1
|
Wayne N, Guerraty MA. Functional genomics identifies a protective role for FDX1 in atherosclerosis. NATURE CARDIOVASCULAR RESEARCH 2025; 4:503-504. [PMID: 40360794 DOI: 10.1038/s44161-025-00636-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Affiliation(s)
- Nicole Wayne
- Department of Medicine, Division of Cardiovascular Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Marie A Guerraty
- Department of Medicine, Division of Cardiovascular Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Skovgaard AC, Nejad AM, Beck HC, Tan Q, Soerensen M. Epigenomics and transcriptomics association study of blood pressure and incident diagnosis of hypertension in twins. Hypertens Res 2025; 48:1599-1612. [PMID: 39972178 PMCID: PMC11972964 DOI: 10.1038/s41440-025-02164-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 02/21/2025]
Abstract
Hypertension is the most frequent health-related condition worldwide and is a primary risk factor for renal and cardiovascular diseases. However, the underlying molecular mechanisms are still poorly understood. To uncover these mechanisms, multi-omics studies have significant potential, but such studies are challenged by genetic and environmental confounding - an issue that can be effectively reduced by studying intra-pair differences in twins. Here, we coupled data on hypertension diagnoses from the nationwide Danish Patient Registry to a study population of 740 twins for whom genome-wide DNA methylation and gene expression data were available together with measurements of systolic and diastolic blood pressure. We investigated five phenotypes: incident hypertension cases, systolic blood pressure, diastolic blood pressure, hypertension (140/90 mmHg), and hypertension (130/80 mmHg). Statistical analyses were performed using Cox (incident cases) or linear (remaining) regression analyses at both the individual-level and twin pair-level. Significant genes (p < 0.05) at both levels and in both types of biological data were investigated by bioinformatic analyses, including gene set enrichment analysis and interaction network analysis. Overall, most of the identified pathways related to the immune system, particularly inflammation, and biology of vascular smooth muscle cell. Of specific genes, lysine methyltransferase 2 A (KMT2A) was found to be central for incident hypertension, ataxia-telangiectasia mutated (ATM) for systolic blood pressure, and beta-actin (ACTB) for diastolic blood pressure. Noteworthy, lysine methyltransferase 2A (KMT2A) was also identified in the systolic and diastolic blood pressure analyses. Here, we present novel biomarkers for hypertension. This study design is surprisingly rare in the field of hypertension. We identified biological pathways related to vascular smooth muscle cells and the immune system, particular inflammation, to be associated with hypertension and blood pressure. Of specific genes, we identified KMT2A (lysine methyltransferase 2A) to be central for blood pressure and hypertension development. ACTB beta-actin, ATM ataxiatelangiectasia mutated, BP blood pressure, EWAS epigenome-wide association studies, KMT2A lysine methyltransferase 2A, LMER linear mixed effect regression, LR linear regression, TWAS transcriptome-wide association studies.
Collapse
Affiliation(s)
- Asmus Cosmos Skovgaard
- The Danish Twin Registry and the Research Unit for Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark.
| | - Afsaneh M Nejad
- The Danish Twin Registry and the Research Unit for Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Hans Christian Beck
- Centre for Clinical Proteomics, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
| | - Qihua Tan
- The Danish Twin Registry and the Research Unit for Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Mette Soerensen
- The Danish Twin Registry and the Research Unit for Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| |
Collapse
|
3
|
Sun Y, Shang Q. Research hotspots and trends regarding microRNAs in hypertension: a bibliometric analysis. Clin Exp Hypertens 2024; 46:2304017. [PMID: 38230680 DOI: 10.1080/10641963.2024.2304017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024]
Abstract
To investigate the research levels, hotspots, and development trends regarding microRNAs in hypertension, this study conducted a visual analysis of studies on miRNA in hypertension based on the Web of Science core collection database using CiteSpace and VOSviewer analysis software along with literature from 2005-2023 as information data. Using citation frequency, centrality, and starting year as metrics, this study analyzed the research objects. It revealed the main research bodies and hotspots and evaluated the sources of literature and the distribution of knowledge from journals and authors. Finally, the potential research directions for miRNAs in hypertension are discussed. The results showed that the research field is in a period of vigorous development, and scholars worldwide have shown strong interest in this research field. A comprehensive summary and analysis of the current research status and application trends will prove beneficial for the advancement of this field.
