1
|
Ouaddouh Y, Bouyaddid S, Bazid Z, Ismaili N, El Ouafi N. Early onset development of hypertrophic cardiomyopathy in less than 1 year in a patient with familial Friedrich's ataxia: Case report. Radiol Case Rep 2025; 20:3016-3020. [PMID: 40224233 PMCID: PMC11993149 DOI: 10.1016/j.radcr.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 02/24/2025] [Accepted: 03/01/2025] [Indexed: 04/15/2025] Open
Abstract
Friedreich's ataxia (FRDA) is a neurodegenerative disease characterized by progressive ataxia, dysarthria, sensory loss. While neurological symptoms are prominent, cardiac manifestations significantly contribute to mortality. Cardiomyopathy in Friedreich's disease results from mitochondrial dysfunction, loss of contractile proteins and an accumulation of fibrosis in heart. To better characterize the severity of cardiac involvement, the MICONOS study group developed a classification system categorizing FRDA cardiomyopathy as "no," "mild," "intermediate," "severe." We report an uncommon case of early-onset development of hypertrophic cardiomyopathy (HCM) in a 25-year-old female diagnosed with Friedreich's ataxia (FRDA) at age 12. Through annual cardiac evaluations, no signs of cardiac disease were noted. Until presenting with dyspnea and palpitations. Clinical examination revealed truncal ataxia and dysarthria, but no signs of heart failure. However, a transthoracic echocardiography demonstrated nonobstructive hypertrophic cardiomyopathy with a maximal wall thickness of 20 mm, incomplete anterior systolic motion of the mitral valve, a significant development in less than 1 year after last normal cardiac assessment. Left ventricular systolic function was preserved (ejection fraction 50%). She was prescribed bisoprolol and dapagliflozin, with significant improvement at her latest checkup. Family screening revealed HCM in her 30 year female sibling, who also has FRDA. No cardiac abnormalities were detected in her younger brother or parents. Friedreich's hypertrophic cardiomyopathy has been reported as the most significant cause of mortality, especially among younger patients with early onset disease manifestations.
Collapse
Affiliation(s)
- Yasmine Ouaddouh
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
- Department of Cardiology, Mohammed VI University Hospital/Mohammed I University Oujda Morocco
| | - Salma Bouyaddid
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
- Department of Cardiology, Mohammed VI University Hospital/Mohammed I University Oujda Morocco
| | - Zakaria Bazid
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
- Department of Cardiology, Mohammed VI University Hospital/Mohammed I University Oujda Morocco
- Laboratory of Epidemiology, Clinical Research and Public Health, Faculty of Medicine and Pharmacy, Oujda, Morocco
| | - Nabila Ismaili
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
- Department of Cardiology, Mohammed VI University Hospital/Mohammed I University Oujda Morocco
- Laboratory of Epidemiology, Clinical Research and Public Health, Faculty of Medicine and Pharmacy, Oujda, Morocco
| | - Noha El Ouafi
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
- Department of Cardiology, Mohammed VI University Hospital/Mohammed I University Oujda Morocco
- Laboratory of Epidemiology, Clinical Research and Public Health, Faculty of Medicine and Pharmacy, Oujda, Morocco
| |
Collapse
|
2
|
Smith FM, Kosman DJ. Brain microvascular endothelial cells differentiated from a Friedreich's Ataxia patient iPSC are deficient in tight junction protein expression and paracellularly permeable. Front Mol Neurosci 2025; 18:1511388. [PMID: 40303283 PMCID: PMC12037585 DOI: 10.3389/fnmol.2025.1511388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/19/2025] [Indexed: 05/02/2025] Open
Abstract
Friedreich's Ataxia (FA) is a rare, inherited ataxia resulting from GAA triplet expansions in the first intron of the Frataxin (FXN) gene, which encodes a mitochondrial protein involved in the incorporation of iron into iron-sulfur clusters. We previously identified decreased levels of F-actin and tight junction (TJ) proteins, which coincided with paracellular permeability in an FXN shRNA-mediated knockdown immortalized human brain microvascular endothelial cell (BMVEC) model. This premise is underexplored in the FA literature, prompting us to confirm these findings using a patient-derived iPSC model. One line each of FA patient iPSCs and age- and sex-matched apparently healthy iPSCs were differentiated into BMVEC-like cells. We quantified actin glutathionylation, F-actin abundance, TJ expression and organization, and barrier integrity. In the absence of dysregulated F-actin organization, FA iBMVEC exhibited a loss of 50% ZO-1, 63% Occludin, and 19% Claudin-5 protein expression, along with a disruption in the bi-cellular organization of the latter two proteins. Functionally, this correlated with barrier hyperpermeability, delayed barrier maturation, and increased flux of the fluorescent tracer Lucifer Yellow. These data indicate that decreased barrier integrity is a pathophysiological phenotype of FA brain microvascular endothelial cells. Clinically, this may represent a targetable pathway to reduce brain iron accumulation, neuroinflammation, and neurodegeneration profiles in FA. Additionally, an investigation into other barrier systems, such as the blood-nerve barrier, blood-CSF barrier, or cardiac vasculature, may provide insights into the extra-neural symptoms experienced by FA patients.
