1
|
Shoureshi P, Ahmad Z, Myadam R, Wang L, Rose B, Balderas-Villalobos J, Medina-Contreras J, Das A, Uzelac I, Kaszala K, Ellenbogen KA, Huizar JF, Tan AY. Functional-Molecular Mechanisms of Sympathetic-Parasympathetic Dysfunction in PVC-Induced Cardiomyopathy Revealed by Dual Stressor PVC-Exercise Challenge. JACC Clin Electrophysiol 2024; 10:2169-2182. [PMID: 39001761 DOI: 10.1016/j.jacep.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND The significance of autonomic dysfunction in premature ventricular contraction-induced cardiomyopathy (PVC-CM) remain unknown. OBJECTIVES Utilizing a novel "dual stressor" provocative challenge combining exercise with premature ventricular contraction (PVCs), the authors characterized the functional and molecular mechanisms of cardiac autonomic (cardiac autonomic nervous system) remodeling in a PVC-CM animal model. METHODS In 15 canines (8 experimental, 7 sham), we implanted pacemakers and neurotelemetry devices and subjected animals to 12 weeks of bigeminal PVCs to induce PVC-CM. Sympathetic nerve activity (SNA), vagal nerve activity (VNA), and heart rate were continuously recorded before, during, and after treadmill exercise challenge with and without PVCs, at baseline and after development of PVC-CM. Western blot and enzyme-linked immunosorbent assay were used to evaluate molecular markers of neural remodeling. RESULTS Exercise triggered an increase in both SNA and VNA followed by late VNA withdrawal. With PVCs, the degree of exercise-induced SNA augmentation was magnified, whereas late VNA withdrawal became blunted. After PVC-CM development, SNA was increased at rest but failed to adequately augment during exercise, especially with PVCs, coupled with impaired VNA and heart rate recovery after exercise. In the remodeled cardiac autonomic nervous system, there was widespread sympathetic hyperinnervation and elevated transcardiac norepinephrine levels but unchanged parasympathetic innervation, indicating sympathetic overload. However, cardiac nerve growth factor was paradoxically downregulated, suggesting an antineurotrophic counteradaptive response to PVC-triggered sympathetic overload. CONCLUSIONS Sympathetic overload, sympathetic dysfunction, and parasympathetic dysfunction in PVC-CM are unmasked by combined exercise and PVC challenge. Reduced cardiac neurotrophic factor might underlie the mechanisms of this dysfunction. Neuromodulation therapies to restore autonomic function could constitute a novel therapeutic approach for PVC-CM.
Collapse
Affiliation(s)
- Pouria Shoureshi
- Cardiology Division, Department of Internal Medicine, Central Virginia VA Health Care System/McGuire Veterans Affairs Medical Center, Richmond, Virginia, USA; Cardiology Division/Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Zain Ahmad
- Cardiology Division/Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Rahul Myadam
- Cardiology Division, Department of Internal Medicine, Central Virginia VA Health Care System/McGuire Veterans Affairs Medical Center, Richmond, Virginia, USA
| | - Li Wang
- Cardiology Division, Department of Internal Medicine, Central Virginia VA Health Care System/McGuire Veterans Affairs Medical Center, Richmond, Virginia, USA; Cardiology Division/Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Brianna Rose
- Cardiology Division, Department of Internal Medicine, Central Virginia VA Health Care System/McGuire Veterans Affairs Medical Center, Richmond, Virginia, USA
| | - Jaime Balderas-Villalobos
- Cardiology Division/Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Juana Medina-Contreras
- Cardiology Division/Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Anindita Das
- Cardiology Division/Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ilija Uzelac
- Cardiology Division/Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Karoly Kaszala
- Cardiology Division, Department of Internal Medicine, Central Virginia VA Health Care System/McGuire Veterans Affairs Medical Center, Richmond, Virginia, USA; Cardiology Division/Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Kenneth A Ellenbogen
- Cardiology Division/Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jose F Huizar
- Cardiology Division, Department of Internal Medicine, Central Virginia VA Health Care System/McGuire Veterans Affairs Medical Center, Richmond, Virginia, USA; Cardiology Division/Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Alex Y Tan
- Cardiology Division, Department of Internal Medicine, Central Virginia VA Health Care System/McGuire Veterans Affairs Medical Center, Richmond, Virginia, USA; Cardiology Division/Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.
| |
Collapse
|
2
|
Pluteanu F, Boknik P, Heinick A, König C, Müller FU, Weidlich A, Kirchhefer U. Activation of PKC results in improved contractile effects and Ca cycling by inhibition of PP2A-B56α. Am J Physiol Heart Circ Physiol 2022; 322:H427-H441. [PMID: 35119335 DOI: 10.1152/ajpheart.00539.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein phosphatase 2A (PP2A) represents a heterotrimer that is responsible for the dephosphorylation of important regulatory myocardial proteins. The present study was aimed to test whether the phosphorylation of PP2A-B56α at Ser41 by PKC is involved in the regulation of myocyte Ca2+ cycling and contraction. For this purpose, heart preparations of wild-type (WT) and transgenic mice overexpressing the non-phosphorylatable S41A mutant form (TG) were stimulated by administration of the direct PKC activator phorbol 12-myristate 13-acetate (PMA), and functional effects were studied. PKC activation was accompanied by the inhibition of PP2A activity in WT cardiomyocytes, whereas this effect was absent in TG. Consistently, the increase in the sarcomere length shortening and the peak amplitude of Ca2+ transients after PMA administration in WT cardiomyocytes was attenuated in TG. However, the co-stimulation with 1 µM isoprenaline was able to offset these functional deficits. Moreover, TG hearts did not show an increase in the phosphorylation of the myosin-binding protein C after administration of PMA but was detected in corresponding WT. PMA modulated voltage-dependent activation of the L-type Ca2+ channel (LTCC) differently in the two genotypes, shifting V1/2a by +1.5 mV in TG and by 2.4 mV in WT. In the presence of PMA, ICaL inactivation remained unchanged in TG, whereas it was slower in corresponding WT. Our data suggest that PKC-activated enhancement of myocyte contraction and intracellular Ca2+ signaling is mediated by phosphorylation of B56α at Ser41, leading to a decrease in PP2A activity.
