1
|
Metalloproteinases in Cardiac Surgery: A Systematic Review. Biomolecules 2023; 13:biom13010113. [PMID: 36671498 PMCID: PMC9855939 DOI: 10.3390/biom13010113] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
The role of matrix metalloproteinases (MMPs) in routine cardiac operations including cardiopulmonary bypass (CPB) is still poorly explored. The purpose of this systematic review was to thoroughly summarize and discuss the existing knowledge of the MMP profile in cardiac surgery. All studies meeting the inclusion criteria (i.e., those reporting detailed data about MMP release during and after CPB) were selected after screening the literature published between July 1975 and August 2022. Fifteen trials that enrolled a total of 431 participants were included. MMP levels were found to be significantly correlated with CPB in all included studies. The gelatinases MMP-2 and MMP-9 were highly released in cardiac surgery with CPB. MMP-9 levels were found to be increased after CPB start and during the duration of CPB. Particularly, it is overexpressed both in the myocardial tissue and circulating in the bloodstream. Also, MMP-2 levels increased after CPB both in plasma and in myocardial tissue. MMP-7, MMP-8, and MMP-13 levels increased after CPB start and remained elevated up to 6 h later. Increased levels of MMPs were associated with adverse post-operative outcomes. Conversely, TIMP-1 decreased with CPB. Mechanical and pharmacological strategies were applied in two studies to analyze their effect on the inflammatory response to cardiac surgery and CPB and on postoperative outcomes. New targeted MMP inhibitor therapies could protect against systemic inflammatory response syndrome after CPB and should be the subject of future large prospective multicenter randomized clinical trials.
Collapse
|
2
|
Hu W, Yang C, Guo X, Wu Y, Loh XJ, Li Z, Wu YL, Wu C. Research Advances of Injectable Functional Hydrogel Materials in the Treatment of Myocardial Infarction. Gels 2022; 8:423. [PMID: 35877508 PMCID: PMC9316750 DOI: 10.3390/gels8070423] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 12/10/2022] Open
Abstract
Myocardial infarction (MI) has become one of the serious diseases threatening human life and health. However, traditional treatment methods for MI have some limitations, such as irreversible myocardial necrosis and cardiac dysfunction. Fortunately, recent endeavors have shown that hydrogel materials can effectively prevent negative remodeling of the heart and improve the heart function and long-term prognosis of patients with MI due to their good biocompatibility, mechanical properties, and electrical conductivity. Therefore, this review aims to summarize the research progress of injectable hydrogel in the treatment of MI in recent years and to introduce the rational design of injectable hydrogels in myocardial repair. Finally, the potential challenges and perspectives of injectable hydrogel in this field will be discussed, in order to provide theoretical guidance for the development of new and effective treatment strategies for MI.
Collapse
Affiliation(s)
- Wei Hu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (W.H.); (X.G.); (Y.W.)
| | - Cui Yang
- School of Medicine, Xiamen University, Xiamen 361003, China;
| | - Xiaodan Guo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (W.H.); (X.G.); (Y.W.)
| | - Yihong Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (W.H.); (X.G.); (Y.W.)
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore;
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore;
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE) Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (W.H.); (X.G.); (Y.W.)
| | - Caisheng Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (W.H.); (X.G.); (Y.W.)
| |
Collapse
|
3
|
Sileno S, Beji S, D'Agostino M, Carassiti A, Melillo G, Magenta A. microRNAs involved in psoriasis and cardiovascular diseases. VASCULAR BIOLOGY 2021; 3:R49-R68. [PMID: 34291190 PMCID: PMC8284950 DOI: 10.1530/vb-21-0007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022]
Abstract
Psoriasis is a chronic inflammatory disease involving the skin. Both genetic and environmental factors play a pathogenic role in psoriasis and contribute to the severity of the disease. Psoriasis, in fact, has been associated with different comorbidities such as diabetes, metabolic syndrome, gastrointestinal or kidney diseases, cardiovascular disease (CVD), and cerebrovascular diseases (CeVD). Indeed, life expectancy in severe psoriasis is reduced by up to 5 years due to CVD and CeVD. Moreover, patients with severe psoriasis have a higher prevalence of traditional cardiovascular (CV) risk factors, including dyslipidemia, diabetes, smoking, and hypertension. Further, systemic inflammation is associated with oxidative stress increase and induces endothelial damage and atherosclerosis progression. Different miRNA have been already described in psoriasis, both in the skin tissues and in the blood flow, to play a role in the progression of disease. In this review, we will summarize and discuss the most important miRNAs that play a role in psoriasis and are also linked to CVD.
Collapse
Affiliation(s)
- Sara Sileno
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Experimental Immunology Laboratory Via Monti di Creta, Rome, Italy
| | - Sara Beji
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Experimental Immunology Laboratory Via Monti di Creta, Rome, Italy
| | - Marco D'Agostino
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Experimental Immunology Laboratory Via Monti di Creta, Rome, Italy
| | - Alessandra Carassiti
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Experimental Immunology Laboratory Via Monti di Creta, Rome, Italy
| | - Guido Melillo
- Unit of Cardiology, IDI-IRCCS, Via Monti di Creta, Rome, Italy
| | - Alessandra Magenta
- Institute of Translational Pharmacology (IFT), National Research Council of Italy (CNR), Via Fosso del Cavaliere, Rome, Italy
| |
Collapse
|
4
|
Lobb DC, Doviak H, Brower GL, Romito E, O'Neill JW, Smith S, Shuman JA, Freels PD, Zellars KN, Freeburg LA, Khakoo AY, Lee T, Spinale FG. Targeted Injection of a Truncated Form of Tissue Inhibitor of Metalloproteinase 3 Alters Post-Myocardial Infarction Remodeling. J Pharmacol Exp Ther 2020; 375:296-307. [PMID: 32958629 PMCID: PMC7589956 DOI: 10.1124/jpet.120.000047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/18/2020] [Indexed: 12/28/2022] Open
Abstract
Infarct expansion can occur after myocardial infarction (MI), which leads to adverse left ventricular (LV) remodeling and failure. An imbalance between matrix metalloproteinase (MMP) induction and tissue inhibitors of MMPs (TIMPs) can accelerate this process. Past studies have shown different biologic effects of TIMP-3, which may depend upon specific domains within the TIMP-3 molecule. This study tested the hypothesis that differential effects of direct myocardial injections of either a full-length recombinant TIMP-3 (F-TIMP-3) or a truncated form encompassing the N-terminal region (N-TIMP-3) could be identified post-MI. MI was induced in pigs that were randomized for MI injections (30 mg) and received targeted injections within the MI region of F-TIMP-3 (n = 8), N-TIMP-3 (n = 9), or saline injection (MI-only, n = 11). At 14 days post-MI, LV ejection fraction fell post-MI but remained higher in both TIMP-3 groups. Tumor necrosis factor and interleukin-10 mRNA increased by over 10-fold in the MI-only and N-TIMP-3 groups but were reduced with F-TIMP-3 at this post-MI time point. Direct MI injection of either a full-length or truncated form of TIMP-3 is sufficient to favorably alter the course of post-MI remodeling. The functional and differential relevance of TIMP-3 domains has been established in vivo since the TIMP-3 constructs demonstrated different MMP/cytokine expression profiles. These translational studies identify a unique and more specific therapeutic strategy to alter the course of LV remodeling and dysfunction after MI. SIGNIFICANCE STATEMENT: Using different formulations of tissue inhibitor of matrix metalloproteinase-3 (TIMP-3), when injected into the myocardial infarction (MI) region, slowed the progression of indices of left ventricular (LV) failure, suggesting that the N terminus of TIMP-3 is sufficient to attenuate early adverse functional events post-MI. Injections of full-length recombinant TIMP-3, but not of the N-terminal region of TIMP-3, reduced relative indices of inflammation at the mRNA level, suggesting that the C-terminal region affects other biological pathways. These unique proof-of-concept studies demonstrate the feasibility of using recombinant small molecules to selectively interrupt adverse LV remodeling post-MI.
