1
|
Avolio E, Campagnolo P, Katare R, Madeddu P. The role of cardiac pericytes in health and disease: therapeutic targets for myocardial infarction. Nat Rev Cardiol 2024; 21:106-118. [PMID: 37542118 DOI: 10.1038/s41569-023-00913-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/10/2023] [Indexed: 08/06/2023]
Abstract
Millions of cardiomyocytes die immediately after myocardial infarction, regardless of whether the culprit coronary artery undergoes prompt revascularization. Residual ischaemia in the peri-infarct border zone causes further cardiomyocyte damage, resulting in a progressive decline in contractile function. To date, no treatment has succeeded in increasing the vascularization of the infarcted heart. In the past decade, new approaches that can target the heart's highly plastic perivascular niche have been proposed. The perivascular environment is populated by mesenchymal progenitor cells, fibroblasts, myofibroblasts and pericytes, which can together mount a healing response to the ischaemic damage. In the infarcted heart, pericytes have crucial roles in angiogenesis, scar formation and stabilization, and control of the inflammatory response. Persistent ischaemia and accrual of age-related risk factors can lead to pericyte depletion and dysfunction. In this Review, we describe the phenotypic changes that characterize the response of cardiac pericytes to ischaemia and the potential of pericyte-based therapy for restoring the perivascular niche after myocardial infarction. Pericyte-related therapies that can salvage the area at risk of an ischaemic injury include exogenously administered pericytes, pericyte-derived exosomes, pericyte-engineered biomaterials, and pharmacological approaches that can stimulate the differentiation of constitutively resident pericytes towards an arteriogenic phenotype. Promising preclinical results from in vitro and in vivo studies indicate that pericytes have crucial roles in the treatment of coronary artery disease and the prevention of post-ischaemic heart failure.
Collapse
Affiliation(s)
- Elisa Avolio
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, UK.
| | - Paola Campagnolo
- School of Biosciences, Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
| | - Rajesh Katare
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Paolo Madeddu
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
2
|
Basara G, Bahcecioglu G, Ozcebe SG, Ellis BW, Ronan G, Zorlutuna P. Myocardial infarction from a tissue engineering and regenerative medicine point of view: A comprehensive review on models and treatments. BIOPHYSICS REVIEWS 2022; 3:031305. [PMID: 36091931 PMCID: PMC9447372 DOI: 10.1063/5.0093399] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/08/2022] [Indexed: 05/12/2023]
Abstract
In the modern world, myocardial infarction is one of the most common cardiovascular diseases, which are responsible for around 18 million deaths every year or almost 32% of all deaths. Due to the detrimental effects of COVID-19 on the cardiovascular system, this rate is expected to increase in the coming years. Although there has been some progress in myocardial infarction treatment, translating pre-clinical findings to the clinic remains a major challenge. One reason for this is the lack of reliable and human representative healthy and fibrotic cardiac tissue models that can be used to understand the fundamentals of ischemic/reperfusion injury caused by myocardial infarction and to test new drugs and therapeutic strategies. In this review, we first present an overview of the anatomy of the heart and the pathophysiology of myocardial infarction, and then discuss the recent developments on pre-clinical infarct models, focusing mainly on the engineered three-dimensional cardiac ischemic/reperfusion injury and fibrosis models developed using different engineering methods such as organoids, microfluidic devices, and bioprinted constructs. We also present the benefits and limitations of emerging and promising regenerative therapy treatments for myocardial infarction such as cell therapies, extracellular vesicles, and cardiac patches. This review aims to overview recent advances in three-dimensional engineered infarct models and current regenerative therapeutic options, which can be used as a guide for developing new models and treatment strategies.