Collapse
Affiliation(s)
- Florentina Pluteanu
- Department of Anatomy, Animal Physiology and Biophysics, University of Bucharest, Bucharest, Romania
| | - Peter Boknik
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Alexander Heinick
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Christiane König
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Frank U Müller
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Adam Weidlich
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Uwe Kirchhefer
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| |
Collapse
|
3
|
Pelat M, Barbe F, Daveu C, Ly-Nguyen L, Lartigue T, Marque S, Tavares G, Ballet V, Guillon JM, Steinmeyer K, Wirth K, Gögelein H, Arndt P, Rackelmann N, Weston J, Bellevergue P, McCort G, Trellu M, Lucats L, Beauverger P, Pruniaux-Harnist MP, Janiak P, Chézalviel-Guilbert F. SAR340835, a Novel Selective Na +/Ca 2+ Exchanger Inhibitor, Improves Cardiac Function and Restores Sympathovagal Balance in Heart Failure. J Pharmacol Exp Ther 2021; 377:293-304. [PMID: 33602875 DOI: 10.1124/jpet.120.000238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/08/2021] [Indexed: 11/22/2022] Open
Abstract
In failing hearts, Na+/Ca2+ exchanger (NCX) overactivity contributes to Ca2+ depletion, leading to contractile dysfunction. Inhibition of NCX is expected to normalize Ca2+ mishandling, to limit afterdepolarization-related arrhythmias, and to improve cardiac function in heart failure (HF). SAR340835/SAR296968 is a selective NCX inhibitor for all NCX isoforms across species, including human, with no effect on the native voltage-dependent calcium and sodium currents in vitro. Additionally, it showed in vitro and in vivo antiarrhythmic properties in several models of early and delayed afterdepolarization-related arrhythmias. Its effect on cardiac function was studied under intravenous infusion at 250,750 or 1500 µg/kg per hour in dogs, which were either normal or submitted to chronic ventricular pacing at 240 bpm (HF dogs). HF dogs were infused with the reference inotrope dobutamine (10 µg/kg per minute, i.v.). In normal dogs, NCX inhibitor increased cardiac contractility (dP/dtmax) and stroke volume (SV) and tended to reduce heart rate (HR). In HF dogs, NCX inhibitor significantly and dose-dependently increased SV from the first dose (+28.5%, +48.8%, and +62% at 250, 750, and 1500 µg/kg per hour, respectively) while significantly increasing dP/dtmax only at 1500 (+33%). Furthermore, NCX inhibitor significantly restored sympathovagal balance and spontaneous baroreflex sensitivity (BRS) from the first dose and reduced HR at the highest dose. In HF dogs, dobutamine significantly increased dP/dtmax and SV (+68.8%) but did not change HR, sympathovagal balance, or BRS. Overall, SAR340835, a selective potent NCX inhibitor, displayed a unique therapeutic profile, combining antiarrhythmic properties, capacity to restore systolic function, sympathovagal balance, and BRS in HF dogs. NCX inhibitors may offer new therapeutic options for acute HF treatment. SIGNIFICANCE STATEMENT: HF is facing growing health and economic burden. Moreover, patients hospitalized for acute heart failure are at high risk of decompensation recurrence, and no current acute decompensated HF therapy definitively improved outcomes. A new potent, Na+/Ca2+ exchanger inhibitor SAR340835 with antiarrhythmic properties improved systolic function of failing hearts without creating hypotension, while reducing heart rate and restoring sympathovagal balance. SAR340835 may offer a unique and attractive pharmacological profile for patients with acute heart failure as compared with current inotrope, such as dobutamine.
Collapse
Affiliation(s)
- Michel Pelat
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Fabrice Barbe
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Cyril Daveu
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Laetitia Ly-Nguyen
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Thomas Lartigue
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Suzanne Marque
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Georges Tavares
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Véronique Ballet
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Jean-Michel Guillon
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Klaus Steinmeyer
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Klaus Wirth
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Heinz Gögelein
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Petra Arndt
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Nils Rackelmann
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - John Weston
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Patrice Bellevergue
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Gary McCort
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Marc Trellu
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Laurence Lucats
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Philippe Beauverger
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Marie-Pierre Pruniaux-Harnist
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Philip Janiak
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Frédérique Chézalviel-Guilbert
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| |
Collapse
|
4
|
Izumi Y, Mennerick SJ, Doherty JJ, Zorumski CF. Oxysterols Modulate the Acute Effects of Ethanol on Hippocampal N-Methyl-d-Aspartate Receptors, Long-Term Potentiation, and Learning. J Pharmacol Exp Ther 2021; 377:181-188. [PMID: 33441369 PMCID: PMC8051516 DOI: 10.1124/jpet.120.000376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/08/2021] [Indexed: 12/29/2022] Open
Abstract
Ethanol is a noncompetitive inhibitor of N-methyl-d-aspartate receptors (NMDARs) and acutely disrupts hippocampal synaptic plasticity and learning. In the present study, we examined the effects of oxysterol positive allosteric modulators (PAMs) of NMDARs on ethanol-mediated inhibition of NMDARs, block of long-term potentiation (LTP) and long-term depression (LTD) in rat hippocampal slices, and defects in one-trial learning in vivo. We found that 24S-hydroxycholesterol and a synthetic oxysterol analog, SGE-301, overcame effects of ethanol on NMDAR-mediated synaptic responses in the CA1 region but did not alter acute effects of ethanol on LTD; the synthetic oxysterol, however, overcame acute inhibition of LTP. In addition, both oxysterols overcame persistent effects of ethanol on LTP in vitro, and the synthetic analog reversed defects in one-trial inhibitory avoidance learning in vivo. These results indicate that effects of ethanol on both LTP and LTD arise by complex mechanisms beyond NMDAR antagonism and that oxysterol NMDAR PAMS may represent a novel approach for preventing and reversing acute ethanol-mediated changes in cognition. SIGNIFICANCE STATEMENT: Ethanol acutely inhibits hippocampal NMDARs, LTP, and learning. This study found that certain oxysterols that are NMDAR-positive allosteric modulators can overcome the acute effects of ethanol on NMDARs, LTP, and learning. Oxysterols differ in their effects from agents that inhibit integrated cellular stress responses.