Collapse
Affiliation(s)
- David C Lobb
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, South Carolina (D.C.L., H.D., G.L.B., E.R., J.A.S., P.D.F., K.N.Z., L.A.F., F.G.S.) and Amgen, Metabolic Disorders, South San Francisco, California (J.W.O., S.S., A.Y.K., T.L.)
| | - Heather Doviak
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, South Carolina (D.C.L., H.D., G.L.B., E.R., J.A.S., P.D.F., K.N.Z., L.A.F., F.G.S.) and Amgen, Metabolic Disorders, South San Francisco, California (J.W.O., S.S., A.Y.K., T.L.)
| | - Gregory L Brower
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, South Carolina (D.C.L., H.D., G.L.B., E.R., J.A.S., P.D.F., K.N.Z., L.A.F., F.G.S.) and Amgen, Metabolic Disorders, South San Francisco, California (J.W.O., S.S., A.Y.K., T.L.)
| | - Eva Romito
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, South Carolina (D.C.L., H.D., G.L.B., E.R., J.A.S., P.D.F., K.N.Z., L.A.F., F.G.S.) and Amgen, Metabolic Disorders, South San Francisco, California (J.W.O., S.S., A.Y.K., T.L.)
| | - Jason W O'Neill
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, South Carolina (D.C.L., H.D., G.L.B., E.R., J.A.S., P.D.F., K.N.Z., L.A.F., F.G.S.) and Amgen, Metabolic Disorders, South San Francisco, California (J.W.O., S.S., A.Y.K., T.L.)
| | - Stephen Smith
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, South Carolina (D.C.L., H.D., G.L.B., E.R., J.A.S., P.D.F., K.N.Z., L.A.F., F.G.S.) and Amgen, Metabolic Disorders, South San Francisco, California (J.W.O., S.S., A.Y.K., T.L.)
| | - James A Shuman
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, South Carolina (D.C.L., H.D., G.L.B., E.R., J.A.S., P.D.F., K.N.Z., L.A.F., F.G.S.) and Amgen, Metabolic Disorders, South San Francisco, California (J.W.O., S.S., A.Y.K., T.L.)
| | - Parker D Freels
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, South Carolina (D.C.L., H.D., G.L.B., E.R., J.A.S., P.D.F., K.N.Z., L.A.F., F.G.S.) and Amgen, Metabolic Disorders, South San Francisco, California (J.W.O., S.S., A.Y.K., T.L.)
| | - Kia N Zellars
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, South Carolina (D.C.L., H.D., G.L.B., E.R., J.A.S., P.D.F., K.N.Z., L.A.F., F.G.S.) and Amgen, Metabolic Disorders, South San Francisco, California (J.W.O., S.S., A.Y.K., T.L.)
| | - Lisa A Freeburg
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, South Carolina (D.C.L., H.D., G.L.B., E.R., J.A.S., P.D.F., K.N.Z., L.A.F., F.G.S.) and Amgen, Metabolic Disorders, South San Francisco, California (J.W.O., S.S., A.Y.K., T.L.)
| | - Aarif Y Khakoo
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, South Carolina (D.C.L., H.D., G.L.B., E.R., J.A.S., P.D.F., K.N.Z., L.A.F., F.G.S.) and Amgen, Metabolic Disorders, South San Francisco, California (J.W.O., S.S., A.Y.K., T.L.)
| | - TaeWeon Lee
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, South Carolina (D.C.L., H.D., G.L.B., E.R., J.A.S., P.D.F., K.N.Z., L.A.F., F.G.S.) and Amgen, Metabolic Disorders, South San Francisco, California (J.W.O., S.S., A.Y.K., T.L.)
| | - Francis G Spinale
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, South Carolina (D.C.L., H.D., G.L.B., E.R., J.A.S., P.D.F., K.N.Z., L.A.F., F.G.S.) and Amgen, Metabolic Disorders, South San Francisco, California (J.W.O., S.S., A.Y.K., T.L.)
| |
Collapse
|
5
|
Samper IC, Gowers SAN, Rogers ML, Murray DSRK, Jewell SL, Pahl C, Strong AJ, Boutelle MG. 3D printed microfluidic device for online detection of neurochemical changes with high temporal resolution in human brain microdialysate. LAB ON A CHIP 2019; 19:2038-2048. [PMID: 31094398 PMCID: PMC9209945 DOI: 10.1039/c9lc00044e] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This paper presents the design, optimisation and fabrication of a mechanically robust 3D printed microfluidic device for the high time resolution online analysis of biomarkers in a microdialysate stream at microlitre per minute flow rates. The device consists of a microfluidic channel with secure low volume connections that easily integrates electrochemical biosensors for biomarkers such as glutamate, glucose and lactate. The optimisation process of the microfluidic channel fabrication, including for different types of 3D printer, is explained and the resulting improvement in sensor response time is quantified. The time resolution of the device is characterised by recording short lactate concentration pulses. The device is employed to record simultaneous glutamate, glucose and lactate concentration changes simulating the physiological response to spreading depolarisation events in cerebrospinal fluid dialysate. As a proof-of-concept study, the device is then used in the intensive care unit for online monitoring of a brain injury patient, demonstrating its capabilities for clinical monitoring.
Collapse
Affiliation(s)
| | | | | | | | - Sharon L Jewell
- Department of Basic and Clinical Neuroscience, King's College, London, UK
| | - Clemens Pahl
- Department of Basic and Clinical Neuroscience, King's College, London, UK
| | - Anthony J Strong
- Department of Basic and Clinical Neuroscience, King's College, London, UK
| | | |
Collapse
|
6
|
Wahart A, Hocine T, Albrecht C, Henry A, Sarazin T, Martiny L, El Btaouri H, Maurice P, Bennasroune A, Romier-Crouzet B, Blaise S, Duca L. Role of elastin peptides and elastin receptor complex in metabolic and cardiovascular diseases. FEBS J 2019; 286:2980-2993. [PMID: 30946528 DOI: 10.1111/febs.14836] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/23/2019] [Accepted: 04/02/2019] [Indexed: 12/11/2022]
Abstract
The Cardiovascular Continuum describes a sequence of events from cardiovascular risk factors to end-stage heart disease. It includes conventional pathologies affecting cardiovascular functions such as hypertension, atherosclerosis or thrombosis and was traditionally considered from the metabolic point of view. This Cardiovascular Continuum, originally described by Dzau and Braunwald, was extended by O'Rourke to consider also the crucial role played by degradation of elastic fibers, occurring during aging, in the appearance of vascular stiffness, another deleterious risk factor of the continuum. However, the involvement of the elastin degradation products, named elastin-derived peptides, to the Cardiovascular Continuum progression has not been considered before. Data from our laboratory and others clearly showed that these bioactive peptides are central regulators of this continuum, thereby amplifying appearance and evolution of cardiovascular risk factors such as diabetes or hypertension, of vascular alterations such as atherothrombosis and calcification, but also nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. The Elastin Receptor Complex has been shown to be a crucial actor in these processes. We propose here the participation of these elastin-derived peptides and of the Elastin Receptor Complex in these events, and introduce a revisited Cardiovascular Continuum based on their involvement, for which elastin-based pharmacological strategies could have a strong impact in the future.
