1
|
Zhou T, Wang Z, Lv X, Guo M, Zhang N, Liu L, Geng L, Shao J, Zhang K, Gao M, Mao A, Zhu Y, Yu F, Feng L, Wang X, Zhai Q, Chen W, Ma X. Targeting gut S. aureofaciens Tü117 serves as a new potential therapeutic intervention for the prevention and treatment of hypertension. Cell Metab 2025; 37:496-513.e11. [PMID: 39908987 DOI: 10.1016/j.cmet.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 09/13/2024] [Accepted: 01/08/2025] [Indexed: 02/07/2025]
Abstract
Currently, the regulation of specific gut microbial metabolism for the development and/or treatment of hypertension remains largely unexplored. Here, we show that α-lipomycin, produced by Streptomyces aureofaciens (S. aureofaciens) Tü117, is upregulated in the serum of high-salt diet (HSD) mice and patients with essential hypertension. α-lipomycin causes vasodilation impairment involving transient receptor potential vanilloid 4 (TRPV4)-mediated nitric oxide and endothelium-derived hyperpolarizing factor pathways in mice. We also find that Lactobacillus plantarum (L. plantarum) CCFM639 attenuates the increase in blood pressure (BP) potentially through inhibiting the proliferation of S. aureofaciens Tü117 in mice. An exploratory intervention trial indicates that L. plantarum CCFM639 supplementation reduces BPs in subjects newly diagnosed with pre-hypertension or stage 1 hypertension without antihypertensive medication. Our findings provide evidence for a role of S. aureofaciens Tü117-associated α-lipomycin elevation in the pathogenesis of HSD-induced hypertension, highlighting that targeting gut bacteria serves as a new therapeutic intervention for hypertension.
Collapse
Affiliation(s)
- Tingting Zhou
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of medicine, Jiangnan University, Wuxi 214122, China; Food Nutrition and Human Health Interdisciplinary Center, School of Food Science and Technology, Wuxi School of medicine, Jiangnan University, Wuxi 214122, China; Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Zhiwei Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of medicine, Jiangnan University, Wuxi 214122, China; Food Nutrition and Human Health Interdisciplinary Center, School of Food Science and Technology, Wuxi School of medicine, Jiangnan University, Wuxi 214122, China
| | - Xiaowang Lv
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of medicine, Jiangnan University, Wuxi 214122, China; Food Nutrition and Human Health Interdisciplinary Center, School of Food Science and Technology, Wuxi School of medicine, Jiangnan University, Wuxi 214122, China
| | - Mengting Guo
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Ning Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Liangju Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of medicine, Jiangnan University, Wuxi 214122, China
| | - Li Geng
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of medicine, Jiangnan University, Wuxi 214122, China
| | - Jing Shao
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Ka Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of medicine, Jiangnan University, Wuxi 214122, China
| | - Mengru Gao
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of medicine, Jiangnan University, Wuxi 214122, China
| | - Aiqin Mao
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of medicine, Jiangnan University, Wuxi 214122, China
| | - Yifei Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of medicine, Jiangnan University, Wuxi 214122, China
| | - Fan Yu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Lei Feng
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Xiaoyan Wang
- Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Qixiao Zhai
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of medicine, Jiangnan University, Wuxi 214122, China; Food Nutrition and Human Health Interdisciplinary Center, School of Food Science and Technology, Wuxi School of medicine, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of medicine, Jiangnan University, Wuxi 214122, China; Food Nutrition and Human Health Interdisciplinary Center, School of Food Science and Technology, Wuxi School of medicine, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xin Ma
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of medicine, Jiangnan University, Wuxi 214122, China; Food Nutrition and Human Health Interdisciplinary Center, School of Food Science and Technology, Wuxi School of medicine, Jiangnan University, Wuxi 214122, China; Affiliated Hospital of Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Lauar MR, Almutlaq RN, Guntipally S, Anidu BS, Kram R, Ross J, Osborn JW, Dayton A, Evans LC. Removing interoceptive input from the kidney to the brain reduces salt appetite in DOCA hypertensive rats. Kidney Int 2024; 106:1181-1185. [PMID: 39370041 PMCID: PMC11585427 DOI: 10.1016/j.kint.2024.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 07/24/2024] [Accepted: 08/08/2024] [Indexed: 10/08/2024]
Affiliation(s)
- Mariana R Lauar
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Rawan N Almutlaq
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Babatunde S Anidu
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Rachel Kram
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jaryd Ross
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - John W Osborn
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Alex Dayton
- Division of Nephrology and Hypertension, University of Minnesota, Minneapolis, Minnesota, USA
| | - Louise C Evans
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
3
|
Kuralay A, McDonough MC, Resch JM. Control of sodium appetite by hindbrain aldosterone-sensitive neurons. Mol Cell Endocrinol 2024; 592:112323. [PMID: 38936597 PMCID: PMC11381173 DOI: 10.1016/j.mce.2024.112323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/25/2024] [Indexed: 06/29/2024]
Abstract
Mineralocorticoids play a key role in hydromineral balance by regulating sodium retention and potassium wasting. Through favoring sodium, mineralocorticoids can cause hypertension from fluid overload under conditions of hyperaldosteronism, such as aldosterone-secreting tumors. An often-overlooked mechanism by which aldosterone functions to increase sodium is through stimulation of salt appetite. To drive sodium intake, aldosterone targets neurons in the hindbrain which uniquely express 11β-hydroxysteroid dehydrogenase type 2 (HSD2). This enzyme is a necessary precondition for aldosterone-sensing cells as it metabolizes glucocorticoids - preventing their activation of the mineralocorticoid receptor. In this review, we will consider the role of hindbrain HSD2 neurons in regulating sodium appetite by discussing HSD2 expression in the brain, regulation of hindbrain HSD2 neuron activity, and the circuitry mediating the effects of these aldosterone-sensitive neurons. Reducing the activity of hindbrain HSD2 neurons may be a viable strategy to reduce sodium intake and cardiovascular risk, particularly for conditions of hyperaldosteronism.