Collapse
Affiliation(s)
- Yukitoshi Izumi
- Department of Psychiatry and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri (Y.I., S.J.M., C.F.Z.); and Sage Therapeutics, Cambridge, Massachusetts (J.J.D.)
| | - Steven J Mennerick
- Department of Psychiatry and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri (Y.I., S.J.M., C.F.Z.); and Sage Therapeutics, Cambridge, Massachusetts (J.J.D.)
| | - James J Doherty
- Department of Psychiatry and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri (Y.I., S.J.M., C.F.Z.); and Sage Therapeutics, Cambridge, Massachusetts (J.J.D.)
| | - Charles F Zorumski
- Department of Psychiatry and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri (Y.I., S.J.M., C.F.Z.); and Sage Therapeutics, Cambridge, Massachusetts (J.J.D.)
| |
Collapse
|
5
|
Effects of Intravenous Infusion of Vepoloxamer on Left Ventricular Function in Dogs with Advanced Heart Failure. Cardiovasc Drugs Ther 2020; 34:153-164. [PMID: 32146638 DOI: 10.1007/s10557-020-06953-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE Vepoloxamer (VEPO), a rheologic agent, repairs damaged cell membranes, thus inhibiting unregulated Ca2+ entry into cardiomyocytes. This study examined the effects of i.v. infusion of VEPO on LV function in dogs with coronary microembolization-induced heart failure (HF) (LV ejection fraction, EF ~ 30%). METHODS Thirty-five HF dogs were studied. Study 1: 21 of 35 dogs were randomized to 2-h infusion of VEPO at dose of 450 mg/kg (n = 7) or VEPO at 225 mg/kg (n = 7) or normal saline (control, n = 7). Hemodynamics were measured at 2 h, 24 h, 1 week, and 2 weeks after infusion. Study 2: 14 HF dogs were randomized to 2-h infusions of VEPO (450 mg/kg, n = 7) or normal saline (control, n = 7). Each dog received 2 infusions of VEPO or saline (pulsed therapy) 3 weeks apart and hemodynamics measured at 24 h, and 1, 2, and 3 weeks after each infusion. In both studies, the change between pre-infusion measures and measures at other time points (treatment effect, Δ) was calculated. RESULTS Study 1: compared to pre-infusion, high dose VEPO increased LVEF by 11 ± 2% at 2 h, 8 ± 2% at 24 h (p < 0.05), 8 ± 2% at 1 week (p < 0.05), and 4 ± 2% at 2 weeks. LV EF also increased with low-dose VEPO but not with saline. Study 2: VEPO but not saline significantly increased LVEF by 6.0 ± 0.7% at 2 h (p < 0.05); 7.0 ± 0.7%% at 1 week (p < 0.05); 1.0 ± 0.6% at 3 weeks; 6.0 ± 1.3% at 4 weeks (p < 0.05); and 5.9 ± 1.3% at 6 weeks (p < 0.05). CONCLUSIONS Intravenous VEPO improves LV function for at least 1 week after infusion. The benefits can be extended with pulsed VEPO therapy. The results support development of VEPO for treating patients with acute on chronic HF.
Collapse
|
6
|
Zhao J, Xu T, Zhou Y, Zhou Y, Xia Y, Li D. B-type natriuretic peptide and its role in altering Ca 2+-regulatory proteins in heart failure-mechanistic insights. Heart Fail Rev 2019; 25:861-871. [PMID: 31820203 DOI: 10.1007/s10741-019-09883-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Heart failure (HF) is a worldwide disease with high levels of morbidity and mortality. The pathogenesis of HF is complicated and involves imbalances in hormone and electrolyte. B-type natriuretic peptide (BNP) has served as a biomarker of HF severity, and in recent years, it has been used to treat the disease, thanks to its cardio-protective effects, such as diuresis, natriuresis, and vasodilatation. In stage C/D HF, symptoms are severe despite elevated BNP. Disturbances in Ca2+ homeostasis are often a dominating feature of the disease, causing Ca2+-regulatory protein dysfunction, including reduced expression and activity of sarcoplasmic reticulum Ca2+-ATPase2a (SERCA2a), impaired ryanodine receptors (RYRs) function, intensive Na+-Ca2+ exchanger (NCX), and downregulation of S100A1. The relationship between natriuretic peptides (NPs) and Ca2+-regulatory proteins has been widely studied and represents important mechanisms in the etiology of HF. In this review, we present evidence that BNP may regulate Ca2+-regulatory proteins, in particular, suppressing SERCA2a and S100A1 expression. However, relationships between BNP and other Ca2+-regulatory proteins remain vague.