Collapse
Affiliation(s)
- Amandine Wahart
- UMR CNRS 7369 MEDyC, SFR CAP-Santé, Université de Reims Champagne-Ardenne, France
| | - Thinhinane Hocine
- UMR CNRS 7369 MEDyC, SFR CAP-Santé, Université de Reims Champagne-Ardenne, France
| | - Camille Albrecht
- UMR CNRS 7369 MEDyC, SFR CAP-Santé, Université de Reims Champagne-Ardenne, France
| | - Auberi Henry
- UMR CNRS 7369 MEDyC, SFR CAP-Santé, Université de Reims Champagne-Ardenne, France
| | - Thomas Sarazin
- UMR CNRS 7369 MEDyC, SFR CAP-Santé, Université de Reims Champagne-Ardenne, France
| | - Laurent Martiny
- UMR CNRS 7369 MEDyC, SFR CAP-Santé, Université de Reims Champagne-Ardenne, France
| | - Hassan El Btaouri
- UMR CNRS 7369 MEDyC, SFR CAP-Santé, Université de Reims Champagne-Ardenne, France
| | - Pascal Maurice
- UMR CNRS 7369 MEDyC, SFR CAP-Santé, Université de Reims Champagne-Ardenne, France
| | - Amar Bennasroune
- UMR CNRS 7369 MEDyC, SFR CAP-Santé, Université de Reims Champagne-Ardenne, France
| | | | - Sébastien Blaise
- UMR CNRS 7369 MEDyC, SFR CAP-Santé, Université de Reims Champagne-Ardenne, France
| | - Laurent Duca
- UMR CNRS 7369 MEDyC, SFR CAP-Santé, Université de Reims Champagne-Ardenne, France
| |
Collapse
|
7
|
Wang LL, Chung JJ, Li EC, Uman S, Atluri P, Burdick JA. Injectable and protease-degradable hydrogel for siRNA sequestration and triggered delivery to the heart. J Control Release 2018; 285:152-161. [PMID: 29981357 PMCID: PMC6134398 DOI: 10.1016/j.jconrel.2018.07.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/01/2018] [Accepted: 07/02/2018] [Indexed: 12/14/2022]
Abstract
Injectable hydrogels have significant therapeutic potential for treatment of myocardial infarction (MI) through tissue bulking and local drug delivery, including the delivery of small interfering RNAs (siRNAs). As siRNA targets are identified as potential treatments for MI, hydrogels may bolster efficacy through local and sustained release. Here, we designed an injectable hydrogel to respond to local upregulation in proteolytic activity after MI to erode and release siRNA against MMP2 (siMMP2), a target implicated in deleterious remodeling. Specifically, hyaluronic acid (HA) was modified with hydrazides or aldehydes and mixed to form shear-thinning and self-healing hydrogels through dynamic hydrazone bonds and with peptide crosslinkers that degrade in response to protease activity. HA was further modified with β-cyclodextrin to sequester cholesterol-modified siRNA, limiting passive diffusion. Hydrogels eroded in response to proteases and released active siRNA that knocked down MMP2 in primary cardiac fibroblasts. In a rat model of MI, hydrogels delivering siMMP2 attenuated hydrogel erosion by ~46% at 4 weeks when compared to hydrogels delivering control siRNA, ultimately improving myocardial thickness in the infarct. Delivery of the siMMP2 hydrogel led to significant functional improvements, including increased ejection fraction (27%, 66%), stroke volume (32%, 120%), and cardiac output (20%, 128%) when compared to controls (% increase versus hydrogels with control siRNA, % increase versus saline injection alone). This report demonstrates the utility of biomaterial-based RNA delivery systems for cardiac applications.
Collapse
Affiliation(s)
- Leo L Wang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Jennifer J Chung
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Elizabeth C Li
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Selen Uman
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Pavan Atluri
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
8
|
Cunnea P, Gowers S, Moore JE, Drakakis E, Boutelle M, Fotopoulou C. Review article: Novel technologies in the treatment and monitoring of advanced and relapsed epithelial ovarian cancer. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2017. [PMID: 29515912 DOI: 10.1088/2057-1739/aa5cf1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Epithelial Ovarian cancer (EOC) is the fifth most common cause of cancer death in females in the UK. It has long been recognized to be a set of heterogeneous diseases, with high grade serous being the most common subtype. The majority of patients with EOC present at an advanced stage (FIGO III-IV), and have the largest risk for disease recurrence from which a high percentage will develop resistance to chemotherapy. Despite continual advances in diagnostics, imaging, surgery and treatment of EOC, there has been little variation in the survival rates for patients with EOC. In this review we will introduce novel bioengineering advances in modelling the lymphatic system and real-time tissue monitoring to improve the clinical and therapeutic outcome for patients with EOC. We discuss the advent of the non-invasive "liquid biopsy" in the surveillance of patients undergoing treatment and follow-up. Finally, we present new bioengineering advances for palliative care of patients to lessen symptoms of patients with ascites and improve quality of life.
Collapse
Affiliation(s)
- Paula Cunnea
- Department of Surgery and Cancer, Imperial College London
| | - Sally Gowers
- Department of Bioengineering, Imperial College London
| | - James E Moore
- Department of Bioengineering, Imperial College London
| | | | | | | |
Collapse
|
9
|
Matrix Metalloproteinases in the Interstitial Space. Protein Sci 2016. [DOI: 10.1201/9781315374307-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Abstract
Hydrogels have evolved into indispensable biomaterials in the fields of drug delivery and regenerative medicine. This minireview aims to highlight the recent advances in the hydrogel design for controlled release of bioactive proteins. The latest developments of enzyme-responsive and externally regulated drug delivery systems are summarized. The design strategies and applications of phase-separated hydrogel systems are also described. We expect that these emerging approaches will enable expanded use of hydrogels in biomedicine and healthcare.
Collapse
Affiliation(s)
- Ki Hyun Bae
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore.
| | | |
Collapse
|
11
|
Eckhouse SR, Purcell BP, McGarvey JR, Lobb D, Logdon CB, Doviak H, O'Neill JW, Shuman JA, Novack CP, Zellars KN, Pettaway S, Black RA, Khakoo A, Lee T, Mukherjee R, Gorman JH, Gorman RC, Burdick JA, Spinale FG. Local hydrogel release of recombinant TIMP-3 attenuates adverse left ventricular remodeling after experimental myocardial infarction. Sci Transl Med 2014; 6:223ra21. [PMID: 24523321 DOI: 10.1126/scitranslmed.3007244] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An imbalance between matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) contributes to the left ventricle (LV) remodeling that occurs after myocardial infarction (MI). However, translation of these observations into a clinically relevant, therapeutic strategy remains to be established. The present study investigated targeted TIMP augmentation through regional injection of a degradable hyaluronic acid hydrogel containing recombinant TIMP-3 (rTIMP-3) in a large animal model. MI was induced in pigs by coronary ligation. Animals were then randomized to receive targeted hydrogel/rTIMP-3, hydrogel alone, or saline injection and followed for 14 days. Instrumented pigs with no MI induction served as referent controls. Multimodal imaging (fluoroscopy/echocardiography/magnetic resonance imaging) revealed that LV ejection fraction was improved, LV dilation was reduced, and MI expansion was attenuated in the animals treated with rTIMP-3 compared to all other controls. A marked reduction in proinflammatory cytokines and increased smooth muscle actin content indicative of myofibroblast proliferation occurred in the MI region with hydrogel/rTIMP-3 injections. These results provide the first proof of concept that regional sustained delivery of an MMP inhibitor can effectively interrupt adverse post-MI remodeling.
