1
|
Paz Y, Levy Y, Grosman-Rimon L, Shinfeld A. Nonpharmacological interventions for 'no-option' refractory angina patients. J Cardiovasc Med (Hagerstown) 2024; 25:13-22. [PMID: 37942734 DOI: 10.2459/jcm.0000000000001566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Refractory angina pectoris (RAP) defined as chronic anginal chest pain because of coronary artery disease (CAD) is a major problem. The increase in the number of patients with RAP in recent years is because of the increasing aging population and improved survival rates among patients with CAD. Management of patients with RAP is often extremely challenging. In this review, we present several interventional approaches for RAP, including device therapies, lifestyle intervention, and cell therapies. Some of these treatments are currently used in the management of RAP, whereas other treatments are under investigation.
Collapse
Affiliation(s)
- Yoav Paz
- General Intensive Care Unit, Sourasky Medical Center, Tel Aviv, Israel, affiliated with Sackler Faculty of Medicine, Tel Aviv University
| | - Yair Levy
- Department of Medicine, Meir Hospital, Kfar-Saba, Israel
| | - Liza Grosman-Rimon
- School of Graduate Studies, Levinsky-Wingate Academic College, Wingate Institute, Netanya, Israel
| | - Amihay Shinfeld
- Department of Cardiac Surgery, Sheba Medical Center, Tel Hashomer, Tel Aviv, Israel
| |
Collapse
|
2
|
Shazly T, Smith A, Uline MJ, Spinale FG. Therapeutic payload delivery to the myocardium: Evolving strategies and obstacles. JTCVS OPEN 2022; 10:185-194. [PMID: 36004211 PMCID: PMC9390211 DOI: 10.1016/j.xjon.2022.04.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Key Words
- BMC, bone marrow cell
- HF, heart failure
- ID, intracoronary delivery
- IMD, intramyocardial delivery
- IPD, intrapericardial delivery
- LV, left ventricle
- MI, myocardial infarct
- MSC, mesenchymal stem cell
- TED, transendocardial delivery
- bFGF, basic fibroblast growth factor
- biomaterial
- cardiac
- injection
- local delivery
- myocardium
- payload
Collapse
Affiliation(s)
- Tarek Shazly
- College of Engineering and Computing, School of Medicine, University of South Carolina, Columbia, SC
| | - Arianna Smith
- College of Arts and Sciences, Florida Gulf Coast University, Fort Myers, Fla
| | - Mark J. Uline
- College of Engineering and Computing, School of Medicine, University of South Carolina, Columbia, SC
| | - Francis G. Spinale
- College of Engineering and Computing, School of Medicine, University of South Carolina, Columbia, SC
- Cardiovascular Translational Research Center, School of Medicine, University of South Carolina, Columbia, SC
- Columbia VA Health Care System, Columbia, SC
| |
Collapse
|
3
|
Assuncao-Jr AN, Rochitte CE, Kwong RY, Wolff Gowdak LH, Krieger JE, Jerosch-Herold M. Bone Marrow Cells Improve Coronary Flow Reserve in Ischemic Nonrevascularized Myocardium: A MiHeart/IHD Quantitative Perfusion CMR Substudy. JACC Cardiovasc Imaging 2022; 15:812-824. [PMID: 35512954 DOI: 10.1016/j.jcmg.2021.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 01/05/2023]
Abstract
OBJECTIVES This study investigated whether intramyocardial bone marrow-derived hematopoietic progenitor cells (BMCs) increase coronary flow reserve (CFR) in ischemic myocardial regions where direct revascularization was unsuitable. BACKGROUND Patients with diffuse coronary artery disease frequently undergo incomplete myocardial revascularization, which increases their risk for future adverse cardiovascular outcomes. The residual regional ischemia related to both untreated epicardial lesions and small vessel disease usually contributes to the disease burden. METHODS The MiHeart/IHD study randomized patients with diffuse coronary artery disease undergoing incomplete coronary artery bypass grafting to receive BMCs or placebo in ischemic myocardial regions. After the procedure, 78 patients underwent cardiovascular magnetic resonance (CMR) at 1, 6, and 12 months and were included in this cardiac magnetic resonance substudy with perfusion quantification. Segments were classified as target (injected), adjacent (surrounding the injection site), and remote from injection site. RESULTS Of 1,248 segments, 269 were target (22%), 397 (32%) adjacent, and 582 (46%) remote. The target had significantly lower CFR at baseline (1.40 ± 0.79 vs 1.64 ± 0.89 in adjacent and 1.79 ± 0.79 in remote; both P < 0.05). BMCs significantly increased CFR in target and adjacent segments at 6 and 12 months compared with placebo. In target regions, there was a progressive treatment effect (27.1% at 6 months, P = 0.037, 42.2% at 12 months, P = 0.001). In the adjacent segments, CFR increased by 21.8% (P = 0.023) at 6 months, which persisted until 12 months (22.6%; P = 0.022). Remote segments in both the BMC and placebo groups experienced similar improvements in CFR (not significant at 12 months compared with baseline). CONCLUSIONS BMCs, injected in severely ischemic regions unsuitable for direct revascularization, led to the largest CFR improvements, which progressed up to 12 months, compared with smaller but persistent CFR changes in adjacent and no improvement in remote segments.
Collapse
Affiliation(s)
| | | | - Raymond Y Kwong
- Division of Cardiovascular Medicine and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - José Eduardo Krieger
- Heart Institute (InCor), University of São Paulo Medical School, Säo Paulo, Brazil.
| | - Michael Jerosch-Herold
- Division of Cardiovascular Medicine and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Bassetti B, Rurali E, Gambini E, Pompilio G. Son of a Lesser God: The Case of Cell Therapy for Refractory Angina. Front Cardiovasc Med 2021; 8:709795. [PMID: 34552966 PMCID: PMC8450394 DOI: 10.3389/fcvm.2021.709795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/02/2021] [Indexed: 11/20/2022] Open
Abstract
In the last decades, various non-pharmacological solutions have been tested on top of medical therapy for the treatment of patients affected by refractory angina (RA). Among these therapeutics, neuromodulation, external counter-pulsation and coronary sinus constriction have been recently introduced in the guidelines for the management of RA in United States and Europe. Notably and paradoxically, although a consistent body of evidence has proposed cell-based therapies (CT) as safe and salutary for RA outcome, CT has not been conversely incorporated into current international guidelines yet. As a matter of fact, published randomized controlled trials (RCT) and meta-analyses (MTA) cumulatively indicated that CT can effectively increase perfusion, physical function and well-being, thus reducing angina symptoms and drug assumption in RA patients. In this review, we (i) provide an updated overview of novel non-pharmacological therapeutics included in current guidelines for the management of patients with RA, (ii) discuss the Level of Evidence stemmed from available clinical trials for each recommended treatment, and (iii) focus on evidence-based CT application for the management of RA.
