1
|
Valverde CA, Agüero R, Wehrens X, Vila Petroff M, Mattiazzi A, Gonano LA. RyR2 phosphorylation at serine-2814 increases cardiac tolerance to arrhythmogenic Ca 2+ alternans in mice. J Mol Cell Cardiol 2025; 200:40-44. [PMID: 39842770 DOI: 10.1016/j.yjmcc.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/10/2025] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Affiliation(s)
- C A Valverde
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", CCT-CONICET/UNLP La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata 1900, Argentina.
| | - R Agüero
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", CCT-CONICET/UNLP La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Xht Wehrens
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77096, USA
| | - M Vila Petroff
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", CCT-CONICET/UNLP La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - A Mattiazzi
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", CCT-CONICET/UNLP La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - L A Gonano
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", CCT-CONICET/UNLP La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata 1900, Argentina.
| |
Collapse
|
2
|
Hsu CH, Hong SF, Lo YS, Ho HY, Lin CC, Chuang YC, Hsieh MJ, Chou MC. The Role of Ryanodine Receptor 2 Polymorphisms in Oral Squamous Cell Carcinoma Susceptibility and Clinicopathological Features. Int J Mol Sci 2024; 25:10328. [PMID: 39408657 PMCID: PMC11476886 DOI: 10.3390/ijms251910328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide, and oral squamous cell carcinoma (OSCC) is one of the most common types. There is strong evidence that ryanodine receptor 2 (RYR2) plays an important role in different types of cancer according to previous studies. Its expression is associated with survival in patients with HNSCC, but it is unknown whether altered RYR2 expression contributes to tumorigenesis. Therefore, we examined how RYR2 polymorphisms affect OSCC susceptibility and clinicopathological characteristics. Five single nucleotide polymorphisms (SNPs) of RYR2, rs12594, rs16835904, rs2779359, rs3765097, and rs3820216, were analyzed in 562 cases of OSCC and 332 healthy controls using real-time PCR. We demonstrated that RYR2 SNP rs12594 was significantly different between the case and control groups, but this difference was not significant after adjusting for personal habits. In contrast, we found that different genotypes of SNP rs2779359 were significantly associated with the characteristics of clinical stage and tumor size in OSCC patients, according to the odds ratios and the adjusted odds ratios; specifically, patients with the T genotype had 1.477-fold (95% CI, 1.043 to 2.091; p = 0.028) and 1.533-fold (95% CI, 1.087-2.162; p = 0.015) increases in clinical stage and tumor size, respectively, compared with patients with the C allele. The results of our study, in which RYR2 SNPs associated with OSCC progression and development were examined for the first time, suggest that clinicopathological characteristics may alter OSCC susceptibility. Finally, RYR2 SNP rs2779359 not only plays a role in both the prognosis and diagnosis of oral cancer but is also likely an important predictive factor for recurrence, response to treatment, and medication toxicity.
Collapse
Affiliation(s)
- Ching-Hui Hsu
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua 500, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - San-Fu Hong
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Yu-Sheng Lo
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Hsin-Yu Ho
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Chia-Chieh Lin
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Yi-Ching Chuang
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Ming-Ju Hsieh
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| | - Ming-Chih Chou
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Division of Thoracic Surgery, Department of Surgery, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| |
Collapse
|
3
|
Shen X, Lu Q, Peng T, Zhang Y, Tan W, Yang Y, Tan J, Yuan Q. Bionic Potassium Ion Channel in Live Cells Repairs Cardiomyocyte Function. J Am Chem Soc 2024; 146:19896-19908. [PMID: 38982560 DOI: 10.1021/jacs.4c03203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The disturbance of potassium current in cardiac myocytes caused by potassium channel dysfunction can lead to cardiac electrophysiological disorders, resulting in associated cardiovascular diseases. The emergence of artificial potassium ion channels opens up a way to replace dysfunctional natural ion channels and cure related diseases. However, bionic potassium ion channels have not been introduced into living cells to regulate cell function. One of the biggest challenges is that when the bionic channel fuses with the cell, it is difficult to control the inserting angle of the bionic potassium channel to ensure its penetration of the entire cell membrane. In nature, the extracellular vesicles can fuse with living cells with a completely preserved structure of vesicle protein. Inspired by this, we developed a vesicle fusion-based bionic porin (VFBP), which integrates bionic potassium ion channels into cardiomyocytes to replace damaged potassium ion channels. Theoretical and experimental results show that the inserted bionic ion channels have a potassium ion transport rate comparable to that of natural ion channels, which can restore the potassium ion outflow in cardiomyocytes and repair the abnormal action potential and excitation-contraction coupling of cardiomyocytes. Therefore, the bionic potassium ion channel system based on membrane fusion is expected to become the research object in many fields such as ultrafast ion transport, transmembrane delivery, and channelopathies treatment.