Collapse
Affiliation(s)
- Shaina R Eckhouse
- Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hughes BG, Schulz R. Targeting MMP-2 to treat ischemic heart injury. Basic Res Cardiol 2014; 109:424. [PMID: 24986221 DOI: 10.1007/s00395-014-0424-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 06/23/2014] [Indexed: 10/24/2022]
Abstract
Matrix metalloproteinase (MMPs) are long understood to be involved in remodeling of the extracellular matrix. However, over the past decade, it has become clear that one of the most ubiquitous MMPs, MMP-2, has numerous intracellular targets in cardiac myocytes. Notably, MMP-2 proteolyzes components of the sarcomere, and its intracellular activity contributes to ischemia-reperfusion injury of the heart. Together with the well documented role played by MMPs in the myocardial remodeling that occurs following myocardial infarction, this has led to great interest in targeting MMPs to treat cardiac ischemic injury. In this review we will describe the expanding understanding of intracellular MMP-2 biology, and how this knowledge may lead to improved treatments for ischemic heart injury. We also critically review the numerous preclinical studies investigating the effects of MMP inhibition in animal models of myocardial infarction and ischemia-reperfusion injury, as well as the recent clinical trials that are part of the effort to translate these results into clinical practice. Acknowledging the disappointing results of past clinical trials of MMP inhibitors for other diseases, we discuss the need for carefully designed preclinical and clinical studies to avoid mistakes that have been previously made. We conclude that inhibition of MMPs, and in particular MMP-2, shows promise as a therapy to prevent the progression from ischemic injury to heart failure. However, it is critical that the full breadth of MMP-2 biology be taken into account as such therapies are developed.
Collapse
Affiliation(s)
- Bryan G Hughes
- Departments of Pediatrics and Pharmacology, Mazankowski Alberta Heart Institute/Cardiovascular Research Centre, University of Alberta, 4-62 HMRC, Edmonton, AB, T6G 2S2, Canada
| | | |
Collapse
|
13
|
Purcell BP, Lobb D, Charati MB, Dorsey SM, Wade RJ, Zellers KN, Doviak H, Pettaway S, Logdon CB, Shuman J, Freels PD, Gorman JH, Gorman RC, Spinale FG, Burdick JA. Injectable and bioresponsive hydrogels for on-demand matrix metalloproteinase inhibition. NATURE MATERIALS 2014; 13:653-61. [PMID: 24681647 PMCID: PMC4031269 DOI: 10.1038/nmat3922] [Citation(s) in RCA: 367] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 02/20/2014] [Indexed: 05/06/2023]
Abstract
Inhibitors of matrix metalloproteinases (MMPs) have been extensively explored to treat pathologies where excessive MMP activity contributes to adverse tissue remodelling. Although MMP inhibition remains a relevant therapeutic target, MMP inhibitors have not translated to clinical application owing to the dose-limiting side effects following systemic administration of the drugs. Here, we describe the synthesis of a polysaccharide-based hydrogel that can be locally injected into tissues and releases a recombinant tissue inhibitor of MMPs (rTIMP-3) in response to MMP activity. Specifically, rTIMP-3 is sequestered in the hydrogels through electrostatic interactions and is released as crosslinks are degraded by active MMPs. Targeted delivery of the hydrogel/rTIMP-3 construct to regions of MMP overexpression following a myocardial infarction significantly reduced MMP activity and attenuated adverse left ventricular remodelling in a porcine model of myocardial infarction. Our findings demonstrate that local, on-demand MMP inhibition is achievable through the use of an injectable and bioresponsive hydrogel.
Collapse
Affiliation(s)
- Brendan P. Purcell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
| | - David Lobb
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, SC
| | - Manoj B. Charati
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
| | - Shauna M. Dorsey
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
| | - Ryan J. Wade
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
| | - Kia N. Zellers
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, SC
| | - Heather Doviak
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, SC
| | - Sara Pettaway
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, SC
| | - Christina B. Logdon
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, SC
| | - James Shuman
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, SC
| | - Parker D. Freels
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, SC
| | - Joseph H. Gorman
- Gorman Cardiovascular Research Laboratory, Department of Surgery, University of Pennsylvania, Philadelphia, PA
| | - Robert C. Gorman
- Gorman Cardiovascular Research Laboratory, Department of Surgery, University of Pennsylvania, Philadelphia, PA
| | - Francis G. Spinale
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, SC
| | - Jason A. Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
- Corresponding Author: University of Pennsylvania, Department of Bioengineering, 240 Skirkanich Hall, 210 S. 33 Street, Philadelphia, PA 19104; Tel: 215-898-8537; Fax: 215-573-2071;
| |
Collapse
|
14
|
Lauten A, Gerhard-Garcia A, Suhr F, Fischer JH, Figulla HR, Bloch W. Impact of ischemia-reperfusion on extracellular matrix processing and structure of the basement membrane of the heart. PLoS One 2014; 9:e92833. [PMID: 24681713 PMCID: PMC3969375 DOI: 10.1371/journal.pone.0092833] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 02/26/2014] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Acute ischemic injury is a strong inductor of cardiac remodelling, resulting in structural changes of the extracellular matrix (ECM) and basement membrane (BM). In a large animal model of ischemia-reperfusion (I/R) we investigated the post-ischemic liberation of the collagen-IV-fragments Tumstatin (TUM; 28 kDa-fragment of collagen-IV-alpha-3), Arresten (ARR; 26 kDa-fragment of collagen-IV-alpha-1) and Endorepellin (LG3, 85 kDa-fragment of perlecan) which are biologically active in angiogenesis and vascularization in the post-ischemic myocardium. METHODS AND RESULTS In this blinded study, 30 pigs were randomized to 60 min of global I/R at either 4°C or 32°C or served as control. Three transmyocardial tissue samples were collected prior to ischemia and within 30 min and 150 min of reperfusion. Tissue content of TUM, ARR and LG3 was analyzed by western blotting and immunostaining. Within 150 min of mild hypothermic I/R a significantly increased tissue content of ARR (0.17±0.14 vs. 0.56±0.56; p = 0.001) and LG3 (1.13±0.34 vs. 2.51±1.71, p<0.001) was observed. In contrast, deep hypothermic I/R was not associated with a significant release of cleavage products. Cleavage of TUM remained unchanged irrespective of temperature. Increased matrix processing following mild hypothermia I/R is further supported by a >11fold elevation of creatine kinase (2075±2595 U/l vs. 23248±6551 U/l; p<0.001) in the coronary sinus plasma samples. Immunostaining demonstrated no changes for ARR and LG3 presentation irrespective of temperature. In contrast, TUM significantly decreased in the BM surrounding cardiomyocytes and capillaries after mild and deep hypothermic I/R, thus representing structural alterations of the BM in these groups. CONCLUSION The study demonstrates an early temperature-dependent processing of Col-IV as major component of the BM of cardiomyocytes and vascular endothelium. These observations support the protective effects of deep hypothermia during I/R. Furthermore, the results suggest an increased structural remodelling of the myocardial basement membrane with potential functional impairment during mild hypothermic I/R which may contribute to the progression to post-ischemic heart failure.