Collapse
Affiliation(s)
- Beatrice Bassetti
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Erica Rurali
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Elisa Gambini
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy.,Oloker Therapeutics S.r.l., Bari, Italy
| | - Giulio Pompilio
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy.,Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
5
|
Kurzelowski R, Barański K, Caluori G, Szot W, Grabowski K, Michalewska-Włudarczyk A, Syzdół M, Kuczmik W, Błach A, Ochała B, Hudziak D, Wilczek J, Gołba KS, Starek Z, Tendera M, Wojakowski W, Jadczyk T. Correlation between electromechanical parameters (NOGA XP) and changes of myocardial ischemia in patients with refractory angina. ADVANCES IN INTERVENTIONAL CARDIOLOGY 2021; 17:281-289. [PMID: 34819964 PMCID: PMC8596713 DOI: 10.5114/aic.2021.109168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 07/23/2021] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Cell therapy has the potential to improve symptoms and clinical outcomes in refractory angina (RFA). Further analyses are needed to evaluate factors influencing its therapeutic effectiveness. AIM Assessment of electromechanical (EM) parameters of the left ventricle (LV) and investigation of correlation between EM parameters of the myocardium and response to CD133+ cell therapy. MATERIAL AND METHODS Thirty patients with RFA (16 active and 14 placebo individuals) enrolled in the REGENT-VSEL trial underwent EM evaluation of the LV with intracardiac mapping system. The following parameters were analyzed: unipolar voltage (UV), bipolar voltage (BV), local linear shortening (LLS). Myocardial ischemia was evaluated with single-photon emission computed tomography (SPECT). The median value of each EM parameter was used for intra-group comparisons. RESULTS Global EM parameters (UV, BV, LLS) of LV in active and placebo groups were 11.28 mV, 3.58 mV, 11.12%, respectively; 13.00 mV, 3.81 mV, 11.32%, respectively. EM characteristics analyzed at global and segmental levels did not predict response to CD133+ cell therapy in patients with RFA (Global UV, BV and LLS at rest R = -0.06; R = 0.2; R = -0.1 and at stress: R = 0.07, R = 0.09, R = -0.1, respectively; Segmental UV, BV, LLS at rest R = -0.2, R = 0.03, R = -0.4 and at stress R = 0.02, R = 0.2, R = -0.2, respectively). Multiple linear regression of the treated segments showed that only pre-injection SPECT levels were significantly correlated with post-injection SPECT, either at rest or stress (p < 0.05). CONCLUSIONS Electromechanical characteristics of the left ventricle do not predict changes of myocardial perfusion by SPECT after cell therapy. Baseline SPECT results are only predictors of changes of myocardial ischemia observed at 4-month follow-up.
Collapse
Affiliation(s)
- Radosław Kurzelowski
- Department of Cardiology and Structural Heart Disease, Medical University of Silesia, Katowice, Poland
| | - Kamil Barański
- Department of Epidemiology, Medical University of Silesia, Katowice, Poland
| | - Guido Caluori
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac, France
- Univ. Bordeaux, INSERM, UMR 1045, Cardiothoracic Research Center of Bordeaux, Pessac, France
| | - Wojciech Szot
- Department of Nuclear Medicine, John Paul II Hospital, Jagiellonian University Medical College, Krakow, Poland
| | - Krzysztof Grabowski
- Department of Robotics and Mechatronics, AGH University of Science and Technology, Krakow, Poland
| | | | - Marcin Syzdół
- Department of Cardiology and Structural Heart Disease, Medical University of Silesia, Katowice, Poland
| | - Wacław Kuczmik
- Department of General and Vascular Surgery, Medical University of Silesia, Katowice, Poland
| | - Anna Błach
- Department of Cardiology and Structural Heart Disease, Medical University of Silesia, Katowice, Poland
| | - Beata Ochała
- Department of Cardiology and Structural Heart Disease, Medical University of Silesia, Katowice, Poland
| | - Damian Hudziak
- Department of Cardiac Surgery, Medical University of Silesia, Katowice, Poland
| | - Jacek Wilczek
- Department of Electrocardiology and Heart Failure, Medical University of Silesia, Katowice, Poland
| | - Krzysztof S. Gołba
- Department of Electrocardiology and Heart Failure, Medical University of Silesia, Katowice, Poland
| | - Zdenek Starek
- Interventional Cardiac Electrophysiology Group, International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
- 1 Department of Internal Medicine – Cardioangiology, St. Anne’s University Hospital, Brno, Czech Republic
| | - Michał Tendera
- Department of Cardiology and Structural Heart Disease, Medical University of Silesia, Katowice, Poland
| | - Wojciech Wojakowski
- Department of Cardiology and Structural Heart Disease, Medical University of Silesia, Katowice, Poland
| | - Tomasz Jadczyk
- Department of Cardiology and Structural Heart Disease, Medical University of Silesia, Katowice, Poland
- Interventional Cardiac Electrophysiology Group, International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
| |
Collapse
|
6
|
Vilahur G, Nguyen PH, Badimon L. Impact of Diabetes Mellitus on the Potential of Autologous Stem Cells and Stem Cell-Derived Microvesicles to Repair the Ischemic Heart. Cardiovasc Drugs Ther 2021; 36:933-949. [PMID: 34251593 DOI: 10.1007/s10557-021-07208-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/25/2021] [Indexed: 10/20/2022]
Abstract
Ischemic heart disease remains the leading cause of morbidity and mortality worldwide. Despite the advances in medical management and catheter-based therapy, mortality remains high, as does the risk of developing heart failure. Regenerative therapies have been widely used as an alternative option to repair the damaged heart mainly because of their paracrine-related beneficial effects. Although cell-based therapy has been demonstrated as feasible and safe, randomized controlled trials and meta-analyses show little consistent benefit from treatments with adult-derived stem cells. Mounting evidence from our group and others supports that cardiovascular risk factors and comorbidities impair stem cell potential thus hampering their autologous use. This review aims to better understand the influence of diabetes on stem cell potential. For this purpose, we will first discuss the most recent advances in the mechanistic understanding of the effects of diabetes on stem cell phenotype, function, and molecular fingerprint to further elaborate on diabetes-induced alterations in stem cell extracellular vesicle profile. Although we acknowledge that multiple sources of stem or progenitor cells are used for regenerative purposes, we will focus on bone marrow hematopoietic stem/progenitor cells, mesenchymal stem cells residing in the bone marrow, and adipose tissue and briefly discuss endothelial colony-forming cells.
Collapse
Affiliation(s)
- Gemma Vilahur
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, C/Sant Antoni Mª Claret 167, 08025, Barcelona, Spain.,Ciber CV - ISCIII, Madrid, Spain
| | - Phuong Hue Nguyen
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, C/Sant Antoni Mª Claret 167, 08025, Barcelona, Spain
| | - Lina Badimon
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, C/Sant Antoni Mª Claret 167, 08025, Barcelona, Spain. .,Ciber CV - ISCIII, Madrid, Spain. .,Cardiovascular Research Chair UAB, Barcelona, Spain.
| |
Collapse
|
7
|
Abstract
The combination of an aging population and improved survival rates among patients with coronary artery disease has resulted in an increase in the number of patients with refractory angina or anginal equivalent symptoms despite maximal medical therapy. Patients with refractory angina are often referred to the cardiac catheterization laboratory; however, they have often exhausted conventional revascularization options; thus, this population is often deemed as having "no options." We review the definition, prevalence, outcomes, therapeutic options, and treatment considerations for no-option refractory angina patients and focus on novel therapies for this complex and challenging population. We propose a multidisciplinary team approach for the evaluation and management of patients with refractory angina, ideally in a designated clinic. The severe limitations and symptomatology experienced by these patients highlight the need for additional research into the development of innovative treatments.
Collapse
Affiliation(s)
- Thomas J Povsic
- Department of Medicine, Program for Advanced Coronary Disease, Duke University Medical Center and Duke Clinical Research Institute, Durham, NC (T.J.P., E.M.O.)
| | - Timothy D Henry
- The Carl and Edyth Lindner Center for Research and Education at The Christ Hospital, Cincinnati, OH (T.D.H.)
| | - E Magnus Ohman
- Department of Medicine, Program for Advanced Coronary Disease, Duke University Medical Center and Duke Clinical Research Institute, Durham, NC (T.J.P., E.M.O.)
| |
Collapse
|
8
|
Abstract
The article discusses pharmacologic and interventional therapeutic options for patients with refractory angina. Refractory angina refers to long-lasting symptoms (≥3 months) due to established reversible ischemia in the presence of obstructive coronary artery disease, which cannot be controlled by escalating medical therapy with second-line and third-line pharmacologic agents, bypass grafting, or stenting. Due to an aging population, increased number of comorbidities, and advances in coronary artery disease treatment, incidence of refractory angina is growing. Although the number of therapeutic options is increasing, there is a lack of randomized clinical trials that could help create recommendations for this group of patients.
