1
|
Xie S, Zhang H, Liang Z, Yang X, Cao R. AXL, an Important Host Factor for DENV and ZIKV Replication. Front Cell Infect Microbiol 2021; 11:575346. [PMID: 33954117 PMCID: PMC8092360 DOI: 10.3389/fcimb.2021.575346] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Flaviviruses, as critically important pathogens, are still major public health problems all over the world. For instance, the evolution of ZIKV led to large-scale outbreaks in the Yap island in 2007. DENV was considered by the World Health Organization (WHO) as one of the 10 threats to global health in 2019. Enveloped viruses hijack a variety of host factors to complete its replication cycle. Phosphatidylserine (PS) receptor, AXL, is considered to be a candidate receptor for flavivirus invasion. In this review, we discuss the molecular structure of ZIKV and DENV, and how they interact with AXL to successfully invade host cells. A more comprehensive understanding of the molecular mechanisms of flavivirus-AXL interaction will provide crucial insights into the virus infection process and the development of anti-flavivirus therapeutics.
Collapse
Affiliation(s)
- Shengda Xie
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Huiru Zhang
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhenjie Liang
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xingmiao Yang
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ruibing Cao
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Wang F, Chen R, Jiang Q, Wu H, Gong M, Liu W, Yu X, Zhang W, Han R, Liu A, Chen Y, Han D. Roles of Sialic Acid, AXL, and MER Receptor Tyrosine Kinases in Mumps Virus Infection of Mouse Sertoli and Leydig Cells. Front Microbiol 2020; 11:1292. [PMID: 32695074 PMCID: PMC7336603 DOI: 10.3389/fmicb.2020.01292] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/20/2020] [Indexed: 01/08/2023] Open
Abstract
The mumps virus (MuV) causes epidemic parotitis. MuV also frequently infects the testis and induces orchitis, an important etiological factor contributing to male infertility. However, mechanisms underlying MuV infection of the testis remain unknown. Here, we describe that sialic acid, AXL, and MER receptor tyrosine kinases regulate MuV entry and replication in mouse major testicular cells, including Sertoli and Leydig cells. Sialic acid, AXL, and MER were present in Sertoli and Leydig cells. Sialic acid specifically mediated MuV entry into Sertoli and Leydig cells, whereas both AXL and MER facilitated MuV replication within cells through the inhibition of cellular innate antiviral responses. Mechanistically, the inhibition of type 1 interferon signaling by AXL and MER is essential for MuV replication in Sertoli and Leydig cells. Our findings provide novel insights into the mechanisms behind MuV infection and replication in the testis.
Collapse
Affiliation(s)
- Fei Wang
- Peking Union Medical College, School of Basic Medicine, Chinese Academy of Medical Sciences, Institute of Basic Medical Sciences, Beijing, China
| | - Ran Chen
- Peking Union Medical College, School of Basic Medicine, Chinese Academy of Medical Sciences, Institute of Basic Medical Sciences, Beijing, China
| | - Qian Jiang
- Peking Union Medical College, School of Basic Medicine, Chinese Academy of Medical Sciences, Institute of Basic Medical Sciences, Beijing, China
| | - Han Wu
- Peking Union Medical College, School of Basic Medicine, Chinese Academy of Medical Sciences, Institute of Basic Medical Sciences, Beijing, China
| | - Maolei Gong
- Peking Union Medical College, School of Basic Medicine, Chinese Academy of Medical Sciences, Institute of Basic Medical Sciences, Beijing, China
| | - Weihua Liu
- Peking Union Medical College, School of Basic Medicine, Chinese Academy of Medical Sciences, Institute of Basic Medical Sciences, Beijing, China
| | - Xiaoqin Yu
- Peking Union Medical College, School of Basic Medicine, Chinese Academy of Medical Sciences, Institute of Basic Medical Sciences, Beijing, China
| | - Wenjing Zhang
- Peking Union Medical College, School of Basic Medicine, Chinese Academy of Medical Sciences, Institute of Basic Medical Sciences, Beijing, China
| | - Ruiqin Han
- Peking Union Medical College, School of Basic Medicine, Chinese Academy of Medical Sciences, Institute of Basic Medical Sciences, Beijing, China
| | - Aijie Liu
- Peking Union Medical College, School of Basic Medicine, Chinese Academy of Medical Sciences, Institute of Basic Medical Sciences, Beijing, China
| | - Yongmei Chen
- Peking Union Medical College, School of Basic Medicine, Chinese Academy of Medical Sciences, Institute of Basic Medical Sciences, Beijing, China
| | - Daishu Han
- Peking Union Medical College, School of Basic Medicine, Chinese Academy of Medical Sciences, Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Paniz-Mondolfi AE, Blohm GM, Hernandez-Perez M, Larrazabal A, Moya D, Marquez M, Talamo A, Carrillo A, Rothe de Arocha J, Lednicky J, Morris JG. Cutaneous features of Zika virus infection: a clinicopathological overview. Clin Exp Dermatol 2018; 44:13-19. [PMID: 30267436 DOI: 10.1111/ced.13793] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2018] [Indexed: 12/19/2022]
Abstract
Zika virus (ZIKV) is an emerging mosquito-borne flavivirus transmitted mainly by Aedes species of mosquitos. Although the infection is usually mild and self-limiting, it is emerging as a public health challenge in tropical and subtropical countries owing to its unprecedented pathogenicity and increased risk for fetal malformations and neurological symptoms. Cutaneous manifestations as for other mosquito-borne viruses remain a hallmark of the disease. This article provides a detailed overview on ZIKV infection, including its varied cutaneous clinical manifestations and diagnostic aspects, and also provides detailed insights into its pathogenesis in human skin.