Collapse
Affiliation(s)
- Yu Sun
- College of traditional Chinese medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingxin Shang
- College of traditional Chinese medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
4
|
Skovgaard AC, Mohammadnejad A, Beck HC, Tan Q, Soerensen M. Multi-omics association study of DNA methylation and gene expression levels and diagnoses of cardiovascular diseases in Danish Twins. Clin Epigenetics 2024; 16:117. [PMID: 39187864 PMCID: PMC11348607 DOI: 10.1186/s13148-024-01727-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/11/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Cardiovascular diseases (CVDs) are major causes of mortality and morbidity worldwide; yet the understanding of their molecular basis is incomplete. Multi-omics studies have significant potential to uncover these mechanisms, but such studies are challenged by genetic and environmental confounding-a problem that can be effectively reduced by investigating intrapair differences in twins. Here, we linked data on all diagnoses of the circulatory system from the nationwide Danish Patient Registry (spanning 1977-2022) to a study population of 835 twins holding genome-wide DNA methylation and gene expression data. CVD diagnoses were divided into prevalent or incident cases (i.e., occurring before or after blood sample collection (2007-2011)). The diagnoses were classified into four groups: cerebrovascular diseases, coronary artery disease (CAD), arterial and other cardiovascular diseases (AOCDs), and diseases of the veins and lymphatic system. Statistical analyses were performed by linear (prevalent cases) or cox (incident cases) regression analyses at both the individual-level and twin pair-level. Significant genes (p < 0.05) in both types of biological data and at both levels were inspected by bioinformatic analyses, including gene set enrichment analysis and interaction network analysis. RESULTS In general, more genes were found for prevalent than for incident cases, and bioinformatic analyses primarily found pathways of the immune system, signal transduction and diseases for prevalent cases, and pathways of cell-cell communication, metabolisms of proteins and RNA, gene expression, and chromatin organization groups for incident cases. This potentially reflects biology related to response to CVD (prevalent cases) and mechanisms related to regulation and development of disease (incident cases). Of specific genes, Myosin 1E was found to be central for CAD, and DEAD-Box Helicase 5 for AOCD. These genes were observed in both the prevalent and the incident analyses, potentially reflecting that their DNA methylation and gene transcription levels change both because of disease (prevalent cases) and prior disease (incident cases). CONCLUSION We present novel biomarkers for CVD by performing multi-omics analysis in twins, hereby lowering the confounding due to shared genetics and early life environment-a study design that is surprisingly rare in the field of CVD, and where additional studies are highly needed.
Collapse
Affiliation(s)
- Asmus Cosmos Skovgaard
- The Danish Twin Registry and the Research Unit for Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
| | - Afsaneh Mohammadnejad
- The Danish Twin Registry and the Research Unit for Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Hans Christian Beck
- Center for Individualized Medicine in Arterial Diseases, Department of Biochemistry, Odense University Hospital, J.B. Winsloews Vej 4, 5000, Odense C, Denmark
| | - Qihua Tan
- The Danish Twin Registry and the Research Unit for Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Mette Soerensen
- The Danish Twin Registry and the Research Unit for Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
- Department of Clinical Genetics, Odense University Hospital, J.B. Winsloews Vej 4, 5000, Odense C, Denmark
| |
Collapse
|
5
|
Dar MA, Arafah A, Bhat KA, Khan A, Khan MS, Ali A, Ahmad SM, Rashid SM, Rehman MU. Multiomics technologies: role in disease biomarker discoveries and therapeutics. Brief Funct Genomics 2022; 22:76-96. [PMID: 35809340 DOI: 10.1093/bfgp/elac017] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/21/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Medical research has been revolutionized after the publication of the full human genome. This was the major landmark that paved the way for understanding the biological functions of different macro and micro molecules. With the advent of different high-throughput technologies, biomedical research was further revolutionized. These technologies constitute genomics, transcriptomics, proteomics, metabolomics, etc. Collectively, these high-throughputs are referred to as multi-omics technologies. In the biomedical field, these omics technologies act as efficient and effective tools for disease diagnosis, management, monitoring, treatment and discovery of certain novel disease biomarkers. Genotyping arrays and other transcriptomic studies have helped us to elucidate the gene expression patterns in different biological states, i.e. healthy and diseased states. Further omics technologies such as proteomics and metabolomics have an important role in predicting the role of different biological molecules in an organism. It is because of these high throughput omics technologies that we have been able to fully understand the role of different genes, proteins, metabolites and biological pathways in a diseased condition. To understand a complex biological process, it is important to apply an integrative approach that analyses the multi-omics data in order to highlight the possible interrelationships of the involved biomolecules and their functions. Furthermore, these omics technologies offer an important opportunity to understand the information that underlies disease. In the current review, we will discuss the importance of omics technologies as promising tools to understand the role of different biomolecules in diseases such as cancer, cardiovascular diseases, neurodegenerative diseases and diabetes. SUMMARY POINTS
Collapse
|
6
|
Abstract
Coronary artery disease (CAD), the most common cardiovascular disease (CVD), contributes to significant mortality worldwide. CAD is a multifactorial disease wherein various factors contribute to its pathogenesis often complicating management. Biomarker based personalized medicine may provide a more effective way to individualize therapy in multifactorial diseases in general and CAD specifically. Systems' biology "Omics" biomarkers have been investigated for this purpose. These biomarkers provide a more comprehensive understanding on pathophysiology of the disease process and can help in identifying new therapeutic targets and tailoring therapy to achieve optimum outcome. Metabolomics biomarkers usually reflect genetic and non-genetic factors involved in the phenotype. Metabolomics analysis may provide better understanding of the disease pathogenesis and drug response variation. This will help in guiding therapy, particularly for multifactorial diseases such as CAD. In this chapter, advances in metabolomics analysis and its role in personalized medicine will be reviewed with comprehensive focus on CAD. Assessment of risk, diagnosis, complications, drug response and nutritional therapy will be discussed. Together, this chapter will review the current application of metabolomics in CAD management and highlight areas that warrant further investigation.