Collapse
Affiliation(s)
- Marcin Makowski
- Department of Interventional Cardiology, Medical University of Lodz, Central Clinical Hospital, ul. Pomorska 251, Lodz 92-213, Poland.
| | | | - Marzenna Zielińska
- Department of Interventional Cardiology, Medical University of Lodz, Central Clinical Hospital, ul. Pomorska 251, Lodz 92-213, Poland
| |
Collapse
|
9
|
Gallone G, Baldetti L, Tzanis G, Gramegna M, Latib A, Colombo A, Henry TD, Giannini F. Refractory Angina: From Pathophysiology to New Therapeutic Nonpharmacological Technologies. JACC Cardiovasc Interv 2020; 13:1-19. [PMID: 31918927 DOI: 10.1016/j.jcin.2019.08.055] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/12/2019] [Accepted: 08/20/2019] [Indexed: 12/16/2022]
Abstract
Despite optimal combination of guideline-directed anti-ischemic therapies and myocardial revascularization, a substantial proportion of patients with stable coronary artery disease continues to experience disabling symptoms and is often referred as "no-option." The appraisal of the pathways linking ischemia to symptom perception indicates a complex model of heart-brain interactions in the generation of the subjective anginal experience and inspired novel approaches that may be clinically effective in alleviating the angina burden of this population. Conversely, the prevailing ischemia-centered view of angina, with the focus on traditional myocardial revascularization as the sole option to address ischemia on top of medical therapy, hinders the experimental characterization and broad-scale clinical implementation of strongly needed therapeutic options. The interventionist, often the first physician to establish the diagnosis of refractory angina pectoris (RAP) following coronary angiography, should be aware of the numerous emerging technologies with the potential to improve quality of life in the growing population of RAP patients. This review describes the current landscape and the future perspectives on nonpharmacological treatment technologies for patients with RAP, with a view on the underlying physiopathological rationale and current clinical evidence.
Collapse
Affiliation(s)
- Guglielmo Gallone
- Division of Cardiology, Department of Medical Sciences, Città della Scienza e della Salute Hospital, University of Turin, Turin, Italy
| | - Luca Baldetti
- Unit of Cardiovascular Interventions, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Georgios Tzanis
- Unit of Cardiovascular Interventions, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mario Gramegna
- Unit of Cardiovascular Interventions, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Azeem Latib
- Department of Cardiology, Montefiore Medical Center, Bronx, New York. https://twitter.com/azeemlatib
| | - Antonio Colombo
- Interventional Cardiology Unit, GVM Care and Research Maria Cecilia Hospital, Cotignola, Italy
| | - Timothy D Henry
- The Christ Hospital Heart and Vascular Center / The Carl and Edyth Lindner Center for Research and Education at The Christ Hospital, Cincinnati, Ohio; University of Florida, Gainesville, Florida
| | - Francesco Giannini
- Interventional Cardiology Unit, GVM Care and Research Maria Cecilia Hospital, Cotignola, Italy.
| |
Collapse
|
10
|
Rakhimov K, Gori T. Non-pharmacological Treatment of Refractory Angina and Microvascular Angina. Biomedicines 2020; 8:biomedicines8080285. [PMID: 32823683 PMCID: PMC7460172 DOI: 10.3390/biomedicines8080285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022] Open
Abstract
Refractory angina (RA) is defined as debilitating anginal symptoms despite the optimal guideline-directed combination of medical, percutaneous, and surgical therapies. Often referred to as “no option”, these patients represent a significant unmet clinical need for healthcare institutions. Due to the ageing of the population, and increased survival from coronary artery disease, the number of patients with RA is expected to rise exponentially. Despite the developments of novel technologies for the treatment of RA, none of them found wide clinical application (to date). Microvascular dysfunction, alone or in combination with epicardial coronary disease, is thought to contribute significantly to refractory angina. However, most of the techniques developed to improve RA symptoms have not been tested specifically on patients with microvascular dysfunction. This review discusses the recent developments in the treatment of RA, and gives some perspectives on the future of these techniques.
Collapse
Affiliation(s)
- Kudrat Rakhimov
- Department of Cardiology, University Medical Center Mainz Langenbeckstr 1, 55131 Mainz, Germany
- Correspondence: (K.R.); (T.G.); Tel.: +49-6131-172829 (T.G.); Fax: +49-6131-176428 (T.G.)
| | - Tommaso Gori
- Department of Cardiology, University Medical Center Mainz and Deutsches Zentrum für Herz und Kreislauf Forschung, Standort Rhein-Main, Langenbeckstr 1, 55131 Mainz, Germany
- Correspondence: (K.R.); (T.G.); Tel.: +49-6131-172829 (T.G.); Fax: +49-6131-176428 (T.G.)
| |
Collapse
|
11
|
Rossi E, Poirault-Chassac S, Bieche I, Chocron R, Schnitzler A, Lokajczyk A, Bourdoncle P, Dizier B, Bacha NC, Gendron N, Blandinieres A, Guerin CL, Gaussem P, Smadja DM. Human Endothelial Colony Forming Cells Express Intracellular CD133 that Modulates their Vasculogenic Properties. Stem Cell Rev Rep 2020; 15:590-600. [PMID: 30879244 DOI: 10.1007/s12015-019-09881-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Stem cells at the origin of endothelial progenitor cells and in particular endothelial colony forming cells (ECFCs) subtype have been largely supposed to be positive for the CD133 antigen, even though no clear correlation has been established between its expression and function in ECFCs. We postulated that CD133 in ECFCs might be expressed intracellularly, and could participate to vasculogenic properties. ECFCs extracted from cord blood were used either fresh (n = 4) or frozen (n = 4), at culture days <30, to investigate the intracellular presence of CD133 by flow cytometry and confocal analysis. Comparison with HUVEC and HAEC mature endothelial cells was carried out. Then, CD133 was silenced in ECFCs using specific siRNA (siCD133-ECFCs) or scramble siRNA (siCtrl-ECFCs). siCD133-ECFCs (n = 12), siCtrl-ECFCs (n = 12) or PBS (n = 12) were injected in a hind-limb ischemia nude mouse model and vascularization was quantified at day 14 with H&E staining and immunohistochemistry for CD31. Results of flow cytometry and confocal microscopy evidenced the positivity of CD133 in ECFCs after permeabilization compared with not permeabilized ECFCs (p < 0.001) and mature endothelial cells (p < 0.03). In the model of mouse hind-limb ischemia, silencing of CD133 in ECFCs significantly abolished post-ischemic revascularization induced by siCtrl-ECFCs; indeed, a significant reduction in cutaneous blood flows (p = 0.03), capillary density (CD31) (p = 0.01) and myofiber regeneration (p = 0.04) was observed. Also, a significant necrosis (p = 0.02) was observed in mice receiving siCD133-ECFCs compared to those treated with siCtrl-ECFCs. In conclusion, our work describes for the first time the intracellular expression of the stemness marker CD133 in ECFCs. This feature could resume the discrepancies found in the literature concerning CD133 positivity and ontogeny in endothelial progenitors.