Collapse
Affiliation(s)
- Alexander Lauten
- Department of Internal Medicine I (Cardiology, Angiology, Pneumology), Friedrich- Schiller University, Jena, Germany
- Institute of Cardiovascular Research and Sports Medicine, German Sports University, Cologne, Germany
- * E-mail:
| | - Alexandra Gerhard-Garcia
- Institute of Cardiovascular Research and Sports Medicine, German Sports University, Cologne, Germany
| | - Frank Suhr
- Institute of Cardiovascular Research and Sports Medicine, German Sports University, Cologne, Germany
| | - Juergen H. Fischer
- Institute for Experimental Medicine, University of Cologne, Cologne, Germany
| | - Hans R. Figulla
- Department of Internal Medicine I (Cardiology, Angiology, Pneumology), Friedrich- Schiller University, Jena, Germany
| | - Wilhelm Bloch
- Institute of Cardiovascular Research and Sports Medicine, German Sports University, Cologne, Germany
| |
Collapse
|
15
|
Pang H, Han B, Yu T, Peng Z. The complex regulation of tanshinone IIA in rats with hypertension-induced left ventricular hypertrophy. PLoS One 2014; 9:e92216. [PMID: 24647357 PMCID: PMC3960224 DOI: 10.1371/journal.pone.0092216] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 02/20/2014] [Indexed: 02/07/2023] Open
Abstract
Tanshinone IIA has definite protective effects on various cardiovascular diseases. However, in hypertension-induced left ventricular hypertrophy (H-LVH), the signaling pathways of tanshinone IIA in inhibition of remodeling and cardiac dysfunction remain unclear. Two-kidney, one-clip induced hypertensive rats (n = 32) were randomized to receive tanshinone IIA (5, 10, 15 mg/kg per day) or 5% glucose injection (GS). Sham-operated rats (n = 8) received 5%GS as control. Cardiac function and dimensions were assessed by using an echocardiography system. Histological determination of the fibrosis and apoptosis was performed using hematoxylin eosin, Masson's trichrome and TUNEL staining. Matrix metalloproteinase 2 (MMP2) and tissue inhibitor of matrix metalloproteinases type 2 (TIMP2) protein expressions in rat myocardial tissues were detected by immunohistochemistry. Rat cardiomyocytes were isolated by a Langendorff perfusion method. After 48 h culture, the supernatant and cardiomyocytes were collected to determine the potential related proteins impact on cardiac fibrosis and apoptosis. Compared with the sham rats, the heart tissues of H-LVH (5%GS) group suffered severely from the oxidative damage, apoptosis of cardiomyocytes and extracellular matrix (ECM) deposition. In the H-LVH group, tanshinone IIA treated decreased malondialdehyde (MDA) content and increased superoxide dismutase (SOD) activity. Tanshinone IIA inhibited cardiomyocytes apoptosis as confirmed by the reduction of TUNEL positive cardiomyocytes and the down-regulation of Caspase-3 activity and Bax/Bcl-2 ratio. Meanwhile, plasma apelin level increased with down-regulation of APJ receptor. Tanshinone IIA suppressed cardiac fibrosis through regulating the paracrine factors released by cardiomyocytes and the TGF-β/Smads signaling pathway activity. In conclusion, our in vivo study showed that tanshinone IIA could improve heart function by enhancing myocardial contractility, inhibiting ECM deposition, and limiting apoptosis of cardiomyocytes and oxidative damage.
Collapse
Affiliation(s)
- Hui Pang
- Department of Cardiovascular Medicine, Central Hospital of Xuzhou, Xuzhou Clinical School of Xuzhou Medical College, Affiliated Hospital of Southeast University, Xuzhou, Jiangsu, China
| | - Bing Han
- Department of Cardiovascular Medicine, Central Hospital of Xuzhou, Xuzhou Clinical School of Xuzhou Medical College, Affiliated Hospital of Southeast University, Xuzhou, Jiangsu, China
| | - Tao Yu
- Department of Cardiovascular Medicine, Central Hospital of Xuzhou, Xuzhou Clinical School of Xuzhou Medical College, Affiliated Hospital of Southeast University, Xuzhou, Jiangsu, China
| | - Zhen Peng
- Department of Ultrasonography, Central Hospital of Xuzhou, Xuzhou Clinical School of Xuzhou Medical College, Affiliated Hospital of Southeast University, Xuzhou, Jiangsu, China
| |
Collapse
|
16
|
Macarthur JW, Cohen JE, McGarvey JR, Shudo Y, Patel JB, Trubelja A, Fairman AS, Edwards BB, Hung G, Hiesinger W, Goldstone AB, Atluri P, Wilensky RL, Pilla JJ, Gorman JH, Gorman RC, Woo YJ. Preclinical evaluation of the engineered stem cell chemokine stromal cell-derived factor 1α analog in a translational ovine myocardial infarction model. Circ Res 2013; 114:650-9. [PMID: 24366171 DOI: 10.1161/circresaha.114.302884] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
RATIONALE After myocardial infarction, there is an inadequate blood supply to the myocardium, and the surrounding borderzone becomes hypocontractile. OBJECTIVE To develop a clinically translatable therapy, we hypothesized that in a preclinical ovine model of myocardial infarction, the modified endothelial progenitor stem cell chemokine, engineered stromal cell-derived factor 1α analog (ESA), would induce endothelial progenitor stem cell chemotaxis, limit adverse ventricular remodeling, and preserve borderzone contractility. METHODS AND RESULTS Thirty-six adult male Dorset sheep underwent permanent ligation of the left anterior descending coronary artery, inducing an anteroapical infarction, and were randomized to borderzone injection of saline (n=18) or ESA (n=18). Ventricular function, geometry, and regional strain were assessed using cardiac MRI and pressure-volume catheter transduction. Bone marrow was harvested for in vitro analysis, and myocardial biopsies were taken for mRNA, protein, and immunohistochemical analysis. ESA induced greater chemotaxis of endothelial progenitor stem cells compared with saline (P<0.01) and was equivalent to recombinant stromal cell-derived factor 1α (P=0.27). Analysis of mRNA expression and protein levels in ESA-treated animals revealed reduced matrix metalloproteinase 2 in the borderzone (P<0.05), with elevated levels of tissue inhibitor of matrix metalloproteinase 1 and elastin in the infarct (P<0.05), whereas immunohistochemical analysis of borderzone myocardium showed increased capillary and arteriolar density in the ESA group (P<0.01). Animals in the ESA treatment group also had significant reductions in infarct size (P<0.01), increased maximal principle strain in the borderzone (P<0.01), and a steeper slope of the end-systolic pressure-volume relationship (P=0.01). CONCLUSIONS The novel, biomolecularly designed peptide ESA induces chemotaxis of endothelial progenitor stem cells, stimulates neovasculogenesis, limits infarct expansion, and preserves contractility in an ovine model of myocardial infarction.
Collapse
Affiliation(s)
- John W Macarthur
- From the Division of Cardiovascular Surgery, Department of Surgery (J.W.M., J.E.C., J.R.M., A.T., A.S.F., G.H., W.H., A.B.G., P.A., J.H.G., R.C.G.), Gorman Cardiovascular Research Group, Department of Surgery (J.R.M., J.J.P., J.H.G., R.C.G.), Division of Interventional Cardiology, Department of Medicine (R.L.W.), and Department of Radiology (J.J.P.), University of Pennsylvania School of Medicine, Philadelphia; and Department of Cardiothoracic Surgery, Stanford University School of Medicine, CA (J.W.M., J.E.C., Y.S., J.B.P., B.B.E., Y.J.W.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Rogers ML, Boutelle MG. Real-time clinical monitoring of biomolecules. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2013; 6:427-453. [PMID: 23772662 DOI: 10.1146/annurev.anchem.111808.073648] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Continuous monitoring of clinical biomarkers offers the exciting possibility of new therapies that use biomarker levels to guide treatment in real time. This review explores recent progress toward this goal. We initially consider measurements in body fluids by a range of analytical methods. We then discuss direct tissue measurements performed by implanted sensors; sampling techniques, including microdialysis and ultrafiltration; and noninvasive methods. A future directions section considers analytical methods at the cusp of clinical use.