Collapse
Affiliation(s)
- Jiaqi Zhao
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Tongda Xu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Yao Zhou
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - You Zhou
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Yong Xia
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China.
| | - Dongye Li
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China. .,Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China.
| |
Collapse
|
7
|
Park HS, Jeong DS, Yu HT, Pak HN, Shim J, Kim JY, Kim J, Lee JM, Kim KH, Roh SY, Cho YJ, Kim YH, Yoon NS. 2018 Korean Guidelines for Catheter Ablation of Atrial Fibrillation: Part I. INTERNATIONAL JOURNAL OF ARRHYTHMIA 2018. [DOI: 10.18501/arrhythmia.2018.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
8
|
Calkins H, Hindricks G, Cappato R, Kim YH, Saad EB, Aguinaga L, Akar JG, Badhwar V, Brugada J, Camm J, Chen PS, Chen SA, Chung MK, Cosedis Nielsen J, Curtis AB, Davies DW, Day JD, d’Avila A, (Natasja) de Groot NMS, Di Biase L, Duytschaever M, Edgerton JR, Ellenbogen KA, Ellinor PT, Ernst S, Fenelon G, Gerstenfeld EP, Haines DE, Haissaguerre M, Helm RH, Hylek E, Jackman WM, Jalife J, Kalman JM, Kautzner J, Kottkamp H, Kuck KH, Kumagai K, Lee R, Lewalter T, Lindsay BD, Macle L, Mansour M, Marchlinski FE, Michaud GF, Nakagawa H, Natale A, Nattel S, Okumura K, Packer D, Pokushalov E, Reynolds MR, Sanders P, Scanavacca M, Schilling R, Tondo C, Tsao HM, Verma A, Wilber DJ, Yamane T. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. Europace 2018; 20:e1-e160. [PMID: 29016840 PMCID: PMC5834122 DOI: 10.1093/europace/eux274] [Citation(s) in RCA: 779] [Impact Index Per Article: 111.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Hugh Calkins
- From the Johns Hopkins Medical Institutions, Baltimore, MD
| | | | - Riccardo Cappato
- Humanitas Research Hospital, Arrhythmias and Electrophysiology Research Center, Milan, Italy (Dr. Cappato is now with the Department of Biomedical Sciences, Humanitas University, Milan, Italy, and IRCCS, Humanitas Clinical and Research Center, Milan, Italy)
| | | | - Eduardo B Saad
- Hospital Pro-Cardiaco and Hospital Samaritano, Botafogo, Rio de Janeiro, Brazil
| | | | | | - Vinay Badhwar
- West Virginia University School of Medicine, Morgantown, WV
| | - Josep Brugada
- Cardiovascular Institute, Hospital Clínic, University of Barcelona, Catalonia, Spain
| | - John Camm
- St. George's University of London, London, United Kingdom
| | | | | | | | | | | | - D Wyn Davies
- Imperial College Healthcare NHS Trust, London, United Kingdom
| | - John D Day
- Intermountain Medical Center Heart Institute, Salt Lake City, UT
| | | | | | - Luigi Di Biase
- Albert Einstein College of Medicine, Montefiore-Einstein Center for Heart & Vascular Care, Bronx, NY
| | | | | | | | | | - Sabine Ernst
- Royal Brompton and Harefield NHS Foundation Trust, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Guilherme Fenelon
- Albert Einstein Jewish Hospital, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | | | - Elaine Hylek
- Boston University School of Medicine, Boston, MA
| | - Warren M Jackman
- Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Jose Jalife
- University of Michigan, Ann Arbor, MI, the National Center for Cardiovascular Research Carlos III (CNIC) and CIBERCV, Madrid, Spain
| | - Jonathan M Kalman
- Royal Melbourne Hospital and University of Melbourne, Melbourne, Australia
| | - Josef Kautzner
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Hans Kottkamp
- Hirslanden Hospital, Department of Electrophysiology, Zurich, Switzerland
| | | | | | - Richard Lee
- Saint Louis University Medical School, St. Louis, MO
| | - Thorsten Lewalter
- Department of Cardiology and Intensive Care, Hospital Munich-Thalkirchen, Munich, Germany
| | | | - Laurent Macle
- Montreal Heart Institute, Department of Medicine, Université de Montréal, Montréal, Canada
| | | | - Francis E Marchlinski
- Hospital of the University of Pennsylvania, University of Pennsylvania School of Medicine, Philadelphia, PA
| | | | - Hiroshi Nakagawa
- Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Andrea Natale
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, TX
| | - Stanley Nattel
- Montreal Heart Institute and Université de Montréal, Montreal, Canada, McGill University, Montreal, Canada, and University Duisburg-Essen, Essen, Germany
| | - Ken Okumura
- Division of Cardiology, Saiseikai Kumamoto Hospital, Kumamoto, Japan
| | | | - Evgeny Pokushalov
- State Research Institute of Circulation Pathology, Novosibirsk, Russia
| | | | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | | | | | - Claudio Tondo
- Cardiac Arrhythmia Research Center, Centro Cardiologico Monzino, IRCCS, Department of Cardiovascular Sciences, University of Milan, Milan, Italy
| | | | - Atul Verma
- Southlake Regional Health Centre, University of Toronto, Toronto, Canada
| | | | | |
Collapse
|
9
|
Calkins H, Hindricks G, Cappato R, Kim YH, Saad EB, Aguinaga L, Akar JG, Badhwar V, Brugada J, Camm J, Chen PS, Chen SA, Chung MK, Nielsen JC, Curtis AB, Davies DW, Day JD, d’Avila A, de Groot N(N, Di Biase L, Duytschaever M, Edgerton JR, Ellenbogen KA, Ellinor PT, Ernst S, Fenelon G, Gerstenfeld EP, Haines DE, Haissaguerre M, Helm RH, Hylek E, Jackman WM, Jalife J, Kalman JM, Kautzner J, Kottkamp H, Kuck KH, Kumagai K, Lee R, Lewalter T, Lindsay BD, Macle L, Mansour M, Marchlinski FE, Michaud GF, Nakagawa H, Natale A, Nattel S, Okumura K, Packer D, Pokushalov E, Reynolds MR, Sanders P, Scanavacca M, Schilling R, Tondo C, Tsao HM, Verma A, Wilber DJ, Yamane T. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. Heart Rhythm 2017; 14:e275-e444. [PMID: 28506916 PMCID: PMC6019327 DOI: 10.1016/j.hrthm.2017.05.012] [Citation(s) in RCA: 1509] [Impact Index Per Article: 188.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Indexed: 02/07/2023]