Collapse
Affiliation(s)
- Elisa Rossi
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Inserm UMR-S1140, Paris, France
| | - Sonia Poirault-Chassac
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Inserm UMR-S1140, Paris, France
| | - Ivan Bieche
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Department of genetics, Pharmacogenomics Unit, Institut Curie, Paris, France
| | - Richard Chocron
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Inserm UMR-S970, Paris, France.,AP-HP, Emergency Medicine Department, Hôpital Européen Georges Pompidou, Paris, France
| | - Anne Schnitzler
- Department of genetics, Pharmacogenomics Unit, Institut Curie, Paris, France
| | - Anna Lokajczyk
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Inserm UMR-S1140, Paris, France
| | - Pierre Bourdoncle
- Plate-forme IMAG'IC Institut Cochin Inserm U1016-CNRS UMR8104, Université Paris Descartes, Paris, France
| | - Blandine Dizier
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Inserm UMR-S1140, Paris, France
| | - Nour C Bacha
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Inserm UMR-S1140, Paris, France
| | - Nicolas Gendron
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Inserm UMR-S1140, Paris, France.,AP-HP, Hematology Department, Hôpital Européen Georges Pompidou, Paris, France
| | - Adeline Blandinieres
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Inserm UMR-S1140, Paris, France.,AP-HP, Hematology Department, Hôpital Européen Georges Pompidou, Paris, France
| | - Coralie L Guerin
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Inserm UMR-S1140, Paris, France.,Cytometry Unit, Institut Curie, Paris, France
| | - Pascale Gaussem
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Inserm UMR-S1140, Paris, France.,AP-HP, Hematology Department, Hôpital Européen Georges Pompidou, Paris, France
| | - David M Smadja
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France. .,Inserm UMR-S1140, Paris, France. .,AP-HP, Hematology Department, Hôpital Européen Georges Pompidou, Paris, France. .,Laboratory of Biosurgical Research, Carpentier Foundation, Hôpital Européen Georges Pompidou, Paris, France.
| |
Collapse
|
12
|
Raval AN, Pepine CJ. Clinical Safety Profile of Transendocardial Catheter Injection Systems: A Plea for Uniform Reporting. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2020; 22:100-108. [PMID: 32651159 DOI: 10.1016/j.carrev.2020.06.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The aim of this study was to characterize the clinical safety profile of transendocardial injection catheters (TIC) reported in the published literature. BACKGROUND Transendocardial delivery is a minimally invasive approach to deliver potential therapeutic agents directly into the myocardium. The rate of adverse events across TIC is uncertain. METHODS A systematic search was performed for trial publications using TIC. Procedure-associated adverse event data were abstracted, pooled and compared across catheters for active treatment and placebo injected patients. The transendocardial injection associated serious adverse events (TEI-SAE) was defined as the composite of death, myocardial infarction, stroke or transient ischemic attack within 30 days and cardiac perforation causing death or requiring evacuation, serious intraprocedural arrhythmias and serious coronary artery or peripheral vascular complications. RESULTS The search identified 4 TIC systems: a helical needle (HN), an electro-anatomically tracked straight needle (EAM-SN), a straight needle without tracking elements (SN), and a curved needle (CN). Of 1799 patients who underwent transendocardial injections, the combined TEI-SAE was 3.4% across all catheters, and 1.1%, 3.3%, 7.1%, and 8.3% for HN, EAM-SN, SN and CN, respectively. However, TIC procedure duration and post procedural cardiac biomarker levels were reported in only 24% and 36% of published trials, respectively. CONCLUSIONS Transendocardial injection is associated with varied TEI-SAE but the data are very limited. The HN catheter appeared to be associated with lower TEI-SAE, versus other catheters. Procedure duration and post procedure cardiac biomarker levels were under-reported. Clearly, standardized, procedure-related event reporting for trials involving transcatheter delivery would improve our understanding of complications across different systems.
Collapse
Affiliation(s)
- Amish N Raval
- Department of Medicine and Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - Carl J Pepine
- Division of Cardiovascular Medicine, University of Florida, Gainsville, FL, USA
| |
Collapse
|
13
|
Peregud-Pogorzelska M, Przybycień K, Baumert B, Kotowski M, Pius-Sadowska E, Safranow K, Peregud-Pogorzelski J, Kornacewicz-Jach Z, Paczkowska E, Machaliński B. The Effect of Intracoronary Infusion of Autologous Bone Marrow-Derived Lineage-Negative Stem/Progenitor Cells on Remodeling of Post-Infarcted Heart in Patient with Acute Myocardial Infarction. Int J Med Sci 2020; 17:985-994. [PMID: 32410827 PMCID: PMC7211150 DOI: 10.7150/ijms.42561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction: Regenerative capacity of the heart is limited, and the post-infarct left ventricle (LV) dysfunction is associated with poor prognosis. Administration of stem/progenitor cells (SPCs) is a promising approach for cardiac regeneration. Objectives: In the study, we assessed LV function and post-infarcted remodeling in patients with ST-elevated myocardial infarct (STEMI) who received autologous lineage-negative (LIN-) SPCs. Patients and methods: Patients with STEMI and one-vessel coronary artery disease treated with percutaneous revascularisation were divided into study group (LIN- group, 15 patients) that received standard therapy and autologous BM-derived LIN- SPCs and control group (standard therapy group, 19 patients). The cells were administered intracoronary 24 hours after STEMI. The follow-up was 12 months with subsequent non-invasive tests and laboratory parameter evaluation on days 1st, 3rd, and 7th as well as at 1st, 3rd, 6th and 12th month after STEMI. Results: All procedures related to SPCs administration were well tolerated by the patients. In 12-month follow-up, there were no major adverse cardiac events connected with LIN- SPCs administration. During 12-month follow-up, 9 patients from LIN- group (Responders) achieved an improvement in LV ejection fraction (>10% after 12 months) with no signs of unfavorable LV remodeling. Laboratory parameters analysis showed that Troponin T levels were significantly lower until day 7th in the Responders group, while brain natriuretic peptide (BNP) level remained significantly lower from day 3rd to 12th month respectively. Conclusions: Intracoronary infusion of autologous BM-derived LIN- stem/progenitor cells is feasible and safe for patient. Improvement in LV function and prevention of unfavorable remodeling in the 60% of study group seems relatively promising. Stem cell-based therapy for cardiac regeneration still needs more accurate and extensive investigations to estimate and improve their efficacy.
Collapse
Affiliation(s)
| | - Krzysztof Przybycień
- Department of Cardiology, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Bartłomiej Baumert
- Department of General Pathology, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Maciej Kotowski
- Department of General Pathology, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Ewa Pius-Sadowska
- Department of General Pathology, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | | | | | - Edyta Paczkowska
- Department of General Pathology, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
14
|
Leppik L, Sielatycka K, Henrich D, Han Z, Wang H, Eischen-Loges MJ, Oliveira KMC, Bhavsar MB, Ratajczak MZ, Barker JH. Role of Adult Tissue-Derived Pluripotent Stem Cells in Bone Regeneration. Stem Cell Rev Rep 2019; 16:198-211. [PMID: 31828580 PMCID: PMC6987071 DOI: 10.1007/s12015-019-09943-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Background Bone marrow-derived mononuclear cells (BM-MNC) consist of a heterogeneous mix of mesenchymal stem cells (MSC), hematopoietic progenitor cells (HPC), endothelial progenitor cells (EPC), monocytes, lymphocytes and pluripotent stem cells. Whereas the importance of MSC and EPC has been well documented in bone healing and regeneration studies, the role of pluripotent stem cells is still poorly understood. In the present study we evaluated if and how Very Small Embryonic Like cells (VSEL), isolated from rat BM-MNC, contribute to bone healing. Methods Large bone defects were made in the femurs of 38 Sprague Dawley female rats and treated with β-TCP scaffold granules seeded with male VSEL; BM-MNC, VSEL-depleted BM-MNC or scaffold alone, and bone healing was evaluated at 8 weeks post-surgery. Results Bone healing was significantly increased in defects treated with VSEL and BM-MNC, compared to defects treated with VSEL-depleted BM-MNC. Donor cells were detected in new bone tissue, in all the defects treated with cells, and in fibrous tissue only in defects treated with VSEL-depleted BM-MNC. The number of CD68+ cells was the highest in the VSEL-depleted group, whereas the number of TRAP positive cells was the lowest in this group. Conclusions Based on the results, we can conclude that VSEL play a role in BM-MNC induced bone formation. In our rat femur defect model, in defects treated with VSEL-depleted BM-MNC, osteoclastogenesis and bone formation were decreased, and foreign body reaction was increased.