Collapse
Affiliation(s)
- A E Paniz-Mondolfi
- Department of Infectious Diseases and Tropical Medicine, Clínica IDB Cabudare, Instituto de Investigaciones Biomédicas IDB, Barquisimeto, Lara, Venezuela.,Instituto Venezolano de los Seguros Sociales (IVSS), Department of Health, Caracas, Venezuela
| | - G M Blohm
- Department of Biology, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL, USA
| | - M Hernandez-Perez
- Department of Dermatopathology, Miraca Life Sciences Research Institute/Tufts Medical Center, Boston, MA, USA
| | - A Larrazabal
- Department of Infectious Diseases and Tropical Medicine, Clínica IDB Cabudare, Instituto de Investigaciones Biomédicas IDB, Barquisimeto, Lara, Venezuela.,Infectious Diseases Research Branch-Venezuelan Science and the Zoonosis and Emerging Pathogens Regional Collaborative Network, Arboviral Diseases Branch, Barquisimeto, Lara, Venezuela
| | - D Moya
- Department of Infectious Diseases and Tropical Medicine, Clínica IDB Cabudare, Instituto de Investigaciones Biomédicas IDB, Barquisimeto, Lara, Venezuela.,Infectious Diseases Research Branch-Venezuelan Science and the Zoonosis and Emerging Pathogens Regional Collaborative Network, Arboviral Diseases Branch, Barquisimeto, Lara, Venezuela
| | - M Marquez
- Infectious Diseases Research Branch-Venezuelan Science and the Zoonosis and Emerging Pathogens Regional Collaborative Network, Arboviral Diseases Branch, Barquisimeto, Lara, Venezuela.,Health Sciences Department, College of Medicine, Universidad Centroccidental Lisandro Alvarado, Barquisimeto, Lara, Venezuela
| | - A Talamo
- Infectious Diseases Research Branch-Venezuelan Science and the Zoonosis and Emerging Pathogens Regional Collaborative Network, Arboviral Diseases Branch, Barquisimeto, Lara, Venezuela.,Health Sciences Department, College of Medicine, Universidad Centroccidental Lisandro Alvarado, Barquisimeto, Lara, Venezuela
| | - A Carrillo
- Department of Infectious Diseases and Tropical Medicine, Clínica IDB Cabudare, Instituto de Investigaciones Biomédicas IDB, Barquisimeto, Lara, Venezuela.,Infectious Diseases Research Branch-Venezuelan Science and the Zoonosis and Emerging Pathogens Regional Collaborative Network, Arboviral Diseases Branch, Barquisimeto, Lara, Venezuela.,Health Sciences Department, College of Medicine, Universidad Nacional Experimental 'Francisco de Miranda', Punto Fijo, Falcon, Venezuela
| | - J Rothe de Arocha
- Sociedad Anticancerosa del Estado Lara, Barquisimeto, Lara, Venezuela.,Psoriasis Unit, Hospital Central Antonio Maria Pineda, Barquisimeto, Lara, Venezuela
| | - J Lednicky
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - J G Morris
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,Division of Infectious Diseases and Global Health, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|