Collapse
Affiliation(s)
- Arwa M Amin
- Department of Clinical and Hospital Pharmacy, College of Pharmacy, Taibah University, Medina, Saudi Arabia.
| |
Collapse
|
7
|
Fatunde OA, Brown SA. The Role of CYP450 Drug Metabolism in Precision Cardio-Oncology. Int J Mol Sci 2020; 21:E604. [PMID: 31963461 PMCID: PMC7014347 DOI: 10.3390/ijms21020604] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
As many novel cancer therapies continue to emerge, the field of Cardio-Oncology (or onco-cardiology) has become crucial to prevent, monitor and treat cancer therapy-related cardiovascular toxicity. Furthermore, given the narrow therapeutic window of most cancer therapies, drug-drug interactions are prevalent in the cancer population. Consequently, there is an increased risk of affecting drug efficacy or predisposing individual patients to adverse side effects. Here we review the role of cytochrome P450 (CYP450) enzymes in the field of Cardio-Oncology. We highlight the importance of cardiac medications in preventive Cardio-Oncology for high-risk patients or in the management of cardiotoxicities during or following cancer treatment. Common interactions between Oncology and Cardiology drugs are catalogued, emphasizing the impact of differential metabolism of each substrate drug on unpredictable drug bioavailability and consequent inter-individual variability in treatment response or development of cardiovascular toxicity. This inter-individual variability in bioavailability and subsequent response can be further enhanced by genomic variants in CYP450, or by modifications of CYP450 gene, RNA or protein expression or function in various 'omics' related to precision medicine. Thus, we advocate for an individualized approach to each patient by a multidisciplinary team with clinical pharmacists evaluating a treatment plan tailored to a practice of precision Cardio-Oncology. This review may increase awareness of these key concepts in the rapidly evolving field of Cardio-Oncology.
Collapse
Affiliation(s)
- Olubadewa A. Fatunde
- Department of Medicine, University of Texas Health Science Center at Tyler–CHRISTUS Good Shepherd Medical Center, Longview, TX 75601, USA
| | - Sherry-Ann Brown
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
8
|
Li F, Shi J, Lu HS, Zhang H. Functional Genomics and CRISPR Applied to Cardiovascular Research and Medicine. Arterioscler Thromb Vasc Biol 2019; 39:e188-e194. [PMID: 31433696 DOI: 10.1161/atvbaha.119.312579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Fang Li
- From the Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York (F.L., J.S., H.Z.)
| | - Jianting Shi
- From the Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York (F.L., J.S., H.Z.)
| | - Hong S Lu
- Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington (H.S.L.)
| | - Hanrui Zhang
- From the Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York (F.L., J.S., H.Z.)
| |
Collapse
|
9
|
Pathologic gene network rewiring implicates PPP1R3A as a central regulator in pressure overload heart failure. Nat Commun 2019; 10:2760. [PMID: 31235787 PMCID: PMC6591478 DOI: 10.1038/s41467-019-10591-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/20/2019] [Indexed: 12/11/2022] Open
Abstract
Heart failure is a leading cause of mortality, yet our understanding of the genetic interactions underlying this disease remains incomplete. Here, we harvest 1352 healthy and failing human hearts directly from transplant center operating rooms, and obtain genome-wide genotyping and gene expression measurements for a subset of 313. We build failing and non-failing cardiac regulatory gene networks, revealing important regulators and cardiac expression quantitative trait loci (eQTLs). PPP1R3A emerges as a regulator whose network connectivity changes significantly between health and disease. RNA sequencing after PPP1R3A knockdown validates network-based predictions, and highlights metabolic pathway regulation associated with increased cardiomyocyte size and perturbed respiratory metabolism. Mice lacking PPP1R3A are protected against pressure-overload heart failure. We present a global gene interaction map of the human heart failure transition, identify previously unreported cardiac eQTLs, and demonstrate the discovery potential of disease-specific networks through the description of PPP1R3A as a central regulator in heart failure. The genetic and pathogenetic basis of heart failure is incompletely understood. Here, the authors present a high-fidelity tissue collection from rapidly preserved failing and non-failing control hearts which are used for eQTL mapping and network analysis, resulting in the prioritization of PPP1R3A as a heart failure gene.