Collapse
Affiliation(s)
- Liudmila Leppik
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics & Trauma Surgery, J.W. Goethe University, Frankfurt am Main, Germany.
| | - K Sielatycka
- Institute of Biology, Faculty of Exact and Natural Science, University of Szczecin, Szczecin, Poland
| | - D Henrich
- Department of Trauma, Hand & Reconstructive Surgery, J.W. Goethe University, Frankfurt/Main, Germany
| | - Z Han
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics & Trauma Surgery, J.W. Goethe University, Frankfurt am Main, Germany
| | - H Wang
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics & Trauma Surgery, J.W. Goethe University, Frankfurt am Main, Germany
| | - M J Eischen-Loges
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics & Trauma Surgery, J.W. Goethe University, Frankfurt am Main, Germany
| | - K M C Oliveira
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics & Trauma Surgery, J.W. Goethe University, Frankfurt am Main, Germany
| | - M B Bhavsar
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics & Trauma Surgery, J.W. Goethe University, Frankfurt am Main, Germany
| | - M Z Ratajczak
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - J H Barker
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics & Trauma Surgery, J.W. Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
15
|
Garcia-Botella A, Sáez-Carlin P, Méndez R, Martin MP, Ortega L, Méndez JV, García-Paredes B, Diez-Valladares L, Torres AJ. CD133 + cell infusion in patients with colorectal liver metastases going to be submitted to a major liver resection (CELLCOL): A randomized open label clinical trial. Surg Oncol 2019; 33:224-230. [PMID: 32561087 DOI: 10.1016/j.suronc.2019.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/04/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Treatment of liver metastases of colorectal carcinoma is surgical resection. However, only 10-15% of the patients in this context will be candidate for curative resection arising other 10-13% after response to neoadyuvant chemotherapy. In order to perform the liver metastases surgery, it is necessary to have a sufficient remnant liver volume (RLV) which allows maintaining an optimal liver function after resection. Studies on liver regeneration have determined that CD133 + stem cells are involved in liver hypertrophy developed after an hepatectomy with encouraging results. As presented in previous studies, CD133 + stem cells can be selected from peripheral blood after stimulation with G-CSF, being able to obtain a large number of them. We propose to treat patients who do not meet criteria for liver metastases surgery because of insufficient RLV (<40%) with CD133 + cells together with portal embolization, in order to achieve enough liver volume which avoids liver failure. METHODS /Design: The aim of this study is to evaluate the effectiveness of preoperative PVE plus the administration of CD133 + mobilized from peripheral blood with G-CSF compared to PVE only. SECONDARY AIMS ARE: to compare the grade of hypertrophy, speed and changes in liver function, anatomopathological study of hypertrophied liver, to determine the safety of the treatment and analysis of postoperative morbidity and surveillance. STUDY DESIGN Prospective randomized longitudinal phase IIb clinical trial, open, to evaluate the efficacy of portal embolization (PVE) together with the administration of CD133 + cells obtained from peripheral blood versus PVE alone, in patients with hepatic metastasis of colorectal carcinoma (CCRHM). DISCUSSION The number of CD133 + obtained from peripheral blood after G -CSF stimulation will be far greater than the number obtained with direct puncture of bone marrow. This will allow a greater intrahepatic infusion, which could have a direct impact on achieving a larger and quicker hypertrophy. Consequently, it will permit the treatment of a larger number of patients with an increase on their survival. TRIAL REGISTRATION ClinicalTrials.gov, ID NCT03803241.
Collapse
Affiliation(s)
| | - Patricia Sáez-Carlin
- Surgery (HepatoPancreatoBiliary Unit), Hospital Clínico San Carlos Madrid, Spain.
| | - Ramiro Méndez
- Department of Radiology, Hospital Universitario Clínico San Carlos, Madrid, Spain.
| | - Maria Paz Martin
- Department o Hematology, Hospital Universitario Clínico San Carlos, Madrid, Spain.
| | - Luis Ortega
- Department of Surgical Pathology, Hospital Clínico San Carlos, Madrid, Spain.
| | - Jose Vicente Méndez
- Department of Radiology, Hospital Universitario Clínico San Carlos, Madrid, Spain.
| | | | - L Diez-Valladares
- Surgery (HepatoPancreatoBiliary Unit), Hospital Clínico San Carlos Madrid, Spain.
| | - Antonio Jose Torres
- Surgery (HepatoPancreatoBiliary Unit), Hospital Clínico San Carlos Madrid, Spain.
| |
Collapse
|
16
|
Novel Evidence of the Increase in Angiogenic Factor Plasma Levels after Lineage-Negative Stem/Progenitor Cell Intracoronary Infusion in Patients with Acute Myocardial Infarction. Int J Mol Sci 2019; 20:ijms20133330. [PMID: 31284593 PMCID: PMC6650859 DOI: 10.3390/ijms20133330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 06/19/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022] Open
Abstract
Cell therapy raises hope to reduce the harmful effects of acute myocardial ischemia. Stem and progenitor cells (SPCs) may be a valuable source of trophic factors. In this study, we assessed the plasma levels of selected trophic factors in patients undergoing application of autologous bone marrow (BM)-derived, lineage-negative (Lin-) stem/progenitor cells into the coronary artery in the acute phase of myocardial infarction. The study group consisted of 15 patients with acute myocardial infarction (AMI) who underwent percutaneous revascularization and, afterwards, Lin- stem/progenitor cell administration into the infarct-related artery. The control group consisted of 19 patients. BM Lin- cells were isolated using immunomagnetic methods. Peripheral blood was collected on day 0, 2, 4, and 7 and after the first and third month to assess the concentration of selected trophic factors using multiplex fluorescent bead-based immunoassays. We found in the Lin- group that several angiogenic trophic factors (vascular endothelial growth factor, Angiopoietin-1, basic fibroblast growth factor, platelet-derived growth factor-aa) plasma level significantly increased to the 4th day after myocardial infarction. In parallel, we noticed a tendency where the plasma levels of the brain-derived neurotrophic factor were increased in the Lin- group. The obtained results suggest that the administered SPCs may be a valuable source of angiogenic trophic factors for damaged myocardium, although this observation requires further in-depth studies.
Collapse
|
17
|
Jones DA, Weeraman D, Colicchia M, Hussain MA, Veerapen D, Andiapen M, Rathod KS, Baumbach A, Mathur A. The Impact of Cell Therapy on Cardiovascular Outcomes in Patients With Refractory Angina. Circ Res 2019; 124:1786-1795. [PMID: 30922167 DOI: 10.1161/circresaha.118.314118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Cell-based therapies are a novel potential treatment for refractory angina and have been found to improve markers of angina. However, the effects on mortality and major adverse cardiac events (MACE) have not been definitively investigated. OBJECTIVE To investigate the efficacy and safety of stem cell treatment compared with optimal medical treatment for refractory angina by conducting an updated meta-analysis, looking at clinical outcomes. METHODS AND RESULTS We performed a systematic review and meta-analysis of randomized controlled trials using the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. A comprehensive search was performed of PubMed, EMBASE (Excerpta Medica database), Cochrane, ClinicalTrials.gov , Google Scholar databases of randomized controlled trials, and scientific session abstracts. Studies were deemed eligible if they met the following criteria: (1) full-length publications in peer-reviewed journals; (2) evaluated cell therapy use in patients with no further revascularisation options while on optimal medical treatment; (3) patients had ongoing angina, Canadian Cardiovascular Society class II-IV; and (4) included a placebo/control arm. We calculated risk ratios for all-cause mortality, combined MACE events. We assessed heterogeneity using χ2 and I2 tests. We identified 1191 citations with 8 randomized controlled trials meeting inclusion criteria involving 526 patients. Outcomes pooled were MACE, mortality, and indices of angina (angina episodes, Canadian Cardiovascular Society angina class, exercise tolerance, and antianginal medications). Our analysis showed a decreased risk of both MACE (odds ratio, 0.41; CI, 0.25-0.70) and mortality (odds ratio, 0.24; 95% CI, 0.10-0.60) in cell-treated patients compared with patients on maximal medical therapy. This was supported by improvements in surrogate end points of anginal episodes, use of antianginal medications, Canadian Cardiovascular Society class, and exercise tolerance. CONCLUSIONS In addition to improvements in indices of angina, cell-based therapies improve cardiovascular outcomes (mortality/MACE) in patients with refractory angina. Given the premature termination of the phase III study, this supports the need for further definitive trials. Prospero Registration : URL: https://www.crd.york.ac.uk/prospero/ . Unique identifier: CRD42018084257.