Collapse
Affiliation(s)
- Ahmet Kuralay
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, USA
| | - Miriam C McDonough
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA; Molecular Medicine Graduate Program, University of Iowa, Iowa City, IA, USA
| | - Jon M Resch
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, USA; Molecular Medicine Graduate Program, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
4
|
Abstract
Excessive salt intake raises blood pressure, but the implications of this observation for human health have remained contentious. It has also been recognized for many years that potassium intake may mitigate the effects of salt intake on blood pressure and possibly on outcomes such as stroke. Recent large randomized intervention trials have provided strong support for the benefits of replacing salt (NaCl) with salt substitute (75% NaCl, 25% KCl) on hard outcomes, including stroke. During the same period of time, major advances have been made in understanding how the body senses and tastes salt, and how these sensations drive intake. Additionally, new insights into the complex interactions between systems that control sodium and potassium excretion by the kidneys, and the brain have highlighted the existence of a potassium switch in the kidney distal nephron. This switch seems to contribute importantly to the blood pressure-lowering effects of potassium intake. In recognition of these evolving data, the United States Food and Drug Administration is moving to permit potassium-containing salt substitutes in food manufacturing. Given that previous attempts to reduce salt consumption have not been successful, this new approach has a chance of improving health and ending the 'Salt Wars'.
Collapse
Affiliation(s)
- Robert Little
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- LeDucq Transatlantic Network of Excellence
| | - David H. Ellison
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, USA
- Oregon Clinical & Translational Research Institute, Oregon Health & Science University, Portland, Oregon, USA
- LeDucq Transatlantic Network of Excellence
- VA Portland Health Care System, Portland, OR
| |
Collapse
|
5
|
Nethathe GD, Lipman J, Anderson R, Fuller PJ, Feldman C. Glucocorticoids with or without fludrocortisone in septic shock: a narrative review from a biochemical and molecular perspective. Br J Anaesth 2024; 132:53-65. [PMID: 38030548 PMCID: PMC10797514 DOI: 10.1016/j.bja.2023.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Two randomised controlled trials have reported a reduction in mortality when adjunctive hydrocortisone is administered in combination with fludrocortisone compared with placebo in septic shock. A third trial did not support this finding when hydrocortisone administered in combination with fludrocortisone was compared with hydrocortisone alone. The underlying mechanisms for this mortality benefit remain poorly understood. We review the clinical implications and potential mechanisms derived from laboratory and clinical data underlying the beneficial role of adjunctive fludrocortisone with hydrocortisone supplementation in septic shock. Factors including distinct biological effects of glucocorticoids and mineralocorticoids, tissue-specific and mineralocorticoid receptor-independent effects of mineralocorticoids, and differences in downstream signalling pathways between mineralocorticoid and glucocorticoid binding at the mineralocorticoid receptor could contribute to this interaction. Furthermore, pharmacokinetic and pharmacodynamic disparities exist between aldosterone and its synthetic counterpart fludrocortisone, potentially influencing their effects. Pending publication of well-designed, randomised controlled trials, a molecular perspective offers valuable insights and guidance to help inform clinical strategies.