Collapse
|
10
|
Klein MD, Lee CR, Stouffer GA. Clinical outcomes of CYP2C19 genotype-guided antiplatelet therapy: existing evidence and future directions. Pharmacogenomics 2018; 19:1039-1046. [DOI: 10.2217/pgs-2018-0072] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
It is well established that the CYP2C19 nonfunctional *2 and *3 polymorphisms impair the bioactivation and antiplatelet effects of clopidogrel, and increase the risk of adverse cardiovascular events following percutaneous coronary intervention. In contrast, CYP2C19 genotype does not impact clinical response to prasugrel or ticagrelor. Recent studies have evaluated the impact of CYP2C19 genotype-guided selection of antiplatelet therapy on clinical outcomes and begun to close some of the gaps in knowledge and uncertainty that have impeded widespread clinical implementation of this precision medicine approach. This review will critically evaluate recent data and offer new insight into the potential clinical utility of genotype-guided antiplatelet therapy in the context of current clinical practice guidelines.
Collapse
Affiliation(s)
- Melissa D Klein
- Division of Cardiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Craig R Lee
- McAllister Heart Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Pharmacotherapy & Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for Pharmacogenomics & Individualized Therapy, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - George A Stouffer
- Division of Cardiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
11
|
Clopidogrel Pharmacokinetics in Malaysian Population Groups: The Impact of Inter-Ethnic Variability. Pharmaceuticals (Basel) 2018; 11:ph11030074. [PMID: 30049953 PMCID: PMC6161187 DOI: 10.3390/ph11030074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/06/2018] [Accepted: 07/08/2018] [Indexed: 12/13/2022] Open
Abstract
Malaysia is a multi-ethnic society whereby the impact of pharmacogenetic differences between ethnic groups may contribute significantly to variability in clinical therapy. One of the leading causes of mortality in Malaysia is cardiovascular disease (CVD), which accounts for up to 26% of all hospital deaths annually. Clopidogrel is used as an adjunct treatment in the secondary prevention of cardiovascular events. CYP2C19 plays an integral part in the metabolism of clopidogrel to the active metabolite clopi-H4. However, CYP2C19 genetic polymorphism, prominent in Malaysians, could influence target clopi-H4 plasma concentrations for clinical efficacy. This study addresses how inter-ethnicity variability within the Malaysian population impacts the attainment of clopi-H4 target plasma concentration under different CYP2C19 polymorphisms through pharmacokinetic (PK) modelling. We illustrated a statistically significant difference (P < 0.001) in the clopi-H4 Cmax between the extensive metabolisers (EM) and poor metabolisers (PM) phenotypes with either Malay or Malaysian Chinese population groups. Furthermore, the number of PM individuals with peak clopi-H4 concentrations below the minimum therapeutic level was partially recovered using a high-dose strategy (600 mg loading dose followed by a 150 mg maintenance dose), which resulted in an approximate 50% increase in subjects attaining the minimum clopi-H4 plasma concentration for a therapeutic effect.
Collapse
|
12
|
Fiatal S, Ádány R. Application of Single-Nucleotide Polymorphism-Related Risk Estimates in Identification of Increased Genetic Susceptibility to Cardiovascular Diseases: A Literature Review. Front Public Health 2018; 5:358. [PMID: 29445720 PMCID: PMC5797796 DOI: 10.3389/fpubh.2017.00358] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/15/2017] [Indexed: 12/17/2022] Open
Abstract
Background Although largely preventable, cardiovascular diseases (CVDs) are the biggest cause of death worldwide. Common complex cardiovascular disorders (e.g., coronary heart disease, hypertonia, or thrombophilia) result from a combination of genetic alterations and environmental factors. Recent advances in the genomics of CVDs have fostered huge expectations about future use of susceptibility variants for prevention, diagnosis, and treatment. Our aim was to summarize the latest developments in the field from a public health perspective focusing on the applicability of data on single-nucleotide polymorphisms (SNPs), through a systematic review of studies from the last decade on genetic risk estimating for common CVDs. Methods Several keywords were used for searching the PubMed, Embase, CINAHL, and Web of Science databases. Recent advances were summarized and structured according to the main public health domains (prevention, early detection, and treatment) using a framework suggested recently for translational research. This framework includes four recommended phases: “T1. From gene discovery to candidate health applications; T2. From health application to evidence-based practice guidelines; T3. From evidence-based practice guidelines to health practice; and T4. From practice to population health impacts.” Results The majority of translation research belongs to the T1 phase “translation of basic genetic/genomic research into health application”; there are only a few population-based impacts estimated. The studies suggest that an SNP is a poor estimator of individual risk, whereas an individual’s genetic profile combined with non-genetic risk factors may better predict CVD risk among certain patient subgroups. Further research is needed to validate whether these genomic profiles can prospectively identify individuals at risk to develop CVDs. Several research gaps were identified: little information is available on studies suggesting “Health application to evidence-based practice guidelines”; no study is available on “Guidelines to health practice.” It was not possible to identify studies that incorporate environmental or lifestyle factors in the risk estimation. Conclusion Currently, identifying populations having a larger risk of developing common CVDs may result in personalized prevention programs by reducing people’s risk of onset or disease progression. However, limited evidence is available on the application of genomic results in health and public health practice.