Affiliation(s)
- Hugh Calkins
- Johns Hopkins Medical Institutions, Baltimore, MD
| | | | - Riccardo Cappato
- Humanitas Research Hospital, Arrhythmias and Electrophysiology Research Center, Milan, Italy (Dr. Cappato is now with the Department of Biomedical Sciences, Humanitas University, Milan, Italy, and IRCCS, Humanitas Clinical and Research Center, Milan, Italy)
| | | | - Eduardo B. Saad
- Hospital Pro-Cardiaco and Hospital Samaritano, Botafogo, Rio de Janeiro, Brazil
| | | | | | - Vinay Badhwar
- West Virginia University School of Medicine, Morgantown, WV
| | - Josep Brugada
- Cardiovascular Institute, Hospital Clínic, University of Barcelona, Catalonia, Spain
| | - John Camm
- St. George’s University of London, London, United Kingdom
| | | | | | | | | | | | - D. Wyn Davies
- Imperial College Healthcare NHS Trust, London, United Kingdom
| | - John D. Day
- Intermountain Medical Center Heart Institute, Salt Lake City, UT
| | | | | | - Luigi Di Biase
- Albert Einstein College of Medicine, Montefiore-Einstein Center for Heart & Vascular Care, Bronx, NY
| | | | | | | | | | - Sabine Ernst
- Royal Brompton and Harefield NHS Foundation Trust, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Guilherme Fenelon
- Albert Einstein Jewish Hospital, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | | | - Elaine Hylek
- Boston University School of Medicine, Boston, MA
| | - Warren M. Jackman
- Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Jose Jalife
- University of Michigan, Ann Arbor, MI, the National Center for Cardiovascular Research Carlos III (CNIC) and CIBERCV, Madrid, Spain
| | - Jonathan M. Kalman
- Royal Melbourne Hospital and University of Melbourne, Melbourne, Australia
| | - Josef Kautzner
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Hans Kottkamp
- Hirslanden Hospital, Department of Electrophysiology, Zurich, Switzerland
| | | | | | - Richard Lee
- Saint Louis University Medical School, St. Louis, MO
| | - Thorsten Lewalter
- Department of Cardiology and Intensive Care, Hospital Munich-Thalkirchen, Munich, Germany
| | | | - Laurent Macle
- Montreal Heart Institute, Department of Medicine, Université de Montréal, Montréal, Canada
| | | | - Francis E. Marchlinski
- Hospital of the University of Pennsylvania, University of Pennsylvania School of Medicine, Philadelphia, PA
| | | | - Hiroshi Nakagawa
- Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Andrea Natale
- Texas Cardiac Arrhythmia Institute, St. David’s Medical Center, Austin, TX
| | - Stanley Nattel
- Montreal Heart Institute and Université de Montréal, Montreal, Canada, McGill University, Montreal, Canada, and University Duisburg-Essen, Essen, Germany
| | - Ken Okumura
- Division of Cardiology, Saiseikai Kumamoto Hospital, Kumamoto, Japan
| | | | - Evgeny Pokushalov
- State Research Institute of Circulation Pathology, Novosibirsk, Russia
| | | | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | | | | | - Claudio Tondo
- Cardiac Arrhythmia Research Center, Centro Cardiologico Monzino, IRCCS, Department of Cardiovascular Sciences, University of Milan, Milan, Italy
| | | | - Atul Verma
- Southlake Regional Health Centre, University of Toronto, Toronto, Canada
| | | | | |
Collapse
|
10
|
WITHDRAWN: 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. J Arrhythm 2017. [DOI: 10.1016/j.joa.2017.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
11
|
17β-Estradiol and/or estrogen receptor alpha blocks isoproterenol-induced calcium accumulation and hypertrophy via GSK3β/PP2A/NFAT3/ANP pathway. Mol Cell Biochem 2017; 434:181-195. [DOI: 10.1007/s11010-017-3048-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/25/2017] [Indexed: 12/13/2022]
|
12
|
Klein MG, Shou M, Stohlman J, Solhjoo S, Haigney M, Tidwell RR, Goldstein RE, Flagg TP, Haigney MC. Role of suppression of the inward rectifier current in terminal action potential repolarization in the failing heart. Heart Rhythm 2017; 14:1217-1223. [PMID: 28396172 DOI: 10.1016/j.hrthm.2017.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND The failing heart exhibits an increased arrhythmia susceptibility that is often attributed to action potential (AP) prolongation due to significant ion channel remodeling. The inwardly rectifying K+ current (IK1) has been reported to be reduced, but its contribution to shaping the AP waveform and cell excitability in the failing heart remains unclear. OBJECTIVE The purpose of this study was to define the effect of IK1 suppression on the cardiac AP and excitability in the normal and failing hearts. METHODS We used electrophysiological and pharmacological approaches to investigate IK1 function in a swine tachy-pacing model of heart failure (HF). RESULTS Terminal repolarization of the AP (TRAP; the time constant of the exponential fit to terminal repolarization) was markedly prolonged in both myocytes and arterially perfused wedges from animals with HF. TRAP was increased by 54.1% in HF myocytes (P < .001) and 26.2% in HF wedges (P = .014). The increase in TRAP was recapitulated by the potent and specific IK1 inhibitor, PA-6 (pentamidine analog 6), indicating that IK1 is the primary determinant of the final phase of repolarization. Moreover, we find that IK1 suppression reduced the ratio of effective refractory period to AP duration at 90% of repolarization, permitting re-excitation before full repolarization, reduction of AP upstroke velocity, and likely promotion of slow conduction. CONCLUSION Using an objective measure of terminal repolarization, we conclude that IK1 is the major determinant of the terminal repolarization time course. Moreover, suppression of IK1 prolongs repolarization and reduces postrepolarization refractoriness without marked effects on the overall AP duration. Collectively, these findings demonstrate how IK1 suppression may contribute to arrhythmogenesis in the failing heart.