Collapse
Affiliation(s)
- Gladness D Nethathe
- School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Department of Anaesthesia and Perioperative Medicine, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia; Academy of Critical Care, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
| | - Jeffrey Lipman
- Academy of Critical Care, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia; Jamieson Trauma Institute and Intensive Care Services, Royal Brisbane and Women's Hospital, Butterfield Street, Herston, Brisbane, 4029, QLD, Australia; Nimes University Hospital, University of Montpellier, Nimes, France
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Peter J Fuller
- Endocrinology Unit, Monash Health, Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Charles Feldman
- School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
6
|
Abstract
11-beta-hydroxysteroid dehydrogenases (11β-HSDs) catalyse the conversion of active 11-hydroxy glucocorticoids (cortisol, corticosterone) and their inert 11-keto forms (cortisone, 11-dehydrocorticosterone). They were first reported in the body and brain 70 years ago, but only recently have they become of interest. 11β-HSD2 is a dehydrogenase, potently inactivating glucocorticoids. In the kidney, 11β-HSD2 generates the aldosterone-specificity of intrinsically non-selective mineralocorticoid receptors. 11β-HSD2 also protects the developing foetal brain and body from premature glucocorticoid exposure, which otherwise engenders the programming of neuropsychiatric and cardio-metabolic disease risks. In the adult CNS, 11β-HSD2 is confined to a part of the brain stem where it generates aldosterone-specific central control of salt appetite and perhaps blood pressure. 11β-HSD1 is a reductase, amplifying active glucocorticoid levels within brain cells, notably in the cortex, hippocampus and amygdala, paralleling its metabolic functions in peripheral tissues. 11β-HSD1 is elevated in the ageing rodent and, less certainly, human forebrain. Transgenic models show this rise contributes to age-related cognitive decline, at least in mice. 11β-HSD1 inhibition robustly improves memory in healthy and pathological ageing rodent models and is showing initial promising results in phase II studies of healthy elderly people. Larger trials are needed to confirm and clarify the magnitude of effect and define target populations. The next decade will be crucial in determining how this tale ends - in new treatments or disappointment.
Collapse
Affiliation(s)
- Jonathan Seckl
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
7
|
Johnston JG, Welch AK, Cain BD, Sayeski PP, Gumz ML, Wingo CS. Aldosterone: Renal Action and Physiological Effects. Compr Physiol 2023; 13:4409-4491. [PMID: 36994769 PMCID: PMC11472823 DOI: 10.1002/cphy.c190043] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Aldosterone exerts profound effects on renal and cardiovascular physiology. In the kidney, aldosterone acts to preserve electrolyte and acid-base balance in response to changes in dietary sodium (Na+ ) or potassium (K+ ) intake. These physiological actions, principally through activation of mineralocorticoid receptors (MRs), have important effects particularly in patients with renal and cardiovascular disease as demonstrated by multiple clinical trials. Multiple factors, be they genetic, humoral, dietary, or otherwise, can play a role in influencing the rate of aldosterone synthesis and secretion from the adrenal cortex. Normally, aldosterone secretion and action respond to dietary Na+ intake. In the kidney, the distal nephron and collecting duct are the main targets of aldosterone and MR action, which stimulates Na+ absorption in part via the epithelial Na+ channel (ENaC), the principal channel responsible for the fine-tuning of Na+ balance. Our understanding of the regulatory factors that allow aldosterone, via multiple signaling pathways, to function properly clearly implicates this hormone as central to many pathophysiological effects that become dysfunctional in disease states. Numerous pathologies that affect blood pressure (BP), electrolyte balance, and overall cardiovascular health are due to abnormal secretion of aldosterone, mutations in MR, ENaC, or effectors and modulators of their action. Study of the mechanisms of these pathologies has allowed researchers and clinicians to create novel dietary and pharmacological targets to improve human health. This article covers the regulation of aldosterone synthesis and secretion, receptors, effector molecules, and signaling pathways that modulate its action in the kidney. We also consider the role of aldosterone in disease and the benefit of mineralocorticoid antagonists. © 2023 American Physiological Society. Compr Physiol 13:4409-4491, 2023.