Collapse
Affiliation(s)
- Szilvia Fiatal
- Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Debrecen, Hungary.,WHO Collaborating Centre on Vulnerability and Health, Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| | - Róza Ádány
- Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Debrecen, Hungary.,WHO Collaborating Centre on Vulnerability and Health, Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Debrecen, Hungary.,MTA-DE Public Health Research Group of the Hungarian Academy of Sciences, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
13
|
Pharmacogenomic Impact of CYP2C19 Variation on Clopidogrel Therapy in Precision Cardiovascular Medicine. J Pers Med 2018; 8:jpm8010008. [PMID: 29385765 PMCID: PMC5872082 DOI: 10.3390/jpm8010008] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 12/21/2022] Open
Abstract
Variability in response to antiplatelet therapy can be explained in part by pharmacogenomics, particularly of the CYP450 enzyme encoded by CYP2C19. Loss-of-function and gain-of-function variants help explain these interindividual differences. Individuals may carry multiple variants, with linkage disequilibrium noted among some alleles. In the current pharmacogenomics era, genomic variation in CYP2C19 has led to the definition of pharmacokinetic phenotypes for response to antiplatelet therapy, in particular, clopidogrel. Individuals may be classified as poor, intermediate, extensive, or ultrarapid metabolizers, based on whether they carry wild type or polymorphic CYP2C19 alleles. Variant alleles differentially impact platelet reactivity, concentration of plasma clopidogrel metabolites, and clinical outcomes. Interestingly, response to clopidogrel appears to be modulated by additional factors, such as sociodemographic characteristics, risk factors for ischemic heart disease, and drug-drug interactions. Furthermore, systems medicine studies suggest that a broader approach may be required to adequately assess, predict, preempt, and manage variation in antiplatelet response. Transcriptomics, epigenomics, exposomics, miRNAomics, proteomics, metabolomics, microbiomics, and mathematical, computational, and molecular modeling should be integrated with pharmacogenomics for enhanced prediction and individualized care. In this review of pharmacogenomic variation of CYP450, a systems medicine approach is described for tailoring antiplatelet therapy in clinical practice of precision cardiovascular medicine.
Collapse
|
14
|
MicroRNA-based therapeutics in cardiovascular disease: screening and delivery to the target. Biochem Soc Trans 2017; 46:11-21. [PMID: 29196609 DOI: 10.1042/bst20170037] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs of ∼22 nucleotides, which have increasingly been recognized as potent post-transcriptional regulators of gene expression. MiRNA targeting is defined by the complementarities between positions 2-8 of miRNA 5'-end with generally the 3'-untranslated region of target mRNAs (messenger RNAs). The capacity of miRNAs to simultaneously inhibit many different mRNAs allows for an amplification of biological responses. Hence, miRNAs are extremely attractive targets for therapeutic regulation in several diseases, including cardiovascular. Novel approaches are emerging to identify the miRNA functions in cardiovascular biology processes and to improve miRNA delivery in the heart and vasculature. In the present study, we provide an overview of current studies of miRNA functions in cardiovascular cells by the use of high-content screening. We also discuss the challenge to achieve a safe and targeted delivery of miRNA therapeutics in cardiovascular cells.
Collapse
|
15
|
Amin AM, Sheau Chin L, Azri Mohamed Noor D, SK Abdul Kader MA, Kah Hay Y, Ibrahim B. The Personalization of Clopidogrel Antiplatelet Therapy: The Role of Integrative Pharmacogenetics and Pharmacometabolomics. Cardiol Res Pract 2017; 2017:8062796. [PMID: 28421156 PMCID: PMC5379098 DOI: 10.1155/2017/8062796] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 02/14/2017] [Indexed: 12/12/2022] Open
Abstract
Dual antiplatelet therapy of aspirin and clopidogrel is pivotal for patients undergoing percutaneous coronary intervention. However, the variable platelets reactivity response to clopidogrel may lead to outcome failure and recurrence of cardiovascular events. Although many genetic and nongenetic factors are known, great portion of clopidogrel variable platelets reactivity remain unexplained which challenges the personalization of clopidogrel therapy. Current methods for clopidogrel personalization include CYP2C19 genotyping, pharmacokinetics, and platelets function testing. However, these methods lack precise prediction of clopidogrel outcome, often leading to insufficient prediction. Pharmacometabolomics which is an approach to identify novel biomarkers of drug response or toxicity in biofluids has been investigated to predict drug response. The advantage of pharmacometabolomics is that it does not only predict the response but also provide extensive information on the metabolic pathways implicated with the response. Integrating pharmacogenetics with pharmacometabolomics can give insight on unknown genetic and nongenetic factors associated with the response. This review aimed to review the literature on factors associated with the variable platelets reactivity response to clopidogrel, as well as appraising current methods for the personalization of clopidogrel therapy. We also aimed to review the literature on using pharmacometabolomics approach to predict drug response, as well as discussing the plausibility of using it to predict clopidogrel outcome.