Collapse
Affiliation(s)
- Michelle L Rogers
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom.
| | | |
Collapse
|
18
|
Eckhouse SR, Akerman AW, Logdon CB, Oelsen JM, O'Quinn EC, Nadeau EK, Stroud RE, Mukherjee R, Jones JA, Spinale FG. Differential membrane type 1 matrix metalloproteinase substrate processing with ischemia-reperfusion: relationship to interstitial microRNA dynamics and myocardial function. J Thorac Cardiovasc Surg 2012; 145:267-275, 277.e1-4; discussion 275-7. [PMID: 23102905 DOI: 10.1016/j.jtcvs.2012.09.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 08/29/2012] [Accepted: 09/26/2012] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Membrane type 1 matrix metalloproteinase (MT1-MMP) is critical to a number of proteolytic and profibrotic events. However, upstream regulation of MT1-MMP with myocardial ischemia-reperfusion remains poorly understood. MicroRNAs regulate post-transcriptional events, and in silico mapping has identified a conserved sequence in MT1-MMP for microRNA-133a. This study tested the hypothesis that changes in microRNA-133a regulation occur with myocardial ischemia-reperfusion, which contributes to time- and region-dependent changes in MT1-MMP activity and processing of MT1-MMP substrates. METHODS Yorkshire pigs (n = 12) underwent ischemia-reperfusion (90 minutes ischemia and 120 minutes reperfusion), where regional preload recruitable stroke work (sonomicrometry), interstitial MT1-MMP activity (microdialysis), Smad2 abundance (immunoblotting), and interstitial microRNA-133a (polymerase chain reaction) were determined within the ischemia-reperfusion and remote regions. Human left ventricular fibroblasts were transduced with microRNA-133a and anti-microRNA-133a (lentivirus) to determine the effects on MT1-MMP protein abundance. RESULTS With ischemia-reperfusion, regional preload recruitable stroke work decreased from steady state (139 ± 20 mm Hg to 44 ± 11 mm Hg, P < .05) within the ischemia-reperfusion region. MT1-MMP activity increased in both regions. Phosphorylated Smad2 increased within the ischemia-reperfusion region. Both in vitro and in vivo interstitial levels of microRNA-133a decreased with ischemia and returned to steady-state levels with reperfusion. In vitro transduction of microRNA-133a in left ventricular fibroblasts decreased MT1-MMP levels. CONCLUSIONS Modulation of MT1-MMP activity and microRNA-133a exportation into the myocardial interstitium occurred in the setting of acute myocardial ischemia-reperfusion. In addition, changes in microRNA-133a expression in left ventricular fibroblasts resulted in an inverse modulation of MT1-MMP abundance. Therefore, targeting of microRNA-133a represents a potentially novel means for regulating the cascade of profibrotic events after ischemia-reperfusion.
Collapse
Affiliation(s)
- Shaina R Eckhouse
- Division of Cardiothoracic Surgery, Medical University of South Carolina, and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Abstract
The myocardial interstitium is highly organized and orchestrated, whereby small disruptions in composition, spatial relationships, or content lead to altered myocardial systolic and/or diastolic performance. These changes in extracellular matrix structure and function are important in the progression to heart failure in pressure overload hypertrophy, dilated cardiomyopathy, and ischemic heart disease. The myocardial interstitium is not a passive entity, but rather a complex and dynamic microenvironment that represents an important structural and signaling system within the myocardium.
Collapse
|
21
|
Raedschelders K, Ansley DM, Chen DDY. The cellular and molecular origin of reactive oxygen species generation during myocardial ischemia and reperfusion. Pharmacol Ther 2011; 133:230-55. [PMID: 22138603 DOI: 10.1016/j.pharmthera.2011.11.004] [Citation(s) in RCA: 288] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 11/04/2011] [Indexed: 02/07/2023]
Abstract
Myocardial ischemia-reperfusion injury is an important cause of impaired heart function in the early postoperative period subsequent to cardiac surgery. Reactive oxygen species (ROS) generation increases during both ischemia and reperfusion and it plays a central role in the pathophysiology of intraoperative myocardial injury. Unfortunately, the cellular source of these ROS during ischemia and reperfusion is often poorly defined. Similarly, individual ROS members tend to be grouped together as free radicals with a uniform reactivity towards biomolecules and with deleterious effects collectively ascribed under the vague umbrella of oxidative stress. This review aims to clarify the identity, origin, and progression of ROS during myocardial ischemia and reperfusion. Additionally, this review aims to describe the biochemical reactions and cellular processes that are initiated by specific ROS that work in concert to ultimately yield the clinical manifestations of myocardial ischemia-reperfusion. Lastly, this review provides an overview of several key cardioprotective strategies that target myocardial ischemia-reperfusion injury from the perspective of ROS generation. This overview is illustrated with example clinical studies that have attempted to translate these strategies to reduce the severity of ischemia-reperfusion injury during coronary artery bypass grafting surgery.
Collapse
Affiliation(s)
- Koen Raedschelders
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine. The University of British Columbia, Vancouver, BC, Canada.
| | | | | |
Collapse
|
22
|
Dixon JA, Gorman RC, Stroud RE, Mukherjee R, Meyer EC, Baker NL, Morita M, Hamamoto H, Ryan LP, Gorman JH, Spinale FG. Targeted regional injection of biocomposite microspheres alters post-myocardial infarction remodeling and matrix proteolytic pathways. Circulation 2011; 124:S35-45. [PMID: 21911817 DOI: 10.1161/circulationaha.111.035774] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Although localized delivery of biocomposite materials, such as calcium hydroxyapatite (CHAM), have been demonstrated to potentially attenuate adverse left ventricular (LV) remodeling after myocardial infarction (MI), the underlying biological mechanisms for this effect remain unclear. This study tested the hypothesis that targeted CHAM injections would alter proteolytic pathways (matrix metalloproteinases [MMPs] and tissue inhibitors of MMPs [TIMPs]) and would be associated with parameters of post-MI LV remodeling. METHODS AND RESULTS MI was induced in adult sheep followed by 20 targeted injections of a total volume of 1.3 mL (n=6) or 2.6 mL of CHAM (n=5) or saline (n=13) and LV end-diastolic volume (EDV) and MMP/TIMP profiles in the MI region were measured at 8 weeks after MI. LV EDV decreased with 2.6 mL CHAM versus MI only (105.4 ± 7.5 versus 80.6 ± 4.2 respectively, P<0.05) but not with 1.3 mL CHAM (94.5 ± 5.0, P=0.32). However, MI thickness increased by 2-fold in both CHAM groups compared with MI only (P<0.05). MMP-13 increased 40-fold in the MI only group (P<0.05) but fell by >6-fold in both CHAM groups (P<0.05). MMP-7 increased approximately 1.5-fold in the MI only group (P<0.05) but decreased to referent control values in both CHAM groups in the MI region (P<0.05). Collagen content was reduced by approximately 30% in the CHAM groups compared with MI only (P<0.05). CONCLUSIONS Differential effects on LV remodeling and MMP/TIMP profiles occurred with CHAM. Thus, targeted injection of a biocomposite material can favorably affect the post-MI remodeling process and therefore holds promise as a treatment strategy in and of itself, or as a matrix with potentially synergistic effects with localized pharmacological or cellular therapies.