Collapse
Affiliation(s)
- Jermaine G Johnston
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Amanda K Welch
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Brian D Cain
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Peter P Sayeski
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | - Michelle L Gumz
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Charles S Wingo
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| |
Collapse
|
8
|
Baumer-Harrison C, Breza JM, Sumners C, Krause EG, de Kloet AD. Sodium Intake and Disease: Another Relationship to Consider. Nutrients 2023; 15:535. [PMID: 36771242 PMCID: PMC9921152 DOI: 10.3390/nu15030535] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/14/2023] [Accepted: 01/15/2023] [Indexed: 01/22/2023] Open
Abstract
Sodium (Na+) is crucial for numerous homeostatic processes in the body and, consequentially, its levels are tightly regulated by multiple organ systems. Sodium is acquired from the diet, commonly in the form of NaCl (table salt), and substances that contain sodium taste salty and are innately palatable at concentrations that are advantageous to physiological homeostasis. The importance of sodium homeostasis is reflected by sodium appetite, an "all-hands-on-deck" response involving the brain, multiple peripheral organ systems, and endocrine factors, to increase sodium intake and replenish sodium levels in times of depletion. Visceral sensory information and endocrine signals are integrated by the brain to regulate sodium intake. Dysregulation of the systems involved can lead to sodium overconsumption, which numerous studies have considered causal for the development of diseases, such as hypertension. The purpose here is to consider the inverse-how disease impacts sodium intake, with a focus on stress-related and cardiometabolic diseases. Our proposition is that such diseases contribute to an increase in sodium intake, potentially eliciting a vicious cycle toward disease exacerbation. First, we describe the mechanism(s) that regulate each of these processes independently. Then, we highlight the points of overlap and integration of these processes. We propose that the analogous neural circuitry involved in regulating sodium intake and blood pressure, at least in part, underlies the reciprocal relationship between neural control of these functions. Finally, we conclude with a discussion on how stress-related and cardiometabolic diseases influence these circuitries to alter the consumption of sodium.
Collapse
Affiliation(s)
- Caitlin Baumer-Harrison
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32603, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL 32610, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL 32610, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Joseph M. Breza
- Department of Psychology, College of Arts and Sciences, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Colin Sumners
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32603, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL 32610, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Eric G. Krause
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL 32610, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Annette D. de Kloet
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32603, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL 32610, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL 32610, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
9
|
Zhang Z, Cai B, Sun Y, Deng H, Wang H, Qiao Z. Alteration of the gut microbiota and metabolite phenylacetylglutamine in patients with severe chronic heart failure. Front Cardiovasc Med 2023; 9:1076806. [PMID: 36704458 PMCID: PMC9871785 DOI: 10.3389/fcvm.2022.1076806] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Chronic Heart Failure (CHF) is the end result of nearly all cardiovascular disease and is the leading cause of deaths worldwide. Studies have demonstrated that intestinal flora has a close relationship with the development of Cardiovascular Disease (CVD) and plays a vital role in the disease evolution process. Phenylacetylglutamine (PAGln) a metabolite of the intestinal flora, is one of the common chronic kidney disease toxins. Its concentrations in plasma were higher in patients with major adverse cardiovascular events (MACE) however, its variation in patients with various degrees of CHF has rarely been reported. Therefore, we collected stool and plasma samples from 22 healthy controls, 29 patients with NYHA Class III and 29 patients with NYHA Class IV CHF (NYHA stands for New York Heart Association) from the Department of Cardiology of Shanghai Fengxian District Central Hospital. Next, we analyzed these samples by performing bacterial 16S ribosomal RNA gene sequencing and liquid chromatography tandem mass spectrometry. The result shows: The Chao 1 index was significantly lower in both NYHA class III and NYHA class IV than it was in the control group. The beta diversity was substantially dissimilar across the three groups. The linear discriminant analysis effect size analysis (LEfSe) showed that the bacterial species with the largest differences were Lachnospiraceae in control group, Enterobacteriaceae in NYHA class III, and Escherichia in NYHA class IV. The concentration of PAGln was significantly different between CHF and control groups and increased with the severity of heart failure. Finally, the correlation analysis represented that Parabacteroides and Bacteroides were negatively correlated to brain natriuretic peptide (BNP) and PAGln; Romboutsia and Blautia adversely associated with PAGln; Klebsiella was positively interrelated with BNP; Escherichia-Shigella was positively correlated with PAGln and BNP; Alistipes was contrasted with BNP; and Parabacteroides was negatively correlated with the left ventricular end-diastolic diameter (LVEDD). This study presented that the intestinal flora and its metabolite PAGln were altered with different grades of CHF and illustrated the effects of the gut flora and its metabolite on CHF.