Collapse
Affiliation(s)
- Xuejie Shen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Qingqing Lu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Tianhuan Peng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Yun Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Yanbing Yang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Jie Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
4
|
Pinckard KM, Félix-Soriano E, Hamilton S, Terentyeva R, Baer LA, Wright KR, Nassal D, Esteves JV, Abay E, Shettigar VK, Ziolo MT, Hund TJ, Wold LE, Terentyev D, Stanford KI. Maternal exercise preserves offspring cardiovascular health via oxidative regulation of the ryanodine receptor. Mol Metab 2024; 82:101914. [PMID: 38479548 PMCID: PMC10965826 DOI: 10.1016/j.molmet.2024.101914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
OBJECTIVE The intrauterine environment during pregnancy is a critical factor in the development of obesity, diabetes, and cardiovascular disease in offspring. Maternal exercise prevents the detrimental effects of a maternal high fat diet on the metabolic health in adult offspring, but the effects of maternal exercise on offspring cardiovascular health have not been thoroughly investigated. METHODS To determine the effects of maternal exercise on offspring cardiovascular health, female mice were fed a chow (C; 21% kcal from fat) or high-fat (H; 60% kcal from fat) diet and further subdivided into sedentary (CS, HS) or wheel exercised (CW, HW) prior to pregnancy and throughout gestation. Offspring were maintained in a sedentary state and chow-fed throughout 52 weeks of age and subjected to serial echocardiography and cardiomyocyte isolation for functional and mechanistic studies. RESULTS High-fat fed sedentary dams (HS) produced female offspring with reduced ejection fraction (EF) compared to offspring from chow-fed dams (CS), but EF was preserved in offspring from high-fat fed exercised dams (HW) throughout 52 weeks of age. Cardiomyocytes from HW female offspring had increased kinetics, calcium cycling, and respiration compared to CS and HS offspring. HS offspring had increased oxidation of the RyR2 in cardiomyocytes coupled with increased baseline sarcomere length, resulting in RyR2 overactivity, which was negated in female HW offspring. CONCLUSIONS These data suggest a role for maternal exercise to protect against the detrimental effects of a maternal high-fat diet on female offspring cardiac health. Maternal exercise improved female offspring cardiomyocyte contraction, calcium cycling, respiration, RyR2 oxidation, and RyR2 activity. These data present an important, translatable role for maternal exercise to preserve cardiac health of female offspring and provide insight on mechanisms to prevent the transmission of cardiovascular diseases to subsequent generations.