Collapse
Affiliation(s)
- Michael G Klein
- Division of Cardiology, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.
| | - Matie Shou
- Division of Cardiology, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Jayna Stohlman
- Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland
| | - Soroosh Solhjoo
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Myles Haigney
- Division of Cardiology, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Richard R Tidwell
- Department of Pathology and Laboratory Medicine, School of Medicine, The University of North Carolina, Chapel Hill, North Carolina
| | - Robert E Goldstein
- Division of Cardiology, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Thomas P Flagg
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Mark C Haigney
- Division of Cardiology, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
13
|
Kalbitz M, Fattahi F, Herron TJ, Grailer JJ, Jajou L, Lu H, Huber-Lang M, Zetoune FS, Sarma JV, Day SM, Russell MW, Jalife J, Ward PA. Complement Destabilizes Cardiomyocyte Function In Vivo after Polymicrobial Sepsis and In Vitro. THE JOURNAL OF IMMUNOLOGY 2016; 197:2353-61. [PMID: 27521340 DOI: 10.4049/jimmunol.1600091] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 07/06/2016] [Indexed: 01/12/2023]
Abstract
There is accumulating evidence during sepsis that cardiomyocyte (CM) homeostasis is compromised, resulting in cardiac dysfunction. An important role for complement in these outcomes is now demonstrated. Addition of C5a to electrically paced CMs caused prolonged elevations of intracellular Ca(2+) concentrations during diastole, together with the appearance of spontaneous Ca(2+) transients. In polymicrobial sepsis in mice, we found that three key homeostasis-regulating proteins in CMs were reduced: Na(+)/K(+)-ATPase, which is vital for effective action potentials in CMs, and two intracellular Ca(2+) concentration regulatory proteins, that is, sarcoplasmic/endoplasmic reticulum calcium ATPase 2 and the Na(+)/Ca(2+) exchanger. Sepsis caused reduced mRNA levels and reductions in protein concentrations in CMs for all three proteins. The absence of either C5a receptor mitigated sepsis-induced reductions in the three regulatory proteins. Absence of either C5a receptor (C5aR1 or C5aR2) diminished development of defective systolic and diastolic echocardiographic/Doppler parameters developing in the heart (cardiac output, left ventricular stroke volume, isovolumic relaxation, E' septal annulus, E/E' septal annulus, left ventricular diastolic volume). We also found in CMs from septic mice the presence of defective current densities for Ik1, l-type calcium channel, and Na(+)/Ca(2+) exchanger. These defects were accentuated in the copresence of C5a. These data suggest complement-related mechanisms responsible for development of cardiac dysfunction during sepsis.
Collapse
Affiliation(s)
- Miriam Kalbitz
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109; Department of Orthopedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Ulm, 89081 Ulm, Germany
| | - Fatemeh Fattahi
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Todd J Herron
- Division of Cardiovascular Research, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Jamison J Grailer
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Lawrence Jajou
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Hope Lu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Markus Huber-Lang
- Department of Orthopedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Ulm, 89081 Ulm, Germany
| | - Firas S Zetoune
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - J Vidya Sarma
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Sharlene M Day
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Mark W Russell
- Department of Pediatric Cardiology, University of Michigan Medical School, Ann Arbor, MI 48109; and Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109
| | - José Jalife
- Division of Cardiovascular Research, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Peter A Ward
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109;
| |
Collapse
|
14
|
Weber S, Meyer-Roxlau S, Wagner M, Dobrev D, El-Armouche A. Counteracting Protein Kinase Activity in the Heart: The Multiple Roles of Protein Phosphatases. Front Pharmacol 2015; 6:270. [PMID: 26617522 PMCID: PMC4643138 DOI: 10.3389/fphar.2015.00270] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/28/2015] [Indexed: 12/19/2022] Open
Abstract
Decades of cardiovascular research have shown that variable and flexible levels of protein phosphorylation are necessary to maintain cardiac function. A delicate balance between phosphorylated and dephosphorylated states of proteins is guaranteed by a complex interplay of protein kinases (PKs) and phosphatases. Serine/threonine phosphatases, in particular members of the protein phosphatase (PP) family govern dephosphorylation of the majority of these cardiac proteins. Recent findings have however shown that PPs do not only dephosphorylate previously phosphorylated proteins as a passive control mechanism but are capable to actively control PK activity via different direct and indirect signaling pathways. These control mechanisms can take place on (epi-)genetic, (post-)transcriptional, and (post-)translational levels. In addition PPs themselves are targets of a plethora of proteinaceous interaction partner regulating their endogenous activity, thus adding another level of complexity and feedback control toward this system. Finally, novel approaches are underway to achieve spatiotemporal pharmacologic control of PPs which in turn can be used to fine-tune misleaded PK activity in heart disease. Taken together, this review comprehensively summarizes the major aspects of PP-mediated PK regulation and discusses the subsequent consequences of deregulated PP activity for cardiovascular diseases in depth.