Collapse
Affiliation(s)
- Daniel A Jones
- From the Centre of Clinical Pharmacology, William Harvey Research Institute, Barts and The London Medical School, Queen Mary University of London, UK (D.A.J., M.A.H., K.S.R., A.M.).,Barts Interventional Group, Interventional Cardiology, Barts Heart Centre, St Bartholomew's Hospital West Smithfield, London, UK (D.A.J., D.W., M.C., M.A.H., D.V., M.A., K.S.R., A.B., A.M.)
| | - Deshan Weeraman
- Barts Interventional Group, Interventional Cardiology, Barts Heart Centre, St Bartholomew's Hospital West Smithfield, London, UK (D.A.J., D.W., M.C., M.A.H., D.V., M.A., K.S.R., A.B., A.M.)
| | - Martina Colicchia
- Barts Interventional Group, Interventional Cardiology, Barts Heart Centre, St Bartholomew's Hospital West Smithfield, London, UK (D.A.J., D.W., M.C., M.A.H., D.V., M.A., K.S.R., A.B., A.M.)
| | - Mohsin A Hussain
- From the Centre of Clinical Pharmacology, William Harvey Research Institute, Barts and The London Medical School, Queen Mary University of London, UK (D.A.J., M.A.H., K.S.R., A.M.).,Barts Interventional Group, Interventional Cardiology, Barts Heart Centre, St Bartholomew's Hospital West Smithfield, London, UK (D.A.J., D.W., M.C., M.A.H., D.V., M.A., K.S.R., A.B., A.M.)
| | - Devanayegi Veerapen
- Barts Interventional Group, Interventional Cardiology, Barts Heart Centre, St Bartholomew's Hospital West Smithfield, London, UK (D.A.J., D.W., M.C., M.A.H., D.V., M.A., K.S.R., A.B., A.M.)
| | - Mervyn Andiapen
- Barts Interventional Group, Interventional Cardiology, Barts Heart Centre, St Bartholomew's Hospital West Smithfield, London, UK (D.A.J., D.W., M.C., M.A.H., D.V., M.A., K.S.R., A.B., A.M.)
| | - Krishnaraj S Rathod
- From the Centre of Clinical Pharmacology, William Harvey Research Institute, Barts and The London Medical School, Queen Mary University of London, UK (D.A.J., M.A.H., K.S.R., A.M.).,Barts Interventional Group, Interventional Cardiology, Barts Heart Centre, St Bartholomew's Hospital West Smithfield, London, UK (D.A.J., D.W., M.C., M.A.H., D.V., M.A., K.S.R., A.B., A.M.)
| | - Andreas Baumbach
- Barts Interventional Group, Interventional Cardiology, Barts Heart Centre, St Bartholomew's Hospital West Smithfield, London, UK (D.A.J., D.W., M.C., M.A.H., D.V., M.A., K.S.R., A.B., A.M.)
| | - Anthony Mathur
- From the Centre of Clinical Pharmacology, William Harvey Research Institute, Barts and The London Medical School, Queen Mary University of London, UK (D.A.J., M.A.H., K.S.R., A.M.).,Barts Interventional Group, Interventional Cardiology, Barts Heart Centre, St Bartholomew's Hospital West Smithfield, London, UK (D.A.J., D.W., M.C., M.A.H., D.V., M.A., K.S.R., A.B., A.M.)
| |
Collapse
|
18
|
|
19
|
EMADEDIN MOHSEN, KARIMI SHAHEDEH, KARIMI ALIASGHAR, LABIBZADEH NARGES, NIKNEJADI MARYAM, BAHARVAND HOSSEIN, AGHDAMI NASSER. Autologous bone marrow–derived CD133 cells with core decompression as a novel treatment method for femoral head osteonecrosis: a pilot study. Cytotherapy 2019; 21:107-112. [DOI: 10.1016/j.jcyt.2018.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 09/30/2018] [Accepted: 10/07/2018] [Indexed: 11/29/2022]
|
20
|
Vasculogenic Stem and Progenitor Cells in Human: Future Cell Therapy Product or Liquid Biopsy for Vascular Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1201:215-237. [PMID: 31898789 DOI: 10.1007/978-3-030-31206-0_11] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
New blood vessel formation in adults was considered to result exclusively from sprouting of preexisting endothelial cells, a process referred to angiogenesis. Vasculogenesis, the formation of new blood vessels from endothelial progenitor cells, was thought to occur only during embryonic life. Discovery of adult endothelial progenitor cells (EPCs) in 1997 opened the door for cell therapy in vascular disease. Endothelial progenitor cells contribute to vascular repair and are now well established as postnatal vasculogenic cells in humans. It is now admitted that endothelial colony-forming cells (ECFCs) are the vasculogenic subtype. ECFCs could be used as a cell therapy product and also as a liquid biopsy in several vascular diseases or as vector for gene therapy. However, despite a huge interest in these cells, their tissue and molecular origin is still unclear. We recently proposed that endothelial progenitor could come from very small embryonic-like stem cells (VSELs) isolated in human from CD133 positive cells. VSELs are small dormant stem cells related to migratory primordial germ cells. They have been described in bone marrow and other organs. This chapter discusses the reported findings from in vitro data and also preclinical studies that aimed to explore stem cells at the origin of vasculogenesis in human and then explore the potential use of ECFCs to promote newly formed vessels or serve as liquid biopsy to understand vascular pathophysiology and in particular pulmonary disease and haemostasis disorders.
Collapse
|
21
|
Bassetti B, Carbucicchio C, Catto V, Gambini E, Rurali E, Bestetti A, Gaipa G, Belotti D, Celeste F, Parma M, Righetti S, Biava L, Arosio M, Bonomi A, Agostoni P, Scacciatella P, Achilli F, Pompilio G. Linking cell function with perfusion: insights from the transcatheter delivery of bone marrow-derived CD133 + cells in ischemic refractory cardiomyopathy trial (RECARDIO). Stem Cell Res Ther 2018; 9:235. [PMID: 30217223 PMCID: PMC6137884 DOI: 10.1186/s13287-018-0969-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 07/30/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022] Open
Abstract
Background Cell therapy with bone marrow (BM)-derived progenitors has emerged as a promising therapeutic for refractory angina (RA) patients. In the present study, we evaluated the safety and preliminary efficacy of transcatheter delivery of autologous BM-derived advanced therapy medicinal product CD133+ cells (ATMP-CD133) in RA patients, correlating perfusion outcome with cell function. Methods In the phase I “Endocavitary Injection of Bone Marrow Derived CD133+ Cells in Ischemic Refractory Cardiomyopathy” (RECARDIO) trial, a total of 10 patients with left ventricular (LV) dysfunction (ejection fraction ≤ 45%) and evidence of reversible ischemia, as assessed by single-photon emission computed tomography (SPECT), underwent BM aspiration and fluoroscopy-based percutaneous endomyocardial delivery of ATMP-CD133. Patients were evaluated at 6 and 12 months for safety and preliminary efficacy endpoints. ATMP-CD133 samples were used for in vitro correlations. Results Patients were treated safely with a mean number of 6.57 ± 3.45 × 106 ATMP-CD133. At 6-month follow-up, myocardial perfusion at SPECT was significantly ameliorated in terms of changes in summed stress (from 18.2 ± 8.6 to 13.8 ± 7.8, p = 0.05) and difference scores (from 12.0 ± 5.3 to 6.1 ± 4.0, p = 0.02) and number of segments with inducible ischemia (from 7.3 ± 2.2 to 4.0 ± 2.7, p = 0.003). Similarly, Canadian Cardiovascular Society and New York Heart Association classes significantly improved at follow-up vs baseline (p ≤ 0.001 and p = 0.007, respectively). Changes in summed stress score changes positively correlated with ATMP-CD133 release of proangiogenic cytokines HGF and PDGF-bb (r = 0.80, p = 0.009 and r = 0.77, p = 0.01, respectively) and negatively with the proinflammatory cytokines RANTES (r = − 0.79, p = 0.01) and IL-6 (r = − 0.76, p = 0.02). Conclusion Results of the RECARDIO trial suggested safety and efficacy in terms of clinical and perfusion outcomes in patients with RA and LV dysfunction. The observed link between myocardial perfusion improvements and ATMP-CD133 secretome may represent a proof of concept for further mechanistic investigations. Trial registration ClinicalTrials.gov, NCT02059681. Registered 11 February 2014.