Collapse
Affiliation(s)
- Jennifer A Dixon
- Cardiothoracic Surgery, Medical University of SouthCarolina and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kandalam V, Basu R, Moore L, Fan D, Wang X, Jaworski DM, Oudit GY, Kassiri Z. Lack of tissue inhibitor of metalloproteinases 2 leads to exacerbated left ventricular dysfunction and adverse extracellular matrix remodeling in response to biomechanical stress. Circulation 2011; 124:2094-105. [PMID: 21986284 DOI: 10.1161/circulationaha.111.030338] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Remodeling of the extracellular matrix (ECM) is a key aspect of myocardial response to biomechanical stress and heart failure. Tissue inhibitors of metalloproteinases (TIMPs) regulate the ECM turnover through negative regulation of matrix metalloproteinases (MMPs), which degrade the ECM structural proteins. Tissue inhibitor of metalloproteinases 2 is unique among TIMPs in activating pro-MMP2 in addition to inhibiting a number of MMPs. Given this dual role of TIMP2, we investigated whether TIMP2 serves a critical role in heart disease. METHODS AND RESULTS Pressure overload by transverse aortic constriction (TAC) in 8-week-old male mice resulted in greater left ventricular hypertrophy, fibrosis, dilation, and dysfunction in TIMP2-deficient (TIMP2(-/-)) compared with wild-type mice at 2 weeks and 5 weeks post-TAC. Despite lack of MMP2 activation, total collagenase activity and specific membrane type MMP activity were greater in TIMP2(-/-)-TAC hearts. Loss of TIMP2 resulted in a marked reduction of integrin β1D levels and compromised focal adhesion kinase phosphorylation, resulting in impaired adhesion of cardiomyocytes to ECM proteins, laminin, and fibronectin. Nonuniform ECM remodeling in TIMP2(-/-)-TAC hearts revealed degraded network structure as well as excess fibrillar deposition. Greater fibrosis in TIMP2(-/-)-TAC compared with wild-type TAC hearts was due to higher levels of SPARC (secreted protein acidic and rich in cysteine) and posttranslational stabilization of collagen fibers rather than increased collagen synthesis. Inhibition of MMPs including membrane type MMP significantly reduced left ventricular dilation and dysfunction, hypertrophy, and fibrosis in TIMP2(-/-)-TAC mice. CONCLUSIONS Lack of TIMP2 leads to exacerbated cardiac dysfunction and remodeling after pressure overload because of excess activity of membrane type MMP and loss of integrin β1D, leading to nonuniform ECM remodeling and impaired myocyte-ECM interaction.
Collapse
Affiliation(s)
- Vijay Kandalam
- Assistant Professor, Department of Physiology, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Castro MM, Kandasamy AD, Youssef N, Schulz R. Matrix metalloproteinase inhibitor properties of tetracyclines: therapeutic potential in cardiovascular diseases. Pharmacol Res 2011; 64:551-60. [PMID: 21689755 DOI: 10.1016/j.phrs.2011.05.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Matrix metalloproteinases (MMPs) are a family of proteases best known for their capacity to proteolyse several proteins of the extracellular matrix. Their increased activity contributes to the pathogenesis of several cardiovascular diseases. MMP-2 in particular is now considered to be also an important intracellular protease which has the ability to proteolyse specific intracellular proteins in cardiac muscle cells and thus reduce contractile function. Accordingly, inhibition of MMPs is a growing therapeutic aim in the treatment or prevention of various cardiovascular diseases. Tetracyclines, especially doxycycline, have been frequently used as important MMP inhibitors since they inhibit MMP activity independently of their antimicrobial properties. In this review we will focus on the intracellular actions of MMPs in some cardiovascular diseases including ischemia and reperfusion (I/R) injury, inflammatory heart diseases and septic shock; and explain how tetracyclines, as MMP inhibitors, have therapeutic actions to treat such diseases. We will also briefly discuss how MMPs can be intracellularly regulated and activated by oxidative stress, thus cleaving several important proteins inside cells. In addition to their potential therapeutic effects, MMP inhibitors may also be useful tools to understand the biological consequences of MMP activity and its respective extra- and intracellular effects.
Collapse
Affiliation(s)
- Michele M Castro
- Department of Pharmacology, Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
25
|
Dixon JA, Gaillard WF, Rivers WT, Koval CN, Stroud RE, Mukherjee R, Spinale FG. Heterogeneity in MT1-MMP activity with ischemia-reperfusion and previous myocardial infarction: relation to regional myocardial function. Am J Physiol Heart Circ Physiol 2010; 299:H1947-58. [PMID: 20935147 DOI: 10.1152/ajpheart.00314.2010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
After a myocardial infarction (MI), an episode of ischemia-reperfusion (I/R) can result in a greater impairment of left ventricular (LV) regional function (LVRF) than that caused by an initial I/R episode in the absence of MI. Membrane type-I matrix metalloproteinase (MT1-MMP) proteolytically processes the myocardial matrix and is upregulated in LV failure. This study tested the central hypothesis that a differential induction of MT1-MMP occurs and is related to LVRF after I/R in the context of a previous MI. Pigs with a previous MI [3 wk postligation of the left circumflex artery (LCx)] or no MI were randomized to undergo I/R [60-min/120-min left anterior descending coronary artery (LAD) occlusion] or no I/R as follows: no MI and no I/R (n = 6), no MI and I/R (n = 8), MI and no I/R (n = 8), and MI and I/R (n = 8). Baseline LVRF (regional stroke work, sonomicrometry) was lower in the LAD region in the MI group compared with no MI (103 ± 12 vs. 188 ± 26 mmHg·mm, P < 0.05) and remained lower with peak ischemia (35 ± 8 vs. 88 ± 17 mmHg·mm, P < 0.05). Using a novel interstitial microdialysis method, MT1-MMP was directly measured and was over threefold higher in the LCx region and over twofold higher in the LAD region in the MI group compared with the no MI group at baseline. MT1-MMP fluorogenic activity was persistently elevated in the LCx region in the MI and I/R group but remained unchanged in the LAD region. In contrast, no changes in MT1-MMP occurred in the LCx region in the no MI and I/R group but increased in the LAD region. MT1-MMP mRNA was increased by over threefold in the MI region in the MI and I/R group. In conclusion, these findings demonstrate that a heterogeneous response in MT1-MMP activity likely contributes to regional dysfunction with I/R and that a subsequent episode of I/R activates a proteolytic cascade within the MI region that may contribute to a continued adverse remodeling process.