Collapse
Affiliation(s)
- Kelsey M Pinckard
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Elisa Félix-Soriano
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Surgery, Division of General and Gastrointestinal Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Shanna Hamilton
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Radmila Terentyeva
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Lisa A Baer
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Surgery, Division of General and Gastrointestinal Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Katherine R Wright
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Drew Nassal
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Internal Medicine, Cardiovascular Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Joao Victor Esteves
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Surgery, Division of General and Gastrointestinal Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Eaman Abay
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Vikram K Shettigar
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Mark T Ziolo
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Thomas J Hund
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Internal Medicine, Cardiovascular Medicine, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Biomedical Engineering, The Ohio State University College of Engineering, Columbus, OH, USA
| | - Loren E Wold
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Surgery, Division of Cardiac Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Dmitry Terentyev
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Kristin I Stanford
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Surgery, Division of General and Gastrointestinal Surgery, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
5
|
Dries E, Gilbert G, Roderick HL, Sipido KR. The ryanodine receptor microdomain in cardiomyocytes. Cell Calcium 2023; 114:102769. [PMID: 37390591 DOI: 10.1016/j.ceca.2023.102769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 07/02/2023]
Abstract
The ryanodine receptor type 2 (RyR) is a key player in Ca2+ handling during excitation-contraction coupling. During each heartbeat, RyR channels are responsible for linking the action potential with the contractile machinery of the cardiomyocyte by releasing Ca2+ from the sarcoplasmic reticulum. RyR function is fine-tuned by associated signalling molecules, arrangement in clusters and subcellular localization. These parameters together define RyR function within microdomains and are subject to disease remodelling. This review describes the latest findings on RyR microdomain organization, the alterations with disease which result in increased subcellular heterogeneity and emergence of microdomains with enhanced arrhythmogenic potential, and presents novel technologies that guide future research to study and target RyR channels within specific microdomains.
Collapse
Affiliation(s)
- Eef Dries
- Lab of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium.
| | - Guillaume Gilbert
- Lab of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Laboratoire ORPHY EA 4324, Université de Brest, Brest, France
| | - H Llewelyn Roderick
- Lab of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Karin R Sipido
- Lab of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Ni M, Li Y, Wei J, Song Z, Wang H, Yao J, Chen YX, Belke D, Estillore JP, Wang R, Vallmitjana A, Benitez R, Hove-Madsen L, Feng W, Chen J, Roston TM, Sanatani S, Lehman A, Chen SRW. Increased Ca 2+ Transient Underlies RyR2-Related Left Ventricular Noncompaction. Circ Res 2023; 133:177-192. [PMID: 37325910 DOI: 10.1161/circresaha.123.322504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND A loss-of-function cardiac ryanodine receptor (RyR2) mutation, I4855M+/-, has recently been linked to a new cardiac disorder termed RyR2 Ca2+ release deficiency syndrome (CRDS) as well as left ventricular noncompaction (LVNC). The mechanism by which RyR2 loss-of-function causes CRDS has been extensively studied, but the mechanism underlying RyR2 loss-of-function-associated LVNC is unknown. Here, we determined the impact of a CRDS-LVNC-associated RyR2-I4855M+/- loss-of-function mutation on cardiac structure and function. METHODS We generated a mouse model expressing the CRDS-LVNC-associated RyR2-I4855M+/- mutation. Histological analysis, echocardiography, ECG recording, and intact heart Ca2+ imaging were performed to characterize the structural and functional consequences of the RyR2-I4855M+/- mutation. RESULTS As in humans, RyR2-I4855M+/- mice displayed LVNC characterized by cardiac hypertrabeculation and noncompaction. RyR2-I4855M+/- mice were highly susceptible to electrical stimulation-induced ventricular arrhythmias but protected from stress-induced ventricular arrhythmias. Unexpectedly, the RyR2-I4855M+/- mutation increased the peak Ca2+ transient but did not alter the L-type Ca2+ current, suggesting an increase in Ca2+-induced Ca2+ release gain. The RyR2-I4855M+/- mutation abolished sarcoplasmic reticulum store overload-induced Ca2+ release or Ca2+ leak, elevated sarcoplasmic reticulum Ca2+ load, prolonged Ca2+ transient decay, and elevated end-diastolic Ca2+ level upon rapid pacing. Immunoblotting revealed increased level of phosphorylated CaMKII (Ca2+-calmodulin dependent protein kinases II) but unchanged levels of CaMKII, calcineurin, and other Ca2+ handling proteins in the RyR2-I4855M+/- mutant compared with wild type. CONCLUSIONS The RyR2-I4855M+/- mutant mice represent the first RyR2-associated LVNC animal model that recapitulates the CRDS-LVNC overlapping phenotype in humans. The RyR2-I4855M+/- mutation increases the peak Ca2+ transient by increasing the Ca2+-induced Ca2+ release gain and the end-diastolic Ca2+ level by prolonging Ca2+ transient decay. Our data suggest that the increased peak-systolic and end-diastolic Ca2+ levels may underlie RyR2-associated LVNC.