Collapse
Affiliation(s)
| | - Daniel J. Kosman
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
4
|
Chang JC, Ryan MR, Stark MC, Liu S, Purushothaman P, Bolan F, Johnson CA, Champe M, Meng H, Lawlor MW, Halawani S, Ngaba LV, Lynch DR, Davis C, Gonzalo-Gil E, Lutz C, Urbinati F, Medicherla B, Fonck C. AAV8 gene therapy reverses cardiac pathology and prevents early mortality in a mouse model of Friedreich's ataxia. Mol Ther Methods Clin Dev 2024; 32:101193. [PMID: 38352270 PMCID: PMC10862410 DOI: 10.1016/j.omtm.2024.101193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024]
Abstract
Friedreich's ataxia (FRDA) is an autosomal-recessive disorder primarily attributed to biallelic GAA repeat expansions that reduce expression of the mitochondrial protein frataxin (FXN). FRDA is characterized by progressive neurodegeneration, with many patients developing cardiomyopathy that progresses to heart failure and death. The potential to reverse or prevent progression of the cardiac phenotype of FRDA was investigated in a mouse model of FRDA, using an adeno-associated viral vector (AAV8) containing the coding sequence of the FXN gene. The Fxnflox/null::MCK-Cre conditional knockout mouse (FXN-MCK) has an FXN gene ablation that prevents FXN expression in cardiac and skeletal muscle, leading to cardiac insufficiency, weight loss, and morbidity. FXN-MCK mice received a single intravenous injection of an AAV8 vector containing human (hFXN) or mouse (mFXN) FXN genes under the control of a phosphoglycerate kinase promoter. Compared to vehicle-treated FXN-MCK control mice, AAV-treated FXN-MCK mice displayed increases in body weight, reversal of cardiac deficits, and increases in survival without apparent toxicity in the heart or liver for up to 12 weeks postdose. FXN protein expression in heart tissue was detected in a dose-dependent manner, exhibiting wide distribution throughout the heart similar to wild type, but more speckled. These results support an AAV8-based approach to treat FRDA-associated cardiomyopathy.
Collapse
Affiliation(s)
- Joshua C. Chang
- Astellas Gene Therapies, Inc., South San Francisco, CA 94080, USA
| | - Molly R. Ryan
- Astellas Gene Therapies, Inc., South San Francisco, CA 94080, USA
| | - Marie C. Stark
- Astellas Gene Therapies, Inc., South San Francisco, CA 94080, USA
| | - Su Liu
- Astellas Gene Therapies, Inc., South San Francisco, CA 94080, USA
| | | | - Fria Bolan
- Astellas Gene Therapies, Inc., South San Francisco, CA 94080, USA
| | | | - Mark Champe
- Astellas Gene Therapies, Inc., South San Francisco, CA 94080, USA
| | - Hui Meng
- Diverge Translational Science Laboratory, Milwaukee, WI 53204, USA
- Medical College of Wisconsin, Department of Pathology and Laboratory Medicine, Milwaukee, WI 53226, USA
| | - Michael W. Lawlor
- Diverge Translational Science Laboratory, Milwaukee, WI 53204, USA
- Medical College of Wisconsin, Department of Pathology and Laboratory Medicine, Milwaukee, WI 53226, USA
| | - Sarah Halawani
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lucie V. Ngaba
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - David R. Lynch
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | | | - Fabrizia Urbinati
- Formerly of Astellas Gene Therapies, Inc., South San Francisco, CA 94080, USA
| | - Bala Medicherla
- Astellas Gene Therapies, Inc., South San Francisco, CA 94080, USA
| | - Carlos Fonck
- Astellas Gene Therapies, Inc., South San Francisco, CA 94080, USA
| |
Collapse
|
5
|
Mitina A, Khan M, Lesurf R, Yin Y, Engchuan W, Hamdan O, Pellecchia G, Trost B, Backstrom I, Guo K, Pallotto LM, Lam Doong PH, Wang Z, Nalpathamkalam T, Thiruvahindrapuram B, Papaz T, Pearson CE, Ragoussis J, Subbarao P, Azad MB, Turvey SE, Mandhane P, Moraes TJ, Simons E, Scherer SW, Lougheed J, Mondal T, Smythe J, Altamirano-Diaz L, Oechslin E, Mital S, Yuen RKC. Genome-wide enhancer-associated tandem repeats are expanded in cardiomyopathy. EBioMedicine 2024; 101:105027. [PMID: 38418263 PMCID: PMC10944212 DOI: 10.1016/j.ebiom.2024.105027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/01/2024] Open
Abstract