Collapse
Affiliation(s)
- Silvio Weber
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| | - Stefanie Meyer-Roxlau
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| | - Michael Wagner
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, Faculty of Medicine, West German Heart and Vascular Center , Essen, Germany
| | - Ali El-Armouche
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| |
Collapse
|
15
|
Lei M, Wang X, Ke Y, Solaro RJ. Regulation of Ca(2+) transient by PP2A in normal and failing heart. Front Physiol 2015; 6:13. [PMID: 25688213 PMCID: PMC4310266 DOI: 10.3389/fphys.2015.00013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/09/2015] [Indexed: 11/13/2022] Open
Abstract
Calcium transient in cardiomyocytes is regulated by multiple protein kinases and phosphatases. PP2A is a major protein phosphatase in the heart modulating Ca2+ handling through an array of ion channels, antiporters and pumps, etc. The assembly, localization/translocation, and substrate specificity of PP2A are controlled by different post-translational mechanisms, which in turn are linked to the activities of upstream signaling molecules. Abnormal PP2A expression and activities are associated with defective response to β-adrenergic stimulation and are indication and causal factors in arrhythmia and heart failure.
Collapse
Affiliation(s)
- Ming Lei
- Department of Pharmacology, University of Oxford Oxford, UK
| | - Xin Wang
- Faculty of Life Science, University of Manchester Manchester, UK
| | - Yunbo Ke
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago Chicago, IL, USA
| | - R John Solaro
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago Chicago, IL, USA
| |
Collapse
|
16
|
Mechanisms underlying the autonomic modulation of ventricular fibrillation initiation--tentative prophylactic properties of vagus nerve stimulation on malignant arrhythmias in heart failure. Heart Fail Rev 2014; 18:389-408. [PMID: 22678767 PMCID: PMC3677978 DOI: 10.1007/s10741-012-9314-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Classical physiology teaches that vagal post-ganglionic nerves modulate the heart via acetylcholine acting at muscarinic receptors, whilst it is accepted that vagus nerve stimulation (VNS) slows heart rate, atrioventricular conduction and decreases atrial contraction; there is continued controversy as to whether the vagus has any significant direct effect on ventricular performance. Despite this, there is a significant body of evidence from experimental and clinical studies, demonstrating that the vagus nerve has an anti-arrhythmic action, protecting against induced and spontaneously occurring ventricular arrhythmias. Over 100 years ago Einbrodt first demonstrated that direct cervical VNS significantly increased the threshold for experimentally induced ventricular fibrillation. A large body of evidence has subsequently been collected supporting the existence of an anti-arrhythmic effect of the vagus on the ventricle. The development of prognostic indicators of heart rate variability and baroreceptor reflex sensitivity—measures of parasympathetic tone and reflex activation respectively—and the more recent interest in chronic VNS therapy are a direct consequence of the earlier experimental studies. Despite this, mechanisms underlying the anti-arrhythmic actions of the vagus nerve have not been fully characterised and are not well understood. This review summarises historical and recently published data to highlight the importance of this powerful endogenous protective phenomenon.
Collapse
|
17
|
|
18
|
Barman P, Choisy SCM, Hancox JC, James AF. β-Adrenoceptor/PKA-stimulation, Na(+)-Ca(2+) exchange and PKA-activated Cl(-) currents in rabbit cardiomyocytes: a conundrum. Cell Calcium 2011; 49:233-9. [PMID: 21439639 PMCID: PMC3092849 DOI: 10.1016/j.ceca.2011.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Investigations into the functional modulation of the cardiac Na(+)-Ca(2+) exchanger (NCX) by acute β-adrenoceptor/PKA stimulation have produced conflicting results. Here, we investigated (i) whether or not β-adrenoceptor activation/PKA stimulation activates current in rabbit cardiac myocytes under NCX-'selective' conditions and (ii) if so, whether a PKA-activated Cl(-)-current may contribute to the apparent modulation of NCX current (I(NCX)). Whole-cell voltage-clamp experiments were conducted at 37°C on rabbit ventricular and atrial myocytes. The β-adrenoceptor-activated currents both in NCX-'selective' and Cl(-)-selective recording conditions were found to be sensitive to 10mM Ni(2+). In contrast, the PKA-activated Cl(-) current was not sensitive to Ni(2+), when it was activated downstream to the β-adrenoceptors using 10μM forskolin (an adenylyl cyclase activator). When 10μM forskolin was applied under NCX-selective recording conditions, the Ni(2+)-sensitive current did not differ between control and forskolin. These findings suggest that in rabbit myocytes: (a) a PKA-activated Cl(-) current contributes to the Ni(2+)-sensitive current activated via β-adrenoceptor stimulation under recording conditions previously considered selective for I(NCX); (b) downstream activation of PKA does not augment Ni(2+)-sensitive I(NCX), when this is measured under conditions where the Ni(2+)-sensitive PKA-activated Cl(-) current is not present.
Collapse
Affiliation(s)
- Palash Barman
- Bristol Heart Institute, Cardiovascular Research Laboratories, School of Physiology & Pharmacology, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | | | | | | |
Collapse
|
19
|
Chen G, Yang X, Alber S, Shusterman V, Salama G. Regional genomic regulation of cardiac sodium-calcium exchanger by oestrogen. J Physiol 2011; 589:1061-80. [PMID: 21224239 DOI: 10.1113/jphysiol.2010.203398] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Female rabbit hearts are more susceptible to torsade de pointes (TdP) in acquired long QT type 2 than males, in-part due to higher L-type Ca2+ current (ICa,L) at the base of the heart. In principle, higher Ca2+ influx via ICa,L should be balanced by higher efflux, perhaps mediated by parallel sex differences of sodium-calcium exchange (NCX) current (INCX). We now show that NCX1, like Cav1.2α, is greater at the base of female than male left ventricular epicardium and greater at the base than at the apex in both sexes. In voltage-clamp studies, inward (0, +20 mV, P < 0.04) and outward (-80, -60, -40, -20 mV, P < 0.01) INCX densities were significantly higher (1.5-2 fold) in female base compared to apex and male (base and apex) myocytes. Myocytes were incubated ±17β-oestradiol (E2 = 1 nm) and INCX was measured on days 0, 1, 2 and 3. Inward and outward INCX decreased over 2 days in female base myocytes becoming similar to INCX at the apex. E2 incubation (24 h) increased NCX1 (50%) and INCX (∼3-fold at 60 mV) in female base but not endocardium, apex or in male base myocytes. INCX upregulation by E2 was blunted by an oestrogen receptor (ER) antagonist (fulvestrant, 1 μm), and inhibition of transcription (actinomycin D, 5 μg ml-1) or translation (cycloheximide, 20 μg ml-1). Dofetilide (an IKr blocker) induced early afterdepolarizations (EADs) in female base myocytes cultured for 1 day if incubated with E2, but not without E2 or with E2+KB-R4973 (an INCX inhibitor), E2+fulvestrant or E2 with apex myocytes. Thus, E2 upregulates NCX1 by a genomic mechanism mediated by ERs, and de novo mRNA and protein biosynthesis, in a sex- and region-dependent manner which contributes to the enhanced propensity to EADs and TdP in female hearts.
