Open
Abstract
Although clinical benefit can be achieved after cardiac transplantation of adult c-kit+ or cardiosphere-derived cells for myocardial repair, these stem cells lack the regenerative capacity unique to neonatal cardiovascular stem cells. Unraveling the molecular basis for this age-related discrepancy in function could potentially transform cardiovascular stem cell transplantation. In this report, clonal populations of human neonatal and adult cardiovascular progenitor cells were isolated and characterized, revealing the existence of a novel subpopulation of endogenous cardiovascular stem cells that persist throughout life and co-express both c-kit and isl1. Epigenetic profiling identified 41 microRNAs whose expression was significantly altered with age in phenotypically-matched clones. These differences were correlated with reduced proliferation and a limited capacity to invade in response to growth factor stimulation, despite high levels of growth factor receptor on progenitors isolated from adults. Further understanding of these differences may provide novel therapeutic targets to enhance cardiovascular regenerative capacity.
Collapse
Affiliation(s)
- Tania I. Fuentes
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - Nancy Appleby
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - Eric Tsay
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - J. Julian Martinez
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - Leonard Bailey
- Department of Cardiothoracic Surgery, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - Nahidh Hasaniya
- Department of Cardiothoracic Surgery, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - Mary Kearns-Jonker
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, California, United States of America
- * E-mail:
| |
Collapse
|
5
|
Di Felice V, Zummo G. Stem cell populations in the heart and the role of Isl1 positive cells. Eur J Histochem 2013; 57:e14. [PMID: 23807293 PMCID: PMC3794340 DOI: 10.4081/ejh.2013.e14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 02/04/2013] [Accepted: 02/08/2013] [Indexed: 11/23/2022] Open
Abstract
Cardiac progenitor cells are multipotent stem cells isolated from both embryonic and adult hearts in several species and are able to differentiate at least into smooth muscle cells, endothelial cells and cardiomyocytes. The embryonic origin of these cells has not yet been demonstrated, but it has been suggested that these cells may derive from the first and secondary heart fields and from the neural crest. In the last decade, two diffe-rent populations of cardiac progenitor or stem cells have been identified and isolated, i.e., the Islet1 positive (Isl1+) and c-Kit positive (c-Kit+)/Stem Cell Antigen-1 positive (Sca-1+) cells. Until 2012, these two populations have been considered two separate entities with different roles and a different origin, but new evidence now suggests a con-nection between the two populations and that the two populations may represent two subpopulations of a unique pool of cardiac stem cells, derived from a common immature primitive cell. To find a common consensus on this concept is very important in furthe-ring the application of stem cells to cardiac tissue engineering.
Collapse
Affiliation(s)
- V Di Felice
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, 90127 Palermo, Italy.
| | | |
Collapse
|