Collapse
Affiliation(s)
- Arwa M. Amin
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Lim Sheau Chin
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | | | | | - Yuen Kah Hay
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Baharudin Ibrahim
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
16
|
Abstract
Ischemic disorders, such as myocardial infarction, stroke, and peripheral vascular disease, are the most common causes of debilitating disease and death in westernized cultures. The extent of tissue injury relates directly to the extent of blood flow reduction and to the length of the ischemic period, which influence the levels to which cellular ATP and intracellular pH are reduced. By impairing ATPase-dependent ion transport, ischemia causes intracellular and mitochondrial calcium levels to increase (calcium overload). Cell volume regulatory mechanisms are also disrupted by the lack of ATP, which can induce lysis of organelle and plasma membranes. Reperfusion, although required to salvage oxygen-starved tissues, produces paradoxical tissue responses that fuel the production of reactive oxygen species (oxygen paradox), sequestration of proinflammatory immunocytes in ischemic tissues, endoplasmic reticulum stress, and development of postischemic capillary no-reflow, which amplify tissue injury. These pathologic events culminate in opening of mitochondrial permeability transition pores as a common end-effector of ischemia/reperfusion (I/R)-induced cell lysis and death. Emerging concepts include the influence of the intestinal microbiome, fetal programming, epigenetic changes, and microparticles in the pathogenesis of I/R. The overall goal of this review is to describe these and other mechanisms that contribute to I/R injury. Because so many different deleterious events participate in I/R, it is clear that therapeutic approaches will be effective only when multiple pathologic processes are targeted. In addition, the translational significance of I/R research will be enhanced by much wider use of animal models that incorporate the complicating effects of risk factors for cardiovascular disease. © 2017 American Physiological Society. Compr Physiol 7:113-170, 2017.
Collapse
Affiliation(s)
- Theodore Kalogeris
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Christopher P. Baines
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
- Department of Biomedical Sciences, University of Missouri College of Veterinary Medicine, Columbia, Missouri, USA
| | - Maike Krenz
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Ronald J. Korthuis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
17
|
Marchetti G, Girelli D, Zerbinati C, Lunghi B, Friso S, Meneghetti S, Coen M, Gagliano T, Guastella G, Bochaton-Piallat ML, Pizzolo F, Mascoli F, Malerba G, Bovolenta M, Ferracin M, Olivieri O, Bernardi F, Martinelli N. An integrated genomic-transcriptomic approach supports a role for the proto-oncogene BCL3 in atherosclerosis. Thromb Haemost 2014; 113:655-63. [PMID: 25374339 DOI: 10.1160/th14-05-0466] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 10/08/2014] [Indexed: 11/05/2022]
Abstract
Data with border-line statistical significance, copiously generated in genome-wide association studies of coronary artery disease (CAD), could include functionally relevant associations. We propose an integrated genomic and transcriptomic approach for unravelling new potential genetic signatures of atherosclerosis. Fifteen among 91 single nucleotide polymorphisms (SNPs) were first selected for association in a sex- and age-adjusted model by examining 510 patients with CAD and myocardial infarction and 388 subjects with normal coronary arteries (CAD-free) in the replication stages of a genome-wide association study. We investigated the expression of 71 genes proximal to the 15 tag-SNPs by two subsequent steps of microarray-based mRNA profiling, the former in vascular smooth muscle cell populations, isolated from non-atherosclerotic and atherosclerotic human carotid portions, and the latter in whole carotid specimens. BCL3 and PVRL2, contiguously located on chromosome 19, and ABCA1, extensively investigated before, were found to be differentially expressed. BCL3 and PVRL2 SNPs were genotyped within a second population of CAD patients (n=442) and compared with CAD-free subjects (n=393). The carriership of the BCL3 rs2965169 G allele was more represented among CAD patients and remained independently associated with CAD after adjustment for all the traditional cardiovascular risk factors (odds ratio=1.70 with 95% confidence interval 1.07-2.71), while the BCL3 rs8100239 A allele correlated with metabolic abnormalities. The up-regulation of BCL3 mRNA levels in atherosclerotic tissue samples was consistent with BCL3 protein expression, which was detected by immunostaining in the intima-media of atherosclerotic specimens, but not within non-atherosclerotic ones. Our integrated approach suggests a role for BCL3 in cardiovascular diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Nicola Martinelli