Collapse
Affiliation(s)
- Zhendong Zhang
- Department of Cardiology, Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai, China,Department of Cardiology, Shanghai Fengxian District Central Hospital, Shanghai, China
| | - Bin Cai
- Department of Cardiology, Shanghai Fengxian District Central Hospital, Shanghai, China
| | - Yanzhuan Sun
- Department of Cardiology, Shanghai Fengxian District Central Hospital, Shanghai, China
| | - Haiyan Deng
- Department of Cardiology, Shanghai Fengxian District Central Hospital, Shanghai, China
| | - Hongwei Wang
- Department of Cardiology, Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai, China,Department of Cardiology, Shanghai Fengxian District Central Hospital, Shanghai, China,*Correspondence: Hongwei Wang,
| | - Zengyong Qiao
- Department of Cardiology, Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai, China,Department of Cardiology, Shanghai Fengxian District Central Hospital, Shanghai, China,Zengyong Qiao,
| |
Collapse
|
10
|
Lu YT, Zhang D, Zhang QY, Zhou ZM, Yang KQ, Zhou XL, Peng F. Apparent mineralocorticoid excess: comprehensive overview of molecular genetics. J Transl Med 2022; 20:500. [PMID: 36329487 PMCID: PMC9632093 DOI: 10.1186/s12967-022-03698-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/17/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022] Open
Abstract
Apparent mineralocorticoid excess is an autosomal recessive form of monogenic disease characterized by juvenile resistant low-renin hypertension, marked hypokalemic alkalosis, low aldosterone levels, and high ratios of cortisol to cortisone metabolites. It is caused by defects in the HSD11B2 gene, encoding the enzyme 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), which is primarily involved in the peripheral conversion of cortisol to cortisone. To date, over 50 deleterious HSD11B2 mutations have been identified worldwide. Multiple molecular mechanisms function in the lowering of 11β-HSD2 activity, including damaging protein stability, lowered affinity for the substrate and cofactor, and disrupting the dimer interface. Genetic polymorphism, environmental factors as well as epigenetic modifications may also offer an implicit explanation for the molecular pathogenesis of AME. A precise diagnosis depends on genetic testing, which allows for early and specific management to avoid the morbidity and mortality from target organ damage. In this review, we provide insights into the molecular genetics of classic and non-classic apparent mineralocorticoid excess and aim to offer a comprehensive overview of this monogenic disease.
Collapse
Affiliation(s)
- Yi-Ting Lu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Di Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiong-Yu Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ze-Ming Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kun-Qi Yang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xian-Liang Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Fan Peng
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
Ohara H, Nabika T. Genetic Modifications to Alter Blood Pressure Level. Biomedicines 2022; 10:biomedicines10081855. [PMID: 36009402 PMCID: PMC9405136 DOI: 10.3390/biomedicines10081855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/04/2022] Open
Abstract
Genetic manipulation is one of the indispensable techniques to examine gene functions both in vitro and in vivo. In particular, cardiovascular phenotypes such as blood pressure cannot be evaluated in vitro system, necessitating the creation of transgenic or gene-targeted knock-out and knock-in experimental animals to understand the pathophysiological roles of specific genes on the disease conditions. Although genome-wide association studies (GWAS) in various human populations have identified multiple genetic variations associated with increased risk for hypertension and/or its complications, the causal links remain unresolved. Genome-editing technologies can be applied to many different types of cells and organisms for creation of knock-out/knock-in models. In the post-GWAS era, it may be more worthwhile to validate pathophysiological implications of the risk variants and/or candidate genes by creating genome-edited organisms.
Collapse
|
12
|
Xiao H, Yan Y, Gu Y, Zhang Y. Strategy for sodium-salt substitution: On the relationship between hypertension and dietary intake of cations. Food Res Int 2022; 156:110822. [PMID: 35650987 DOI: 10.1016/j.foodres.2021.110822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/28/2021] [Accepted: 11/22/2021] [Indexed: 11/04/2022]
Abstract
Chronic diseases, especially cardiovascular diseases (CVD), have become one of the main causes affecting human health. Hypertension is a prominent representative of CVD. The formation and development of hypertension is closely related to people's daily diet. A large number of studies have shown that excessive intake of salt (NaCl) could increase the risk of hypertension. In recent years, more and more investigations have focused on other cations that may be contained in edible salt, exploring whether they have an effect on hypertension and the underlying mechanism. This article focuses on the relationship between four metal elements (potassium, calcium, magnesium, and zinc) and hypertension, by discussing the main metabolic pathway, the impact of diet intake on blood pressure, and especially the regulation mechanisms on blood pressure in detail. At the same time, some opinions and suggestions are put forward, combined with the current hot topics "salt reduction" and "salt substitution".