Collapse
Affiliation(s)
- Mingke Ni
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada (M.N., Y.L., J.W., Z.S., H.W., J.Y., Y.-X.C., D.B., J.P.E., R.W., S.R.W.C.)
| | - Yanhui Li
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada (M.N., Y.L., J.W., Z.S., H.W., J.Y., Y.-X.C., D.B., J.P.E., R.W., S.R.W.C.)
| | - Jinhong Wei
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada (M.N., Y.L., J.W., Z.S., H.W., J.Y., Y.-X.C., D.B., J.P.E., R.W., S.R.W.C.)
- School of Medicine, Northwest University, Xi 'an, China (J.W.)
| | - Zhenpeng Song
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada (M.N., Y.L., J.W., Z.S., H.W., J.Y., Y.-X.C., D.B., J.P.E., R.W., S.R.W.C.)
| | - Hui Wang
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada (M.N., Y.L., J.W., Z.S., H.W., J.Y., Y.-X.C., D.B., J.P.E., R.W., S.R.W.C.)
| | - Jinjing Yao
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada (M.N., Y.L., J.W., Z.S., H.W., J.Y., Y.-X.C., D.B., J.P.E., R.W., S.R.W.C.)
| | - Yong-Xiang Chen
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada (M.N., Y.L., J.W., Z.S., H.W., J.Y., Y.-X.C., D.B., J.P.E., R.W., S.R.W.C.)
| | - Darrell Belke
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada (M.N., Y.L., J.W., Z.S., H.W., J.Y., Y.-X.C., D.B., J.P.E., R.W., S.R.W.C.)
| | - John Paul Estillore
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada (M.N., Y.L., J.W., Z.S., H.W., J.Y., Y.-X.C., D.B., J.P.E., R.W., S.R.W.C.)
| | - Ruiwu Wang
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada (M.N., Y.L., J.W., Z.S., H.W., J.Y., Y.-X.C., D.B., J.P.E., R.W., S.R.W.C.)
| | - Alexander Vallmitjana
- Department of Automatic Control, Universitat Politècnica de Catalunya, Barcelona, Spain (A.V., R.B.)
| | - Raul Benitez
- Department of Automatic Control, Universitat Politècnica de Catalunya, Barcelona, Spain (A.V., R.B.)
- Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain (R.B.)
| | - Leif Hove-Madsen
- Biomedical Research Institute Barcelona IIBB-CSIC, IIB Sant Pau and CIBERCV, Hospital de Sant Pau, Barcelona, Spain (L.H.-M.)
| | - Wei Feng
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla (W.F., J.C.)
| | - Ju Chen
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla (W.F., J.C.)
| | - Thomas M Roston
- Division of Pediatric Cardiology, Department of Pediatrics (T.M.R., S.S.), University of British Columbia, Vancouver, Canada
| | - Shubhayan Sanatani
- Division of Pediatric Cardiology, Department of Pediatrics (T.M.R., S.S.), University of British Columbia, Vancouver, Canada
| | - Anna Lehman
- Department of Medical Genetics (A.L.), University of British Columbia, Vancouver, Canada
| | - S R Wayne Chen
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada (M.N., Y.L., J.W., Z.S., H.W., J.Y., Y.-X.C., D.B., J.P.E., R.W., S.R.W.C.)
| |
Collapse
|