Collapse
Affiliation(s)
- Gozde Basara
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Gokhan Bahcecioglu
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - S. Gulberk Ozcebe
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Bradley W Ellis
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - George Ronan
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Pinar Zorlutuna
- Present address: 143 Multidisciplinary Research Building, University of Notre Dame, Notre Dame, IN 46556. Author to whom correspondence should be addressed:. Tel.: +1 574 631 8543. Fax: +1 574 631 8341
| |
Collapse
|
3
|
|
4
|
Zhou W, Ma T, Ding S. Non-viral approaches for somatic cell reprogramming into cardiomyocytes. Semin Cell Dev Biol 2021; 122:28-36. [PMID: 34238675 DOI: 10.1016/j.semcdb.2021.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/04/2021] [Accepted: 06/23/2021] [Indexed: 11/27/2022]
Abstract
Heart disease is the leading cause of human deaths worldwide. Due to lacking cardiomyocytes with replicative capacity and cardiac progenitor cells with differentiation potential in adult hearts, massive loss of cardiomyocytes after ischemic events produces permanent damage, ultimately leading to heart failure. Cellular reprogramming is a promising strategy to regenerate heart by induction of cardiomyocytes from other cell types, such as cardiac fibroblasts. In contrast to conventional virus-based cardiac reprogramming, non-viral approaches greatly reduce the potential risk that includes disruption of genome integrity by integration of foreign DNAs, expression of exogenous genes with oncogenic potential, and appearance of partially reprogrammed cells harmful for the physiological functions of tissues/organs, which impedes their in-vivo applications. Here, we review the recent progress in development of non-viral approaches to directly reprogram somatic cells towards cardiomyocytes and their therapeutic application for heart regeneration.
Collapse
Affiliation(s)
- Wei Zhou
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Tianhua Ma
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Sheng Ding
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
5
|
Monsanto MM, Wang BJ, Ehrenberg ZR, Echeagaray O, White KS, Alvarez R, Fisher K, Sengphanith S, Muliono A, Gude NA, Sussman MA. Enhancing myocardial repair with CardioClusters. Nat Commun 2020; 11:3955. [PMID: 32769998 PMCID: PMC7414230 DOI: 10.1038/s41467-020-17742-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 07/14/2020] [Indexed: 12/15/2022] Open
Abstract
Cellular therapy to treat heart failure is an ongoing focus of intense research, but progress toward structural and functional recovery remains modest. Engineered augmentation of established cellular effectors overcomes impediments to enhance reparative activity. Such 'next generation' implementation includes delivery of combinatorial cell populations exerting synergistic effects. Concurrent isolation and expansion of three distinct cardiac-derived interstitial cell types from human heart tissue, previously reported by our group, prompted design of a 3D structure that maximizes cellular interaction, allows for defined cell ratios, controls size, enables injectability, and minimizes cell loss. Herein, mesenchymal stem cells (MSCs), endothelial progenitor cells (EPCs) and c-Kit+ cardiac interstitial cells (cCICs) when cultured together spontaneously form scaffold-free 3D microenvironments termed CardioClusters. scRNA-Seq profiling reveals CardioCluster expression of stem cell-relevant factors, adhesion/extracellular-matrix molecules, and cytokines, while maintaining a more native transcriptome similar to endogenous cardiac cells. CardioCluster intramyocardial delivery improves cell retention and capillary density with preservation of cardiomyocyte size and long-term cardiac function in a murine infarction model followed 20 weeks. CardioCluster utilization in this preclinical setting establish fundamental insights, laying the framework for optimization in cell-based therapeutics intended to mitigate cardiomyopathic damage.
Collapse
Affiliation(s)
- Megan M Monsanto
- San Diego Heart Research Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Bingyan J Wang
- San Diego Heart Research Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Zach R Ehrenberg
- San Diego Heart Research Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Oscar Echeagaray
- San Diego Heart Research Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Kevin S White
- San Diego Heart Research Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Roberto Alvarez
- San Diego Heart Research Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Kristina Fisher
- San Diego Heart Research Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Sharon Sengphanith
- San Diego Heart Research Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Alvin Muliono
- San Diego Heart Research Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Natalie A Gude
- San Diego Heart Research Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Mark A Sussman
- San Diego Heart Research Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA.