Collapse
Affiliation(s)
- Jennifer A Dixon
- Division of Cardiothoracic Surgery, Medical University of South Carolina and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Reust DL, Reeves ST, Abernathy JH, Dixon JA, Gaillard WF, Mukherjee R, Koval CN, Stroud RE, Spinale FG. Interstitial plasmin activity with epsilon aminocaproic acid: temporal and regional heterogeneity. Ann Thorac Surg 2010; 89:1538-45. [PMID: 20417774 PMCID: PMC2890310 DOI: 10.1016/j.athoracsur.2010.01.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 01/21/2010] [Accepted: 01/25/2010] [Indexed: 11/20/2022]
Abstract
BACKGROUND Epsilon aminocaproic acid (EACA) is used in cardiac surgery to modulate plasmin activity (PLact). The present study developed a fluorogenic-microdialysis system to measure in vivo region specific temporal changes in PLact after EACA administration. METHODS Pigs (25 to 35 kg) received EACA (75 mg/kg, n = 7) or saline in which microdialysis probes were placed in the liver, myocardium, kidney, and quadricep muscle. The microdialysate contained a plasmin-specific fluorogenic peptide and fluorescence emission, which directly reflected PLact, determined at baseline, 30, 60, 90, and 120 minutes after EACA/vehicle infusion. RESULTS Epsilon aminocaproic acid caused significant decreases in liver and quadricep PLact at 60, 90, 120 minutes, and at 30, 60, and 120 minutes, respectively (p < 0.05). In contrast, EACA induced significant biphasic changes in heart and kidney PLact profiles with initial increases followed by decreases at 90 and 120 minutes (p < 0.05). The peak EACA interstitial concentrations for all compartments occurred at 30 minutes after infusion, and were fivefold higher in the renal compartment and fourfold higher in the myocardium, when compared with the liver or muscle (p < 0.05). CONCLUSIONS Using a large animal model and in vivo microdialysis measurements of plasmin activity, the unique findings from this study were twofold. First, EACA induced temporally distinct plasmin activity profiles within the plasma and interstitial compartments. Second, EACA caused region-specific changes in plasmin activity profiles. These temporal and regional heterogeneic effects of EACA may have important therapeutic considerations when managing fibrinolysis in the perioperative period.
Collapse
Affiliation(s)
- Daryl L Reust
- Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, South Carolina 29403, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hunyor SN, Jackson CJ. Microenvironment and macroenvironment in hypertensive hearts: boundaries and silos--can we pick and treat diastolic heart failure? Hypertension 2010; 55:1312-3. [PMID: 20404215 DOI: 10.1161/hypertensionaha.110.150524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Reust DL, Reeves ST, Abernathy JH, Dixon JA, Gaillard WF, Mukherjee R, Koval CN, Stroud RE, Spinale FG. Temporally and regionally disparate differences in plasmin activity by tranexamic acid. Anesth Analg 2010; 110:694-701. [PMID: 20185649 PMCID: PMC2880532 DOI: 10.1213/ane.0b013e3181c7eb27] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND A major complication associated with cardiac surgery is excessive and prolonged bleeding in the perioperative period. Improving coagulation by inhibiting fibrinolysis, primarily through inhibition of plasmin activity (PLact) with antifibrinolytics such as tranexamic acid (TXA), has been a pharmacological mainstay in cardiac surgical patients. Despite its almost ubiquitous use, the temporal and regional modulation of PLact profiles by TXA remains unexplored. Accordingly, we developed a fluorogenic-microdialysis system to measure in vivo dynamic changes in PLact after TXA administration in a large animal model. METHODS Pigs (25-35 kg) were randomly assigned to receive TXA (30 mg/kg, diluted into 50 mL normal saline; n = 9) or vehicle (50 mL normal saline; n = 7). Microdialysis probes were placed in the liver, myocardium, kidney, and quadriceps muscle compartments. The microdialysate infusion contained a validated plasmin-specific fluorogenic peptide. The fluorescence emission (standard fluorogenic units [SFU]) of the interstitial fluid collected from the microdialysis probes, which directly reflects PLact, was determined at steady-state baseline and 30, 60, 90, and 120 min after TXA/vehicle infusion. Plasma PLact was determined at the same time points using the same fluorogenic substrate approach. RESULTS TXA reduced plasma PLact at 30 min after infusion by >110 SFU compared with vehicle values (P < 0.05). Specifically, there was a decrease in liver PLact at 90 and 120 min after TXA infusion of >150 SFU (P < 0.05) and 175 SFU (P < 0.05), respectively. The decrease in liver PLact occurred 60 min after the maximal decrease in plasma PLact. In contrast, kidney, heart, and quadriceps PLact transiently increased followed by an overall decrease at 120 min. CONCLUSIONS Using a large animal model and in vivo microdialysis measurements of PLact, the unique findings from this study were 2-fold. First, TXA induced temporally distinct PLact profiles within the plasma and selected interstitial compartments. Second, TXA caused region-specific changes in PLact profiles. These temporal and regional differences in the effects of TXA may have important therapeutic considerations when managing fibrinolysis in the perioperative period.
Collapse
Affiliation(s)
- Daryl L Reust
- Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC 29403, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wang Y, Zagorevski DV, Lennartz MR, Loegering DJ, Stenken JA. Detection of in vivo matrix metalloproteinase activity using microdialysis sampling and liquid chromatography/mass spectrometry. Anal Chem 2009; 81:9961-71. [PMID: 19904964 PMCID: PMC3547635 DOI: 10.1021/ac901703g] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Matrix metalloproteinases (MMPs) are a family of endoproteases that break down extracellular matrix and whose upregulation contributes to several diseases. A liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was developed to quantify MMP-1 and MMP-9 substrates and their N-terminal peptide products in samples obtained from implanted microdialysis sampling probes. In vitro studies with purified human MMP-1 and MMP-9 were used to optimize the assay and determine the effectiveness of the local delivery of a broad-spectrum MMP inhibitor, GM 6001. Localized delivery of GM 6001 at 10 microM was sufficient to completely inhibit product formation in vitro. In vivo studies in male Sprague-Dawley rats were performed with microdialysis probes implanted into the subcutaneous tissue. Directly after microdialysis probe implantation, infusions of the MMP-1 and MMP-9 substrates (50 microM each) resulted in recovered product concentrations of approximately 2 microM. During a 50 microM GM 6001 coinfusion with the substrates, a 30% and 25% reduction in product formation for the MMP-1 and MMP-9 substrates was obtained, respectively. Blank dialysates were negative for enzymatic activity that could cleave the MMP substrates. This method allowed for the activity of different MMPs surrounding the microdialysis probe to be observed during in vivo sampling.
Collapse
Affiliation(s)
- Ying Wang
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, USA
| | | | | | | | | |
Collapse
|
30
|
Kandasamy AD, Chow AK, Ali MAM, Schulz R. Matrix metalloproteinase-2 and myocardial oxidative stress injury: beyond the matrix. Cardiovasc Res 2009; 85:413-23. [PMID: 19656780 DOI: 10.1093/cvr/cvp268] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Matrix metalloproteinase (MMP)-2 belongs to a family of zinc-dependent proteases which are best known for their ability to proteolyse extracellular matrix proteins throughout the body, including the cardiovascular system. Increased MMP-2 activity has been demonstrated in myocardial ischaemia and reperfusion injury and the progression to congestive heart failure, with most evidence to date for its role in cardiac remodelling. Recent evidence, however, shows that MMP-2 also co-localizes with and proteolyses specific protein targets within the cardiomyocyte to cause acute, reversible contractile dysfunction, challenging the conventional wisdom on the 'extracellular matrix only' actions of this enzyme. In this review, we discuss the recent upsurge in MMP-2 research with regards to its activation by non-proteolytic pathways in the setting of enhanced oxidative stress in the heart. We will focus on the consequences of intracellular actions of MMP-2 within the cardiomyocyte and its regulation at several levels including its expression, post-translational modifications, and regulation by endogenous tissue inhibitors of metalloproteinases, caveolin, and small molecule MMP inhibitors. MMP-2 is emerging as an important signalling protease implicated in the proteolytic regulation of various intracellular proteins in myocardial oxidative stress injury.
Collapse
Affiliation(s)
- Arulmozhi D Kandasamy
- Department of Pediatrics and Pharmacology, Cardiovascular Research Centre, 4-62 Heritage Medical Research Centre, University of Alberta, Edmonton, AB, Canada T6G 2S2
| | | | | | | |
Collapse
|