1
|
Strandberg LS, Cui X, Rath A, Liu J, Silverman ED, Liu X, Siragam V, Ackerley C, Su BB, Yan JY, Capecchi M, Biavati L, Accorroni A, Yuen W, Quattrone F, Lung K, Jaeggi ET, Backx PH, Deber CM, Hamilton RM. Congenital heart block maternal sera autoantibodies target an extracellular epitope on the α1G T-type calcium channel in human fetal hearts. PLoS One 2013; 8:e72668. [PMID: 24039792 PMCID: PMC3767782 DOI: 10.1371/journal.pone.0072668] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 07/17/2013] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Congenital heart block (CHB) is a transplacentally acquired autoimmune disease associated with anti-Ro/SSA and anti-La/SSB maternal autoantibodies and is characterized primarily by atrioventricular (AV) block of the fetal heart. This study aims to investigate whether the T-type calcium channel subunit α1G may be a fetal target of maternal sera autoantibodies in CHB. METHODOLOGY/PRINCIPAL FINDINGS We demonstrate differential mRNA expression of the T-type calcium channel CACNA1G (α1G gene) in the AV junction of human fetal hearts compared to the apex (18-22.6 weeks gestation). Using human fetal hearts (20-22 wks gestation), our immunoprecipitation (IP), Western blot analysis and immunofluorescence (IF) staining results, taken together, demonstrate accessibility of the α1G epitope on the surfaces of cardiomyocytes as well as reactivity of maternal serum from CHB affected pregnancies to the α1G protein. By ELISA we demonstrated maternal sera reactivity to α1G was significantly higher in CHB maternal sera compared to controls, and reactivity was epitope mapped to a peptide designated as p305 (corresponding to aa305-319 of the extracellular loop linking transmembrane segments S5-S6 in α1G repeat I). Maternal sera from CHB affected pregnancies also reacted more weakly to the homologous region (7/15 amino acids conserved) of the α1H channel. Electrophysiology experiments with single-cell patch-clamp also demonstrated effects of CHB maternal sera on T-type current in mouse sinoatrial node (SAN) cells. CONCLUSIONS/SIGNIFICANCE Taken together, these results indicate that CHB maternal sera antibodies readily target an extracellular epitope of α1G T-type calcium channels in human fetal cardiomyocytes. CHB maternal sera also show reactivity for α1H suggesting that autoantibodies can target multiple fetal targets.
Collapse
Affiliation(s)
- Linn S. Strandberg
- Department of Physiology and Experimental Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Xuezhi Cui
- Department of Physiology and Experimental Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Arianna Rath
- Division of Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jie Liu
- Departments of Physiology and Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Earl D. Silverman
- Department of Physiology and Experimental Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Xiaoru Liu
- Department of Physiology and Experimental Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Vinayakumar Siragam
- Department of Physiology and Experimental Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Cameron Ackerley
- Department of Physiology and Experimental Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Brenda Bin Su
- Department of Physiology and Experimental Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jane Yuqing Yan
- Department of Physiology and Experimental Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | - William Yuen
- Department of Physiology and Experimental Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Kalvin Lung
- Department of Physiology and Experimental Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Edgar T. Jaeggi
- Department of Physiology and Experimental Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Peter H. Backx
- Departments of Physiology and Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Cardiology, University Health Network, Toronto, Ontario, Canada
| | - Charles M. Deber
- Division of Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Robert M. Hamilton
- Department of Physiology and Experimental Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
2
|
Hutter D, Silverman ED, Jaeggi ET. The benefits of transplacental treatment of isolated congenital complete heart block associated with maternal anti-Ro/SSA antibodies: a review. Scand J Immunol 2010; 72:235-41. [PMID: 20696021 DOI: 10.1111/j.1365-3083.2010.02440.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Isolated congenital complete atrio-ventricular block (CAVB) is associated with the transplacental passage of maternal autoantibodies directed to foetal Ro/SSA ribonucleoproteins. Their interactions most likely trigger the inflammation of the atrio-ventricular node and the myocardium in susceptible foetuses. The inflamed tissues may then heal with fibrosis that may cause heart block, endocardial fibroelastosis, and dilated cardiomyopathy. CAVB, the most common cardiac complication, typically develops between 18 and 24 gestational weeks. Untreated, the condition carries a significant mortality risk as the foetus needs to overcome the sudden drop in ventricular rate, the loss of normal atrial systolic contribution to ventricular filling, and perhaps concomitant myocardial inflammation and fibrosis. The rationale to treat a foetus at the stage of CAVB is primarily to mitigate myocardial inflammation and to augment foetal cardiac output. Maternal dexamethasone administration has been shown to improve incomplete foetal AV block, myocardial dysfunction, and cavity effusions. Beta-sympathomimetics may be useful to increase the foetal heart rate and myocardial contractility. Published data from our institution suggest an improved survival >90% if maternal high-dose dexamethasone was initiated at the time of CAVB detection and maintained during the pregnancy and if a beta-adrenergic drug was added at foetal heart rates below 55 beats/min. Despite the improvement in outcome, there is an ongoing debate about treatment-related risks. In this review, we will appraise the natural history of untreated CAVB, discuss currently available management options, and examine the results and risks of in-utero treatment of antibody-mediated CAVB.
Collapse
Affiliation(s)
- D Hutter
- Division of Cardiology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | |
Collapse
|