| |
Collapse
|
6
|
Witman N, Zhou C, Grote Beverborg N, Sahara M, Chien KR. Cardiac progenitors and paracrine mediators in cardiogenesis and heart regeneration. Semin Cell Dev Biol 2019; 100:29-51. [PMID: 31862220 DOI: 10.1016/j.semcdb.2019.10.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/13/2019] [Accepted: 10/21/2019] [Indexed: 12/17/2022]
Abstract
The mammalian hearts have the least regenerative capabilities among tissues and organs. As such, heart regeneration has been and continues to be the ultimate goal in the treatment against acquired and congenital heart diseases. Uncovering such a long-awaited therapy is still extremely challenging in the current settings. On the other hand, this desperate need for effective heart regeneration has developed various forms of modern biotechnologies in recent years. These involve the transplantation of pluripotent stem cell-derived cardiac progenitors or cardiomyocytes generated in vitro and novel biochemical molecules along with tissue engineering platforms. Such newly generated technologies and approaches have been shown to effectively proliferate cardiomyocytes and promote heart repair in the diseased settings, albeit mainly preclinically. These novel tools and medicines give somehow credence to breaking down the barriers associated with re-building heart muscle. However, in order to maximize efficacy and achieve better clinical outcomes through these cell-based and/or cell-free therapies, it is crucial to understand more deeply the developmental cellular hierarchies/paths and molecular mechanisms in normal or pathological cardiogenesis. Indeed, the morphogenetic process of mammalian cardiac development is highly complex and spatiotemporally regulated by various types of cardiac progenitors and their paracrine mediators. Here we discuss the most recent knowledge and findings in cardiac progenitor cell biology and the major cardiogenic paracrine mediators in the settings of cardiogenesis, congenital heart disease, and heart regeneration.
Collapse
Affiliation(s)
- Nevin Witman
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Chikai Zhou
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Niels Grote Beverborg
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Makoto Sahara
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Surgery, Yale University School of Medicine, CT, USA.
| | - Kenneth R Chien
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
7
|
Soucy JR, Askaryan J, Diaz D, Koppes AN, Annabi N, Koppes RA. Glial cells influence cardiac permittivity as evidenced through in vitro and in silico models. Biofabrication 2019; 12:015014. [PMID: 31593932 PMCID: PMC11062241 DOI: 10.1088/1758-5090/ab4c0a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Excitation-contraction (EC) coupling in the heart has, until recently, been solely accredited to cardiomyocytes. The inherent complexities of the heart make it difficult to examine non-muscle contributions to contraction in vivo, and conventional in vitro models fail to capture multiple features and cellular heterogeneity of the myocardium. Here, we report on the development of a 3D cardiac μTissue to investigate changes in the cellular composition of native myocardium in vitro. Cells are encapsulated within micropatterned gelatin-based hydrogels formed via visible light photocrosslinking. This system enables spatial control of the microarchitecture, perturbation of the cellular composition, and functional measures of EC coupling via video microscopy and a custom algorithm to quantify beat frequency and degree of coordination. To demonstrate the robustness of these tools and evaluate the impact of altered cell population densities on cardiac μTissues, contractility and cell morphology were assessed with the inclusion of exogenous non-myelinating Schwann cells (SCs). Results demonstrate that the addition of exogenous SCs alter cardiomyocyte EC, profoundly inhibiting the response to electrical pacing. Computational modeling of connexin-mediated coupling suggests that SCs impact cardiomyocyte resting potential and rectification following depolarization. Cardiac μTissues hold potential for examining the role of cellular heterogeneity in heart health, pathologies, and cellular therapies.