Collapse
Affiliation(s)
- Hongrui Xiao
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yali Yan
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yanpei Gu
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Ying Zhang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
13
|
Hunter RW, Dhaun N, Bailey MA. The impact of excessive salt intake on human health. Nat Rev Nephrol 2022; 18:321-335. [DOI: 10.1038/s41581-021-00533-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2021] [Indexed: 12/19/2022]
|
14
|
NODA M, MATSUDA T. Central regulation of body fluid homeostasis. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2022; 98:283-324. [PMID: 35908954 PMCID: PMC9363595 DOI: 10.2183/pjab.98.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Extracellular fluids, including blood, lymphatic fluid, and cerebrospinal fluid, are collectively called body fluids. The Na+ concentration ([Na+]) in body fluids is maintained at 135-145 mM and is broadly conserved among terrestrial animals. Homeostatic osmoregulation by Na+ is vital for life because severe hyper- or hypotonicity elicits irreversible organ damage and lethal neurological trauma. To achieve "body fluid homeostasis" or "Na homeostasis", the brain continuously monitors [Na+] in body fluids and controls water/salt intake and water/salt excretion by the kidneys. These physiological functions are primarily regulated based on information on [Na+] and relevant circulating hormones, such as angiotensin II, aldosterone, and vasopressin. In this review, we discuss sensing mechanisms for [Na+] and hormones in the brain that control water/salt intake behaviors, together with the responsible sensors (receptors) and relevant neural pathways. We also describe mechanisms in the brain by which [Na+] increases in body fluids activate the sympathetic neural activity leading to hypertension.
Collapse
Affiliation(s)
- Masaharu NODA
- Homeostatic Mechanism Research Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
- Correspondence should be addressed to: Homeostatic Mechanism Research Unit, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, Kanagawa 226-8503, Japan (e-mail: )
| | - Takashi MATSUDA
- Homeostatic Mechanism Research Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| |
Collapse
|
15
|
Affiliation(s)
- David H Ellison
- From the Oregon Clinical and Translational Research Institute, Oregon Health and Science University (D.H.E) and the VA Portland Health Care System (D.H.E.) - both in Portland; and LeDucq Transatlantic Network of Excellence (D.H.E., P.W.) and the Departments of Medicine and Physiology, Johns Hopkins University (P.W.) - both in Baltimore
| | - Paul Welling
- From the Oregon Clinical and Translational Research Institute, Oregon Health and Science University (D.H.E) and the VA Portland Health Care System (D.H.E.) - both in Portland; and LeDucq Transatlantic Network of Excellence (D.H.E., P.W.) and the Departments of Medicine and Physiology, Johns Hopkins University (P.W.) - both in Baltimore
| |
Collapse
|
16
|
Mullins L, Ivy J, Ward M, Tenstad O, Wiig H, Kitada K, Manning J, Rakova N, Muller D, Mullins J. Abnormal neonatal sodium handling in skin precedes hypertension in the SAME rat. Pflugers Arch 2021; 473:897-910. [PMID: 34028587 PMCID: PMC8164623 DOI: 10.1007/s00424-021-02582-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/03/2022]
Abstract
We discovered high Na+ and water content in the skin of newborn Sprague–Dawley rats, which reduced ~ 2.5-fold by 7 days of age, indicating rapid changes in extracellular volume (ECV). Equivalent changes in ECV post birth were also observed in C57Bl/6 J mice, with a fourfold reduction over 7 days, to approximately adult levels. This established the generality of increased ECV at birth. We investigated early sodium and water handling in neonates from a second rat strain, Fischer, and an Hsd11b2-knockout rat modelling the syndrome of apparent mineralocorticoid excess (SAME). Despite Hsd11b2−/− animals exhibiting lower skin Na+ and water levels than controls at birth, they retained ~ 30% higher Na+ content in their pelts at the expense of K+ thereafter. Hsd11b2−/− neonates exhibited incipient hypokalaemia from 15 days of age and became increasingly polydipsic and polyuric from weaning. As with adults, they excreted a high proportion of ingested Na+ through the kidney, (56.15 ± 8.21% versus control 34.15 ± 8.23%; n = 4; P < 0.0001), suggesting that changes in nephron electrolyte transporters identified in adults, by RNA-seq analysis, occur by 4 weeks of age. Our data reveal that Na+ imbalance in the Hsd11b2−/− neonate leads to excess Na+ storage in skin and incipient hypokalaemia, which, together with increased, glucocorticoid-induced Na+ uptake in the kidney, then contribute to progressive, volume contracted, salt-sensitive hypertension. Skin Na+ plays an important role in the development of SAME but, equally, may play a key physiological role at birth, supporting post-natal growth, as an innate barrier to infection or as a rudimentary kidney.