- Nicola Martinelli, Department of Medicine, University of Verona, 37134 Verona, Italy, E-mail:
| |
Collapse
|
18
|
Vargas J, Lima JAC, Kraus WE, Douglas PS, Rosenberg S. Use of the Corus® CAD Gene Expression Test for Assessment of Obstructive Coronary Artery Disease Likelihood in Symptomatic Non-Diabetic Patients. PLOS CURRENTS 2013; 5. [PMID: 24043473 PMCID: PMC3770834 DOI: 10.1371/currents.eogt.0f04f6081905998fa92b99593478aeab] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The determination of the underlying etiology of symptoms suggestive of obstructive coronary artery disease (CAD, ≥50% stenosis in a major coronary artery) is a common clinical challenge in both primary care and cardiology clinics. Usual care in low to medium risk patients often involves a family history, risk factor assessment, and then stress testing with or without non-invasive imaging. If positive, this is often followed by invasive coronary angiography (ICA). Despite extensive adoption of this usual care paradigm, more than 60% of patients referred for angiography do not have obstructive CAD. In order to robustly identify those symptomatic patients without obstructive CAD, who can avoid subsequent cardiac testing and look elsewhere for the cause of their symptoms, a recently described whole blood gene expression score (GES: Corus® CAD, CardioDx, Inc., Palo Alto, CA) has been developed and validated in two multi-center trials. This paper reviews the published literature and assessments by independent parties regarding the analytical and clinical validity as well as the clinical utility of the Corus® CAD test.
Collapse
Affiliation(s)
- Jose Vargas
- MedStar Georgetown University Hospital, Washington, DC, USA
| | | | | | | | | |
Collapse
|
19
|
Meyer NJ. Future clinical applications of genomics for acute respiratory distress syndrome. THE LANCET RESPIRATORY MEDICINE 2013; 1:793-803. [PMID: 24461759 DOI: 10.1016/s2213-2600(13)70134-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute respiratory distress syndrome remains a substantial cause of morbidity and mortality in intensive care units, yet no specific pharmacotherapy has proven useful in reducing the duration of mechanical ventilation or improving survival. One factor that might hamper the development of treatment for acute respiratory distress syndrome is the heterogeneous nature of the population who present with the syndrome. In this Review, the potential of genomic approaches-genetic association, gene expression, metabolomic, proteomic, and systems biology applications-for the identification of molecular endotypes within acute respiratory distress syndrome and potentially for the prediction, diagnosis, prognosis, and treatment of this difficult disorder are discussed.
Collapse
Affiliation(s)
- Nuala J Meyer
- Department of Medicine Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
20
|
Abstract
Transcriptomics is the study of how our genes are regulated and expressed in different biological settings. Technical advances now enable quantitative assessment of all expressed genes (ie, the entire "transcriptome") in a given tissue at a given time. These approaches provide a powerful tool for understanding complex biological systems and for developing novel biomarkers. This chapter will introduce basic concepts in transcriptomics and available technologies for developing transcriptomic biomarkers. We will then review current and emerging applications in cardiovascular medicine.
Collapse
Affiliation(s)
- Dawn M Pedrotty
- Penn Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
21
|
Phan JH, Quo CF, Wang MD. Cardiovascular genomics: a biomarker identification pipeline. ACTA ACUST UNITED AC 2012; 16:809-22. [PMID: 22614726 DOI: 10.1109/titb.2012.2199570] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Genomic biomarkers are essential for understanding the underlying molecular basis of human diseases such as cardiovascular disease. In this review, we describe a biomarker identification pipeline for cardiovascular disease, which includes 1) high-throughput genomic data acquisition, 2) preprocessing and normalization of data, 3) exploratory analysis, 4) feature selection, 5) classification, and 6) interpretation and validation of candidate biomarkers. We review each step in the pipeline, presenting current and widely used bioinformatics methods. Furthermore, we analyze several publicly available cardiovascular genomics datasets to illustrate the pipeline. Finally, we summarize the current challenges and opportunities for further research.