Collapse
Affiliation(s)
- Beatrice Bassetti
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, Via Carlo Parea 4, 20138, Milan, Italy
| | - Corrado Carbucicchio
- Heart Rhythm Center, Centro Cardiologico Monzino-IRCCS, Via Carlo Parea 4, 20138, Milan, Italy
| | - Valentina Catto
- Heart Rhythm Center, Centro Cardiologico Monzino-IRCCS, Via Carlo Parea 4, 20138, Milan, Italy
| | - Elisa Gambini
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, Via Carlo Parea 4, 20138, Milan, Italy
| | - Erica Rurali
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, Via Carlo Parea 4, 20138, Milan, Italy
| | - Alberto Bestetti
- Service of Nuclear Medicine, IRCCS Multimedica, Via Milanese 300, 20099, Sesto San Giovanni, Milan, Italy
| | - Giuseppe Gaipa
- Laboratory of Cell and Gene Therapy "Stefano Verri", ASST-Monza, San Gerardo Hospital, Via Pergolesi 33, 20900, Monza, Italy.,Tettamanti Research Center, Tettamanti Foundation, Via Pergolesi 33, 20900, Monza, Italy
| | - Daniela Belotti
- Laboratory of Cell and Gene Therapy "Stefano Verri", ASST-Monza, San Gerardo Hospital, Via Pergolesi 33, 20900, Monza, Italy.,University of Milano Bicocca, Via Pergolesi 33, 20900, Monza, Italy
| | - Fabrizio Celeste
- Cardiovascular Imaging Area, Centro Cardiologico Monzino-IRCCS, Via Carlo Parea 4, 20138, Milan, Italy
| | - Matteo Parma
- Haematology Division and BMT Unit, ASST-Monza, San Gerardo Hospital, Via Pergolesi 33, 20900, Monza, Italy
| | - Stefano Righetti
- Department of Cardiology, ASST-Monza, San Gerardo Hospital, Via Pergolesi 33, 20900, Monza, Italy
| | - Lorenza Biava
- Department of Cardiovascular and Thoracic Diseases, Città della Salute e della Scienza Hospital, Corso Bramante 88, 10126, Turin, Italy
| | - Maurizio Arosio
- Nuclear Medicine Unit, ASST-Monza, San Gerardo Hospital and University of Milano Bicocca, Via Pergolesi, 33, 20900, Monza, Italy
| | - Alice Bonomi
- BioStatistical Unit, Centro Cardiologico Monzino-IRCCS, Via Carlo Parea 4, 20138, Milan, Italy
| | - Piergiuseppe Agostoni
- Heart Failure, Clinical Cardiology and Rehabilitation Cardiology Unit, Centro Cardiologico Monzino-IRCCS, Via Carlo Parea 4, 20138, Milan, Italy.,Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Paolo Scacciatella
- Department of Cardiovascular and Thoracic Diseases, Città della Salute e della Scienza Hospital, Corso Bramante 88, 10126, Turin, Italy
| | - Felice Achilli
- Department of Cardiology, ASST-Monza, San Gerardo Hospital, Via Pergolesi 33, 20900, Monza, Italy
| | - Giulio Pompilio
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, Via Carlo Parea 4, 20138, Milan, Italy. .,Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Via Festa del Perdono 7, 20122, Milan, Italy.
| |
Collapse
|
22
|
Xu ZM, Huang F, Huang WQ. Angiogenic lncRNAs: A potential therapeutic target for ischaemic heart disease. Life Sci 2018; 211:157-171. [PMID: 30219334 DOI: 10.1016/j.lfs.2018.09.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/31/2018] [Accepted: 09/09/2018] [Indexed: 12/14/2022]
Abstract
Long noncoding RNAs (LncRNAs) are involved in biological processes and the pathology of diseases and represent an important biomarker or therapeutic target for disease. Emerging evidence has suggested that lncRNAs modulate angiogenesis by regulating the angiogenic cell process-including vascular endothelial cells (VECs); stem cells, particularly bone marrow-derived stem cells, endothelial progenitor cells (EPCs) and mesenchymal stem cells (MSCs); and vascular smooth muscle cells (VSMCs)-and participating in ischaemic heart disease (IHD). Therapeutic angiogenesis as an alternative therapy to promote coronary collateral circulation has been demonstrated to significantly improve the prognosis and quality of life of patients with IHD in past decades. Therefore, lncRNAs are likely to represent a novel therapeutic target for IHD through regulation of the angiogenesis process. This review summarizes the classification and functions of lncRNAs and their roles in regulating angiogenesis and in IHD, in the context of an overview of therapeutic angiogenesis in clinical trials.
Collapse
Affiliation(s)
- Zhi-Meng Xu
- Department of Geriatric Cardiology & Guangxi Key Laboratory Base of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Feng Huang
- Institute of Cardiovascular Diseases & Guangxi Key Laboratory Base of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Wei-Qiang Huang
- Department of Geriatric Cardiology & Guangxi Key Laboratory Base of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China.
| |
Collapse
|
23
|
Cheng K, de Silva R. New Advances in the Management of Refractory Angina Pectoris. Eur Cardiol 2018; 13:70-79. [PMID: 30310476 PMCID: PMC6159415 DOI: 10.15420/ecr.2018:1:2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/27/2018] [Indexed: 12/27/2022] Open
Abstract
Refractory angina is a significant clinical problem and its successful management is often extremely challenging. Defined as chronic angina-type chest pain in the presence of myocardial ischaemia that persists despite optimal medical, interventional and surgical treatment, current therapies are limited and new approaches to treatment are needed. With an ageing population and increased survival from coronary artery disease, clinicians will increasingly encounter this complex condition in routine clinical practice. Novel therapies to target myocardial ischaemia in patients with refractory angina are at the forefront of research and in this review we discuss those in clinical translation and assess the evidence behind their efficacy.