Collapse
Affiliation(s)
- Jonathan R Soucy
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States of America
| | | | | | | | | | | |
Collapse
|
8
|
Gude NA, Sussman MA. Cardiac regenerative therapy: Many paths to repair. Trends Cardiovasc Med 2019; 30:338-343. [PMID: 31515053 DOI: 10.1016/j.tcm.2019.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/14/2019] [Accepted: 08/29/2019] [Indexed: 12/17/2022]
Abstract
Cardiovascular disease remains the primary cause of death in the United States and in most nations worldwide, despite ongoing intensive efforts to promote cardiac health and treat heart failure. Replacing damaged myocardium represents perhaps the most promising treatment strategy, but also the most challenging given that the adult mammalian heart is notoriously resistant to endogenous repair. Cardiac regeneration following pathologic challenge would require proliferation of surviving tissue, expansion and differentiation of resident progenitors, or transdifferentiation of exogenously applied progenitor cells into functioning myocardium. Adult cardiomyocyte proliferation has been the focus of investigation for decades, recently enjoying a renaissance of interest as a therapeutic strategy for reversing cardiomyocyte loss due in large part to ongoing controversies and frustrations with myocardial cell therapy outcomes. The promise of cardiac cell therapy originated with reports of resident adult cardiac stem cells that could be isolated, expanded and reintroduced into damaged myocardium, producing beneficial effects in preclinical animal models. Despite modest functional improvements, Phase I clinical trials using autologous cardiac derived cells have proven safe and effective, setting the stage for an ongoing multi-center Phase II trial combining autologous cardiac stem cell types to enhance beneficial effects. This overview will examine the history of these two approaches for promoting cardiac repair and attempt to provide context for current and future directions in cardiac regenerative research.
Collapse
Affiliation(s)
- Natalie A Gude
- SDSU Heart Institute and Biology Department, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Mark A Sussman
- SDSU Heart Institute and Biology Department, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA.
| |
Collapse
|
9
|
In situ transcriptome characteristics are lost following culture adaptation of adult cardiac stem cells. Sci Rep 2018; 8:12060. [PMID: 30104715 PMCID: PMC6089936 DOI: 10.1038/s41598-018-30551-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/01/2018] [Indexed: 01/01/2023] Open
Abstract
Regenerative therapeutic approaches for myocardial diseases often involve delivery of stem cells expanded ex vivo. Prior studies indicate that cell culture conditions affect functional and phenotypic characteristics, but relationship(s) of cultured cells derived from freshly isolated populations and the heterogeneity of the cultured population remain poorly defined. Functional and phenotypic characteristics of ex vivo expanded cells will determine outcomes of interventional treatment for disease, necessitating characterization of the impact that ex vivo expansion has upon isolated stem cell populations. Single-cell RNA-Seq profiling (scRNA-Seq) was performed to determine consequences of culture expansion upon adult cardiac progenitor cells (CPCs) as well as relationships with other cell populations. Bioinformatic analyses demonstrate that identity marker genes expressed in freshly isolated cells become undetectable in cultured CPCs while low level expression emerges for thousands of other genes. Transcriptional profile of CPCs exhibited greater degree of similarity throughout the cultured population relative to freshly isolated cells. Findings were validated by comparative analyses using scRNA-Seq datasets of various cell types generated by multiple scRNA-Seq technology. Increased transcriptome diversity and decreased population heterogeneity in the cultured cell population may help account for reported outcomes associated with experimental and clinical use of CPCs for treatment of myocardial injury.
Collapse
|
10
|
Albiero M, Fadini GP. Pharmacologic targeting of the diabetic stem cell mobilopathy. Pharmacol Res 2018; 135:18-24. [PMID: 30030170 DOI: 10.1016/j.phrs.2018.07.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/26/2018] [Accepted: 07/16/2018] [Indexed: 01/01/2023]
Abstract
Diabetes is a chronic metabolic disease characterized by hyperglycemia and several associated biochemical abnormalities. Diabetes leads to multiorgan complications that collectively reduce life expectancy. Hematopoietic stem cells (HSCs) are nested within bone marrow (BM) niches whence they can be mobilized to the peripheral circulation. Clinically, this is done for HSC collection and autologous or allogenic transplantation. A great amount of data from basic and clinical studies support that diabetic patients are poor HSC mobilizers owing to BM remodeling. Dysfunction of the BM shares pathophysiological features and pathways with typical chronic diabetic complications that affect other issues (e.g. the retina and the kidney). From a clinical perspective, impaired HSC mobilization translates into the failure to collect a minimum number of CD34+ cells to achieve a safe engraftment after transplantation. Furthermore, blunted mobilization is associated with reduced steady-state levels of circulating HSCs, which have been consistently described in diabetic patients and associated with increased risk of adverse outcomes, including cardiovascular events and death. In this review, we discuss the most clinically relevant pharmacological options to overcome impaired HSC mobilization in diabetes. These therapeutic strategies may result in an improved outcome of diabetic patients undergoing HSC transplantation and restore circulating HSC levels, thereby protecting from adverse cardiovascular outcomes.