BACKGROUND Cardiomyopathy is a clinically and genetically heterogeneous heart condition that can lead to heart failure and sudden cardiac death in childhood. While it has a strong genetic basis, the genetic aetiology for over 50% of cardiomyopathy cases remains unknown. METHODS In this study, we analyse the characteristics of tandem repeats from genome sequence data of unrelated individuals diagnosed with cardiomyopathy from Canada and the United Kingdom (n = 1216) and compare them to those found in the general population. We perform burden analysis to identify genomic and epigenomic features that are impacted by rare tandem repeat expansions (TREs), and enrichment analysis to identify functional pathways that are involved in the TRE-associated genes in cardiomyopathy. We use Oxford Nanopore targeted long-read sequencing to validate repeat size and methylation status of one of the most recurrent TREs. We also compare the TRE-associated genes to those that are dysregulated in the heart tissues of individuals with cardiomyopathy. FINDINGS We demonstrate that tandem repeats that are rarely expanded in the general population are predominantly expanded in cardiomyopathy. We find that rare TREs are disproportionately present in constrained genes near transcriptional start sites, have high GC content, and frequently overlap active enhancer H3K27ac marks, where expansion-related DNA methylation may reduce gene expression. We demonstrate the gene silencing effect of expanded CGG tandem repeats in DIP2B through promoter hypermethylation. We show that the enhancer-associated loci are found in genes that are highly expressed in human cardiomyocytes and are differentially expressed in the left ventricle of the heart in individuals with cardiomyopathy. INTERPRETATION Our findings highlight the underrecognized contribution of rare tandem repeat expansions to the risk of cardiomyopathy and suggest that rare TREs contribute to ∼4% of cardiomyopathy risk. FUNDING Government of Ontario (RKCY), The Canadian Institutes of Health Research PJT 175329 (RKCY), The Azrieli Foundation (RKCY), SickKids Catalyst Scholar in Genetics (RKCY), The University of Toronto McLaughlin Centre (RKCY, SM), Ted Rogers Centre for Heart Research (SM), Data Sciences Institute at the University of Toronto (SM), The Canadian Institutes of Health Research PJT 175034 (SM), The Canadian Institutes of Health Research ENP 161429 under the frame of ERA PerMed (SM, RL), Heart and Stroke Foundation of Ontario & Robert M Freedom Chair in Cardiovascular Science (SM), Bitove Family Professorship of Adult Congenital Heart Disease (EO), Canada Foundation for Innovation (SWS, JR), Canada Research Chair (PS), Genome Canada (PS, JR), The Canadian Institutes of Health Research (PS).
Collapse
Affiliation(s)
- Aleksandra Mitina
- Genetics and Genome Biology, The Hospital for Sick Children; Toronto, Ontario, Canada
| | - Mahreen Khan
- Genetics and Genome Biology, The Hospital for Sick Children; Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto; Toronto, Ontario, Canada
| | - Robert Lesurf
- Genetics and Genome Biology, The Hospital for Sick Children; Toronto, Ontario, Canada
| | - Yue Yin
- Genetics and Genome Biology, The Hospital for Sick Children; Toronto, Ontario, Canada
| | - Worrawat Engchuan
- Genetics and Genome Biology, The Hospital for Sick Children; Toronto, Ontario, Canada; The Centre for Applied Genomics, The Hospital for Sick Children; Toronto, Ontario, Canada
| | - Omar Hamdan
- Genetics and Genome Biology, The Hospital for Sick Children; Toronto, Ontario, Canada; The Centre for Applied Genomics, The Hospital for Sick Children; Toronto, Ontario, Canada
| | - Giovanna Pellecchia
- Genetics and Genome Biology, The Hospital for Sick Children; Toronto, Ontario, Canada; The Centre for Applied Genomics, The Hospital for Sick Children; Toronto, Ontario, Canada
| | - Brett Trost
- Genetics and Genome Biology, The Hospital for Sick Children; Toronto, Ontario, Canada; The Centre for Applied Genomics, The Hospital for Sick Children; Toronto, Ontario, Canada
| | - Ian Backstrom
- Genetics and Genome Biology, The Hospital for Sick Children; Toronto, Ontario, Canada
| | - Keyi Guo
- Genetics and Genome Biology, The Hospital for Sick Children; Toronto, Ontario, Canada
| | - Linda M Pallotto
- Genetics and Genome Biology, The Hospital for Sick Children; Toronto, Ontario, Canada
| | - Phoenix Hoi Lam Doong
- Genetics and Genome Biology, The Hospital for Sick Children; Toronto, Ontario, Canada
| | - Zhuozhi Wang
- Genetics and Genome Biology, The Hospital for Sick Children; Toronto, Ontario, Canada; The Centre for Applied Genomics, The Hospital for Sick Children; Toronto, Ontario, Canada
| | - Thomas Nalpathamkalam
- Genetics and Genome Biology, The Hospital for Sick Children; Toronto, Ontario, Canada; The Centre for Applied Genomics, The Hospital for Sick Children; Toronto, Ontario, Canada
| | - Bhooma Thiruvahindrapuram
- Genetics and Genome Biology, The Hospital for Sick Children; Toronto, Ontario, Canada; The Centre for Applied Genomics, The Hospital for Sick Children; Toronto, Ontario, Canada
| | - Tanya Papaz
- Ted Rogers Centre for Heart Research; Toronto, Ontario, Canada; Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto; Toronto, Ontario, Canada