Collapse
Affiliation(s)
- Linda Mullins
- Molecular Physiology Laboratory, BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
| | - Jessica Ivy
- Molecular Physiology Laboratory, BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Mairi Ward
- Molecular Physiology Laboratory, BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Olav Tenstad
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Helge Wiig
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Kento Kitada
- Department of Pharmacology, Kagawa University, Takamatsu, Japan
| | - Jon Manning
- EMBL-EBI, Wellcome Genome Campus, Hinxton, UK
| | - Natalia Rakova
- Experimental and Clinical Research Center, a joint cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitäts-Medizin Berlin, Berlin, Germany
| | - Dominik Muller
- Experimental and Clinical Research Center, a joint cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitäts-Medizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - John Mullins
- Molecular Physiology Laboratory, BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
17
|
Gomez-Sanchez EP, Gomez-Sanchez CE. 11β-hydroxysteroid dehydrogenases: A growing multi-tasking family. Mol Cell Endocrinol 2021; 526:111210. [PMID: 33607268 PMCID: PMC8108011 DOI: 10.1016/j.mce.2021.111210] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 02/06/2023]
Abstract
This review briefly addresses the history of the discovery and elucidation of the three cloned 11β-hydroxysteroid dehydrogenase (11βHSD) enzymes in the human, 11βHSD1, 11βHSD2 and 11βHSD3, an NADP+-dependent dehydrogenase also called the 11βHSD1-like dehydrogenase (11βHSD1L), as well as evidence for yet identified 11βHSDs. Attention is devoted to more recently described aspects of this multi-functional family. The importance of 11βHSD substrates other than glucocorticoids including bile acids, 7-keto sterols, neurosteroids, and xenobiotics is discussed, along with examples of pathology when functions of these multi-tasking enzymes are disrupted. 11βHSDs modulate the intracellular concentration of glucocorticoids, thereby regulating the activation of the glucocorticoid and mineralocorticoid receptors, and 7β-27-hydroxycholesterol, an agonist of the retinoid-related orphan receptor gamma (RORγ). Key functions of this nuclear transcription factor include regulation of immune cell differentiation, cytokine production and inflammation at the cell level. 11βHSD1 expression and/or glucocorticoid reductase activity are inappropriately increased with age and in obesity and metabolic syndrome (MetS). Potential causes for disappointing results of the clinical trials of selective inhibitors of 11βHSD1 in the treatment of these disorders are discussed, as well as the potential for more targeted use of inhibitors of 11βHSD1 and 11βHSD2.
Collapse
Affiliation(s)
| | - Celso E Gomez-Sanchez
- Department of Pharmacology and Toxicology, Jackson, MS, USA; Medicine (Endocrinology), Jackson, MS, USA; University of Mississippi Medical Center and G.V. (Sonny) Montgomery VA Medical Center(3), Jackson, MS, USA
| |
Collapse
|
18
|
Wang Y, Wang J, Yang R, Wang P, Porche R, Kim S, Lutfy K, Liu L, Friedman TC, Jiang M, Liu Y. Decreased 11β-Hydroxysteroid Dehydrogenase Type 2 Expression in the Kidney May Contribute to Nicotine/Smoking-Induced Blood Pressure Elevation in Mice. Hypertension 2021; 77:1940-1952. [PMID: 33813843 DOI: 10.1161/hypertensionaha.120.16458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Ying Wang
- Department of Pediatrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, China (Y.W., R.Y., Y.L.).,Division of Endocrinology, Metabolism and Molecular Medicine, Charles R. Drew University of Medicine and Sciences, Los Angeles, CA (Y.W., J.W., P.W., R.P., S.K., K.L., T.C.F., Y.L.)
| | - Jian Wang
- Division of Endocrinology, Metabolism and Molecular Medicine, Charles R. Drew University of Medicine and Sciences, Los Angeles, CA (Y.W., J.W., P.W., R.P., S.K., K.L., T.C.F., Y.L.).,Department of Neonatology, The First Hospital of Jilin University, Changchun, China (J.W.)
| | - Rong Yang
- Department of Pediatrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, China (Y.W., R.Y., Y.L.)
| | - Piwen Wang
- Division of Endocrinology, Metabolism and Molecular Medicine, Charles R. Drew University of Medicine and Sciences, Los Angeles, CA (Y.W., J.W., P.W., R.P., S.K., K.L., T.C.F., Y.L.)
| | - Rene Porche
- Division of Endocrinology, Metabolism and Molecular Medicine, Charles R. Drew University of Medicine and Sciences, Los Angeles, CA (Y.W., J.W., P.W., R.P., S.K., K.L., T.C.F., Y.L.)
| | - Samuel Kim
- Division of Endocrinology, Metabolism and Molecular Medicine, Charles R. Drew University of Medicine and Sciences, Los Angeles, CA (Y.W., J.W., P.W., R.P., S.K., K.L., T.C.F., Y.L.)
| | - Kabirullah Lutfy
- Division of Endocrinology, Metabolism and Molecular Medicine, Charles R. Drew University of Medicine and Sciences, Los Angeles, CA (Y.W., J.W., P.W., R.P., S.K., K.L., T.C.F., Y.L.).,College of Pharmacy, Western University of Health Sciences, Pomona, CA (K.L.)