Collapse
Affiliation(s)
- M Albiero
- Venetian Institute of Molecular Medicine, Laboratory of Experimental Diabetology, 35100 Padova, Italy; Department of Medicine, Metabolic Division, University of Padova, 35100 Padova, Italy
| | - G P Fadini
- Venetian Institute of Molecular Medicine, Laboratory of Experimental Diabetology, 35100 Padova, Italy; Department of Medicine, Metabolic Division, University of Padova, 35100 Padova, Italy.
| |
Collapse
|
11
|
Chen H, Zhang A, Wu JC. Harnessing cell pluripotency for cardiovascular regenerative medicine. Nat Biomed Eng 2018; 2:392-398. [PMID: 31011193 PMCID: PMC10902213 DOI: 10.1038/s41551-018-0244-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 04/26/2018] [Indexed: 01/14/2023]
Abstract
Human pluripotent stem cells (hPSCs), in particular embryonic stem cells and induced pluripotent stem cells, have received enormous attention in cardiovascular regenerative medicine owing to their ability to expand and differentiate into functional cardiomyocytes and other cardiovascular cell types. Despite the potential applications of hPSCs for tissue regeneration in patients suffering from cardiovascular disease, whether hPSC-based therapies can be safe and efficacious remains inconclusive, with strong evidence from clinical trials lacking. Critical factors limiting therapeutic efficacy are the degree of maturity and purity of the hPSC-derived differentiated progeny, and the tumorigenic risk associated with residual undifferentiated cells. In this Review, we discuss recent advances in cardiac-cell differentiation from hPSCs and in the direct reprogramming of non-myocyte cells for cardiovascular regenerative applications. We also discuss approaches for the delivery of cells to diseased tissue, and how such advances are contributing to progress in cardiac tissue engineering for tackling heart disease.
Collapse
Affiliation(s)
- Haodong Chen
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Angela Zhang
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
12
|
Bagno L, Hatzistergos KE, Balkan W, Hare JM. Mesenchymal Stem Cell-Based Therapy for Cardiovascular Disease: Progress and Challenges. Mol Ther 2018; 26:1610-1623. [PMID: 29807782 DOI: 10.1016/j.ymthe.2018.05.009] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/30/2018] [Accepted: 05/10/2018] [Indexed: 12/17/2022] Open
Abstract
Administration of mesenchymal stem cells (MSCs) to diseased hearts improves cardiac function and reduces scar size. These effects occur via the stimulation of endogenous repair mechanisms, including regulation of immune responses, tissue perfusion, inhibition of fibrosis, and proliferation of resident cardiac cells, although rare events of transdifferentiation into cardiomyocytes and vascular components are also described in animal models. While these improvements demonstrate the potential of stem cell therapy, the goal of full cardiac recovery has yet to be realized in either preclinical or clinical studies. To reach this goal, novel cell-based therapeutic approaches are needed. Ongoing studies include cell combinations, incorporation of MSCs into biomaterials, or pre-conditioning or genetic manipulation of MSCs to boost their release of paracrine factors, such as exosomes, growth factors, microRNAs, etc. All of these approaches can augment therapeutic efficacy. Further study of the optimal route of administration, the correct dose, the best cell population(s), and timing for treatment are parameters that still need to be addressed in order to achieve the goal of complete cardiac regeneration. Despite significant progress, many challenges remain.
Collapse
Affiliation(s)
- Luiza Bagno
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Konstantinos E Hatzistergos
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Cell Biology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Wayne Balkan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|