Collapse
Affiliation(s)
- Kevin Cheng
- Specialist Angina Service, Royal Brompton and Harefield NHS Foundation TrustLondon, UK
- Imperial College Healthcare NHS TrustLondon, UK
| | - Ranil de Silva
- Specialist Angina Service, Royal Brompton and Harefield NHS Foundation TrustLondon, UK
- Vascular Science Department, National Heart and Lung InstituteLondon, UK
| |
Collapse
|
24
|
|
25
|
Shah R, Latham SB, Khan SA, Shahreyar M, Hwang I, Jovin IS. A comprehensive meta-analysis of stem cell therapy for chronic angina. Clin Cardiol 2018; 41:525-531. [PMID: 29664162 DOI: 10.1002/clc.22922] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/02/2018] [Accepted: 02/04/2018] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND A substantial proportion of patients with coronary artery disease do not achieve complete revascularization and continue to experience refractory angina despite optimal medical therapy. Recently, stem cell therapy has emerged as a potential therapeutic option for these patients. However, findings of individual trials have been scrutinized because of their small sample sizes and lack of statistical power. Therefore, we conducted an updated comprehensive meta-analysis of available randomized controlled trials (RCTs) with the largest sample size ever reported on this subject. HYPOTHESIS In patients with chronic angina stem cell therapy improves clinical outcomes. METHODS Scientific databases and websites were searched for RCTs. Data were independently collected by 2 investigators, and disagreements were resolved by consensus. Data from 10 trials including 658 patients were analyzed. RESULTS Stem cell therapy improved Canadian Cardiovascular Society angina class (risk ratio: 1.53, 95% CI: 1.09 to 2.15, P = 0.013), exercise capacity (standardized mean difference [SMD]: 0.56, 95% CI: 0.23 to 0.88, P = 0.001), and left ventricular ejection fraction (SMD: 0.63, 95% CI: 0.27 to 1.00, P = 0.001) compared with placebo. It also decreased anginal episodes (SMD: -1.21, 95% CI: -2.40 to -0.02, P = 0.045) and myocardial perfusion defects (SMD: -0.70, 95% CI: -1.11 to -0.29, P = 0.001). However, no improvements in all-cause mortality were observed after a relatively short follow-up. CONCLUSIONS In patients with chronic angina on optimal medical therapy, stem cell therapy improves symptoms, exercise capacity, and left ventricular ejection fraction. These findings warrant confirmation using larger trials.
Collapse
Affiliation(s)
- Rahman Shah
- Department of Internal Medicine, University of Tennessee, Memphis, Tennessee
| | - Samuel B Latham
- Department of Internal Medicine, University of Tennessee, Memphis, Tennessee
| | - Sajjad A Khan
- Department of Internal Medicine, Aga Khan University, Karachi, Pakistan
| | - Muhammad Shahreyar
- Department of Internal Medicine, University of Tennessee, Memphis, Tennessee
| | - Inyong Hwang
- Department of Internal Medicine, University of Tennessee, Memphis, Tennessee
| | - Ion S Jovin
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
26
|
Cell Therapy for Refractory Angina: A Reappraisal. Stem Cells Int 2017; 2017:5648690. [PMID: 29375624 PMCID: PMC5742462 DOI: 10.1155/2017/5648690] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/05/2017] [Indexed: 12/23/2022] Open
Abstract
Cardiac cell-based therapy has emerged as a novel therapeutic option for patients dealing with untreatable refractory angina (RA). However, after more than a decade of controlled studies, no definitive consensus has been reached regarding clinical efficacy. Although positive results in terms of surrogate endpoints have been suggested by early and phase II clinical studies as well as by meta-analyses, the more recent reports lacked the provision of definitive response in terms of hard clinical endpoints. Regrettably, pivotal trials designed to conclusively determine the efficacy of cell-based therapeutics in such a challenging clinical condition are therefore still missing. Considering this, a comprehensive reappraisal of cardiac cell-based therapy role in RA seems warranted and timely, since a number of crucial cell- and patient-related aspects need to be systematically analysed. As an example, the large variability in efficacy endpoint selection appears to be a limiting factor for the advancement of cardiac cell-based therapy in the field. This review will provide an overview of the key elements that may have influenced the results of cell-based trials in the context of RA, focusing in particular on the understanding at which the extent of angina-related endpoints may predict cell-based therapeutic efficacy.
Collapse
|
27
|
Slavich M, Giannini F, Godino C, Pizzetti G, Gramegna M, Fragasso G, Margonato A. Reducer, extracorporeal shockwave therapy or stem cells in refractory angina: a retrospective study. J Cardiovasc Med (Hagerstown) 2017; 19:42-44. [PMID: 29028786 DOI: 10.2459/jcm.0000000000000577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Massimo Slavich
- Division of Cardiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
28
|
Yanamandala M, Zhu W, Garry DJ, Kamp TJ, Hare JM, Jun HW, Yoon YS, Bursac N, Prabhu SD, Dorn GW, Bolli R, Kitsis RN, Zhang J. Overcoming the Roadblocks to Cardiac Cell Therapy Using Tissue Engineering. J Am Coll Cardiol 2017; 70:766-775. [PMID: 28774384 PMCID: PMC5553556 DOI: 10.1016/j.jacc.2017.06.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/05/2017] [Accepted: 06/05/2017] [Indexed: 12/20/2022]
Abstract
Transplantations of various stem cells or their progeny have repeatedly improved cardiac performance in animal models of myocardial injury; however, the benefits observed in clinical trials have been generally less consistent. Some of the recognized challenges are poor engraftment of implanted cells and, in the case of human cardiomyocytes, functional immaturity and lack of electrical integration, leading to limited contribution to the heart's contractile activity and increased arrhythmogenic risks. Advances in tissue and genetic engineering techniques are expected to improve the survival and integration of transplanted cells, and to support structural, functional, and bioenergetic recovery of the recipient hearts. Specifically, application of a prefabricated cardiac tissue patch to prevent dilation and to improve pumping efficiency of the infarcted heart offers a promising strategy for making stem cell therapy a clinical reality.
Collapse
Affiliation(s)
- Mounica Yanamandala
- Department of Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York
| | - Wuqiang Zhu
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Daniel J Garry
- Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota
| | - Timothy J Kamp
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Joshua M Hare
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Ho-Wook Jun
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Young-Sup Yoon
- Department of Medicine, Emory University, and Severance Biomedical Science Institute, Yonsei University College of Medicine, Atlanta, Georgia
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Sumanth D Prabhu
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gerald W Dorn
- Center for Pharmacogenomics, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky
| | - Richard N Kitsis
- Department of Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York
| | - Jianyi Zhang
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
29
|
Beltrami AP, Madeddu P. Pericytes and cardiac stem cells: Common features and peculiarities. Pharmacol Res 2017; 127:101-109. [PMID: 28578204 DOI: 10.1016/j.phrs.2017.05.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/14/2017] [Accepted: 05/25/2017] [Indexed: 12/20/2022]
Abstract
Clinical data and basic research indicate that the structural and functional alterations that characterize the evolution of cardiac disease towards heart failure may be, at least in part, reversed. This paradigm shift is due to the accumulation of evidence indicating that, in peculiar settings, cardiomyocytes may be replenished. Moving from the consideration that cardiomyocytes are rapidly withdrawn from the cell cycle after birth, independent laboratories have tested the hypothesis that cardiac resident stem/progenitor cells resided in mammalian hearts and were important for myocardial repair. After almost two decades of intensive investigation, several (but partially overlapping) cardiac resident stem/progenitor cell populations have been identified. These primitive cells are characterized by mesenchymal features, unique properties that distinguish them from mesodermal progenitors residing in other tissues, and heterogeneous embryological origins (that include the neural crest and the epicardium). A further layer of complexity is related to the nature, in vivo localization and properties of mesodermal progenitors residing in adult tissues. Intriguingly, these latter, whose possible perivascular pericyte/mural cell origin has been shown, have been identified in human hearts too. However, their exact anatomical localization, pathophysiological role, and their relationship with cardiac stem/progenitor cells are emerging only recently. Therefore, aim of this review is to discuss the different origin, the distinct nature, and the complementary effect of cardiac stem cells and pericytes supporting regenerative strategies based on the combined use of both myogenic and angiogenic factors.
Collapse
Affiliation(s)
- Antonio Paolo Beltrami
- Istituto di Anatomia Patologica, Università degli Studi di Udine, P.zzle S. Maria della Misericordia, 33100 Udine, Italy.
| | - Paolo Madeddu
- Experimental Cardiovascular Medicine, Regenerative Medicine Section, Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Level 7, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, United Kingdom.
| |
Collapse
|