| | - Christopher E Pearson
- Genetics and Genome Biology, The Hospital for Sick Children; Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto; Toronto, Ontario, Canada
| | - Jiannis Ragoussis
- McGill Genome Centre, Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada
| | - Padmaja Subbarao
- Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Program in Translation Medicine & Division of Respiratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Meghan B Azad
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Stuart E Turvey
- Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Piushkumar Mandhane
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Theo J Moraes
- Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Program in Translation Medicine & Division of Respiratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Elinor Simons
- Department of Pediatrics and Child Health, Section of Allergy and Clinical Immunology, University of Manitoba, Winnipeg, Manitoba, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Stephen W Scherer
- Genetics and Genome Biology, The Hospital for Sick Children; Toronto, Ontario, Canada; The Centre for Applied Genomics, The Hospital for Sick Children; Toronto, Ontario, Canada; Department of Molecular Genetics and McLaughlin Centre, University of Toronto, Toronto, Ontario, Canada
| | - Jane Lougheed
- Division of Cardiology, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Tapas Mondal
- Division of Cardiology, Department of Pediatrics, McMaster Children's Hospital, Hamilton, Ontario, Canada
| | - John Smythe
- Division of Cardiology, Department of Pediatrics, Kingston General Hospital, Kingston, Ontario, Canada
| | - Luis Altamirano-Diaz
- Division of Cardiology, Department of Pediatrics, London Health Sciences Centre, London, Ontario, Canada
| | - Erwin Oechslin
- Division of Cardiology, Toronto Adult Congenital Heart Disease Program at Peter Munk Cardiac Centre, Department of Medicine, University Health Network, and University of Toronto, Toronto, Ontario, Canada
| | - Seema Mital
- Genetics and Genome Biology, The Hospital for Sick Children; Toronto, Ontario, Canada; Ted Rogers Centre for Heart Research; Toronto, Ontario, Canada; Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto; Toronto, Ontario, Canada.
| | - Ryan K C Yuen
- Genetics and Genome Biology, The Hospital for Sick Children; Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto; Toronto, Ontario, Canada; The Centre for Applied Genomics, The Hospital for Sick Children; Toronto, Ontario, Canada.
| |
Collapse
|
7
|
Amini O, Lakziyan R, Abavisani M, Sarchahi Z. The cardiomyopathy of Friedreich's ataxia common in a family: A case report. Ann Med Surg (Lond) 2021; 66:102408. [PMID: 34136207 PMCID: PMC8178102 DOI: 10.1016/j.amsu.2021.102408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 11/02/2022] Open
Abstract
Introduction and importance Friedreich's Ataxia is an autosomal recessive disease and is usually associated with arterial dysfunction, muscle weakness, spasm in the lower extremities, scoliosis, bladder dysfunction, lack of reflexes in the lower extremities, and imbalance. Approximately 2.3 people have cardiomyopathy. In this article, we have reviewed a case of Friedreich's Ataxia with hypertrophic cardiomyopathy. Case presentation A 19-year-old woman with Friedreich's Ataxia has been protesting since she was 11 years old and complained of chest pains, dyspnea, and heart palpitations without a medical history. In ECG, Asymmetrical invert T wave diffuse, diffuse ST-segment depression, and left ventricular hypertrophy were observed. In echocardiography, the left ventricle was reported as hyperimmobile with increased EF (70-75%). Clinical discussion In the present study, a patient with Friedrich Ataxia was diagnosed with chest pain, dyspnea, and palpitations without any medical history, and was discharged from the hospital after treatment. In the patients introduced and our patient, there was significant fibro-myocardial hypertrophy, in which the ventricular septal hypertrophy was marked by hypertrophic cardiomyopathy. Conclusion Because early diagnosis of the disease is difficult, clinical signs and the patient's current profile at the time of referral will be very helpful.
Collapse
Affiliation(s)
- Omidreza Amini
- Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Rasool Lakziyan
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mahnaz Abavisani
- Department of Nursing, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Zohreh Sarchahi
- Department of Nursing, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|