Collapse
Affiliation(s)
- Guojun Chen
- University of Pittsburgh, School of Medicine, Cardiovascular Institute, 3550 Terrace Street, Suite S 628 Scaife Hall, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
20
|
Cardiac contractility modulation electrical signals normalize activity, expression, and phosphorylation of the Na+-Ca2+ exchanger in heart failure. J Card Fail 2008; 15:48-56. [PMID: 19181294 DOI: 10.1016/j.cardfail.2008.08.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 08/18/2008] [Accepted: 08/29/2008] [Indexed: 11/20/2022]
Abstract
BACKGROUND Expression and phosphorylation of the cardiac Na(+)-Ca(2+) exchanger-1 (NCX-1) are up-regulated in heart failure (HF). We examined the effects of chronic cardiac contractility modulation (CCM) therapy on the expression and phosphorylation of NCX-1 and its regulators GATA-4 and FOG-2 in HF dogs. METHODS AND RESULTS Studies were performed in LV tissue from 7 CCM-treated HF dogs, 7 untreated HF dogs, and 6 normal (NL) dogs. mRNA expression of NCX-1, GATA-4, and FOG-2 was measured using reverse transcriptase polymerase chain reaction, and protein level was determined by Western blotting. Phosphorylated NCX-1 (P-NCX) was determined using a phosphoprotein enrichment kit. Compared with NL dogs, NCX-1 mRNA and protein expression and GATA-4 mRNA and protein expression increased in untreated HF dogs, whereas FOG-2 expression decreased. Compared with NL dogs, the level of P-NCX-1 normalized to total NCX-1 increased in untreated HF dogs (0.80+/-0.10 vs 0.37+/-0.04; P < .05). CCM therapy normalized NCX-1 expression, GATA-4, and FOG-2 expression, and the ratio of P-NCX-1 to total NCX-1 (0.62+/-0.10). CONCLUSION Chronic monotherapy with CCM restores expression and phosphorylation of NCX-1. These findings are consistent with previous observations of improved LV function and normalized sarcoplasmic reticulum calcium cycling in the left ventricles of HF dogs treated with CCM therapy.
Collapse
|
21
|
Zhang YH, Hancox JC. Regulation of cardiac Na+-Ca2+ exchanger activity by protein kinase phosphorylation--still a paradox? Cell Calcium 2008; 45:1-10. [PMID: 18614228 DOI: 10.1016/j.ceca.2008.05.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 04/14/2008] [Accepted: 05/27/2008] [Indexed: 11/18/2022]
Abstract
The cardiac Na+-Ca2+ exchanger (NCX) is an important regulator of intracellular ion homeostasis and cardiac function. Gaining insight into modulation of the NCX is therefore important in order to understand ion handling in the heart under physiological and pathological conditions. Typically, the functional contribution of the NCX is often regarded as "secondary" to the changes in luminal Na+ and Ca2+. Whilst it is well accepted that the NCX can be regulated by various factors, including the concentrations of transported ions, direct receptor-mediated modulation of the cardiac NCX is more controversial. Evidence from several different laboratories supports the notion that the cardiac NCX is a direct target of neurotransmitters and hormones and their downstream signalling pathways; however, the issue remains unresolved due to conflicting data showing a lack of direct modulation. The present review summarizes overall findings regarding the modulation of the cardiac NCX, in particular on molecular mechanisms of direct phosphorylation of NCX by beta-adrenergic/adenylate cyclase/protein kinase A and (for comparative purposes) on endothelin-1/protein kinase C signalling pathways. It also aims to consider whether it is currently possible to reconcile discrepancies between studies in the interpretation of the regulation of the cardiac NCX by agents stimulating the beta-adrenoceptor/PKA pathway.
Collapse
Affiliation(s)
- Yin Hua Zhang
- Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.
| | | |
Collapse
|
22
|
Ikeda Y, Hoshijima M, Chien KR. Toward biologically targeted therapy of calcium cycling defects in heart failure. Physiology (Bethesda) 2008; 23:6-16. [PMID: 18268360 DOI: 10.1152/physiol.00033.2007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A growing body of evidence indicates that heart failure progression is tightly associated with dysregulation of phosphorylation of Ca2+ regulators localized in the sub-cellular microdomain of the sarcoplasmic reticulum. Chemical or genetic correction of abnormalities in cardiac phosphorylation cascades is emerging as a potential target in the treatment of heart failure. Here, we review how specific kinases and phosphatases finely tune Ca2+ cycling and regulate excitation-contraction (E-C) coupling in cardiomyocytes.
Collapse
Affiliation(s)
- Yasuhiro Ikeda
- Department of Molecular Cardiovascular Biology, Yamaguchi University School of Medicine, Ube, Japan.
| | | | | |
Collapse
|