Collapse
Affiliation(s)
- John H Phan
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
| | | | | |
Collapse
|
22
|
Current World Literature. Curr Opin Cardiol 2012; 27:318-26. [DOI: 10.1097/hco.0b013e328352dfaf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Kalogeris T, Baines CP, Krenz M, Korthuis RJ. Cell biology of ischemia/reperfusion injury. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 298:229-317. [PMID: 22878108 PMCID: PMC3904795 DOI: 10.1016/b978-0-12-394309-5.00006-7] [Citation(s) in RCA: 1503] [Impact Index Per Article: 115.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Disorders characterized by ischemia/reperfusion (I/R), such as myocardial infarction, stroke, and peripheral vascular disease, continue to be among the most frequent causes of debilitating disease and death. Tissue injury and/or death occur as a result of the initial ischemic insult, which is determined primarily by the magnitude and duration of the interruption in the blood supply, and then subsequent damage induced by reperfusion. During prolonged ischemia, ATP levels and intracellular pH decrease as a result of anaerobic metabolism and lactate accumulation. As a consequence, ATPase-dependent ion transport mechanisms become dysfunctional, contributing to increased intracellular and mitochondrial calcium levels (calcium overload), cell swelling and rupture, and cell death by necrotic, necroptotic, apoptotic, and autophagic mechanisms. Although oxygen levels are restored upon reperfusion, a surge in the generation of reactive oxygen species occurs and proinflammatory neutrophils infiltrate ischemic tissues to exacerbate ischemic injury. The pathologic events induced by I/R orchestrate the opening of the mitochondrial permeability transition pore, which appears to represent a common end-effector of the pathologic events initiated by I/R. The aim of this treatise is to provide a comprehensive review of the mechanisms underlying the development of I/R injury, from which it should be apparent that a combination of molecular and cellular approaches targeting multiple pathologic processes to limit the extent of I/R injury must be adopted to enhance resistance to cell death and increase regenerative capacity in order to effect long-lasting repair of ischemic tissues.
Collapse
Affiliation(s)
- Theodore Kalogeris
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, USA
| | | | | | | |
Collapse
|
24
|
Marchetti G, Pinotti M, Lunghi B, Casari C, Bernardi F. Functional genetics. Thromb Res 2011; 129:336-40. [PMID: 22100315 DOI: 10.1016/j.thromres.2011.10.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 09/26/2011] [Accepted: 10/25/2011] [Indexed: 12/14/2022]
Abstract
How genetic variations mediate normal and abnormal biological function is a major issue in biology and medicine. The enormous number of genomic sequences, and their frequent and rare variations identified in humans, require efficient approaches aimed at dissecting functional correlates. In this review we will focus on the importance of the assessment of well-defined intermediate phenotypes, on the set up of transcriptomic approaches in diseased cells and on the modulation of expression by sequence variations modulating mRNA splicing or influencing protein multimerization. These information provide the molecular bases of associations discovered through genomic approaches, and might open new avenues toward the design of novel and specific diagnostic, prophylactic or therapeutic interventions. Taking into account our previous and current experimental activities we shall focus on a few examples and open issues in cardiovascular disorders, the main clinical topic of this short review.
Collapse
Affiliation(s)
- Giovanna Marchetti
- Department of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| | | | | | | | | |
Collapse
|
25
|
Wu YH, Wang J, Gong DX, Gu HY, Hu SS, Zhang H. Effects of low-level laser irradiation on mesenchymal stem cell proliferation: a microarray analysis. Lasers Med Sci 2011; 27:509-19. [PMID: 21956279 DOI: 10.1007/s10103-011-0995-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 09/12/2011] [Indexed: 12/19/2022]
Abstract
Increased proliferation after low-level laser irradiation (LLLI) has been well demonstrated in many cell types including mesenchymal stem cells (MSCs), but the exact molecular mechanisms involved remain poorly understood. The aim of this study was to investigate the change in mRNA expression in rat MSCs after LLLI and to reveal the associated molecular mechanisms. MSCs were exposed to a diode laser (635 nm) as the irradiated group. Cells undergoing the same procedure without LLLI served as the control group. Proliferation was evaluated using the MTS assay. Differences in the gene expression profiles between irradiated and control MSCs at 4 days after LLLI were analyzed using a cDNA microarray. Gene ontology and pathway analysis were used to find the key regulating genes followed by real-time PCR to validate seven representative genes from the microarray assays. This procedure identified 119 differentially expressed genes. Real-time PCR confirmed that the expression levels of v-akt murine thymoma viral oncogene homolog 1 (Akt1), the cyclin D1 gene (Ccnd1) and the phosphatidylinositol 3-kinase, catalytic alpha polypeptide gene (Pik3ca) were upregulated after LLLI, whereas those of protein tyrosine phosphatase non-receptor type 6 (Ptpn6) and serine/threonine kinase 17b (Stk17b) were downregulated. cDNA microarray analysis revealed that after LLLI the expression levels of various genes involved in cell proliferation, apoptosis and the cell cycle were affected. Five genes, including Akt1, Ptpn6, Stk17b, Ccnd1 and Pik3ca, were confirmed and the PI3K/Akt/mTOR/eIF4E pathway was identified as possibly playing an important role in mediating the effects of LLLI on the proliferation of MSCs.
Collapse
Affiliation(s)
- Yi-he Wu
- Department of Surgery, Cardiovascular Institute & Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Beijing, 100037, China
| | | | | | | | | | | |
Collapse
|