| | - Limei Liu
- Department of Endocrinology and Metabolism, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, China (L.L.)
| | - Theodore C Friedman
- Division of Endocrinology, Metabolism and Molecular Medicine, Charles R. Drew University of Medicine and Sciences, Los Angeles, CA (Y.W., J.W., P.W., R.P., S.K., K.L., T.C.F., Y.L.).,David Geffen School of Medicine at University of California, Los Angeles (T.C.F., Y.L.)
| | - Meisheng Jiang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles (M.J.)
| | - Yanjun Liu
- Department of Pediatrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, China (Y.W., R.Y., Y.L.).,Division of Endocrinology, Metabolism and Molecular Medicine, Charles R. Drew University of Medicine and Sciences, Los Angeles, CA (Y.W., J.W., P.W., R.P., S.K., K.L., T.C.F., Y.L.).,David Geffen School of Medicine at University of California, Los Angeles (T.C.F., Y.L.)
| |
Collapse
|
19
|
Ivy JR, Bailey MA. Nondipping Blood Pressure: Predictive or Reactive Failure of Renal Sodium Handling? Physiology (Bethesda) 2021; 36:21-34. [PMID: 33325814 DOI: 10.1152/physiol.00024.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Blood pressure follows a daily rhythm, dipping during nocturnal sleep in humans. Attenuation of this dip (nondipping) is associated with increased risk of cardiovascular disease. Renal control of sodium homeostasis is essential for long-term blood pressure control. Sodium reabsorption and excretion have rhythms that rely on predictive/circadian as well as reactive adaptations. We explore how these rhythms might contribute to blood pressure rhythm in health and disease.
Collapse
Affiliation(s)
- Jessica R Ivy
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew A Bailey
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
20
|
Ralph AF, Grenier C, Costello HM, Stewart K, Ivy JR, Dhaun N, Bailey MA. Activation of the Sympathetic Nervous System Promotes Blood Pressure Salt-Sensitivity in C57BL6/J Mice. Hypertension 2020; 77:158-168. [PMID: 33190558 PMCID: PMC7720873 DOI: 10.1161/hypertensionaha.120.16186] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Global salt intake averages >8 g/person per day, over twice the limit advocated by the American Heart Association. Dietary salt excess leads to hypertension, and this partly mediates its poor health outcomes. In ≈30% of people, the hypertensive response to salt is exaggerated. This salt-sensitivity increases cardiovascular risk. Mechanistic cardiovascular research relies heavily on rodent models and the C57BL6/J mouse is the most widely used reference strain. We examined the effects of high salt intake on blood pressure, renal, and vascular function in the most commonly used and commercially available C57BL6/J mouse strain. Changing from control (0.3% Na+) to high salt (3% Na+) diet increased systolic blood pressure in male mice by ≈10 mm Hg within 4 days of dietary switch. This hypertensive response was maintained over the 3-week study period. Returning to control diet gradually reduced blood pressure back to baseline. High-salt diet caused a rapid and sustained downregulation in mRNA encoding renal NHE3 (sodium-hydrogen-exchanger 3) and EnaC (epithelial sodium channel), although we did not observe a suppression in aldosterone until ≈7 days. During the development of salt-sensitivity, the acute pressure natriuresis relationship was augmented and neutral sodium balance was maintained throughout. High-salt diet increased ex vivo sensitivity of the renal artery to phenylephrine and increased urinary excretion of adrenaline, but not noradrenaline. The acute blood pressure-depressor effect of hexamethonium, a ganglionic blocker, was enhanced by high salt. Salt-sensitivity in commercially sourced C57BL6/J mice is attributable to sympathetic overactivity, increased adrenaline, and enhanced vascular sensitivity to alpha-adrenoreceptor activation and not sodium retention or attenuation of the acute pressure natriuresis response.
Collapse
Affiliation(s)
- Ailsa F Ralph
- From the University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom
| | - Celine Grenier
- From the University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom
| | - Hannah M Costello
- From the University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom
| | - Kevin Stewart
- From the University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom
| | - Jessica R Ivy
- From the University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom
| | - Neeraj Dhaun
- From the University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom
| | - Matthew A Bailey
- From the University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom
| |
Collapse
|
21
|
Carvajal CA, Tapia-Castillo A, Vecchiola A, Baudrand R, Fardella CE. Classic and Nonclassic Apparent Mineralocorticoid Excess Syndrome. J Clin Endocrinol Metab 2020; 105:5691192. [PMID: 31909799 DOI: 10.1210/clinem/dgz315] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/28/2019] [Indexed: 02/13/2023]
Abstract
CONTEXT Arterial hypertension (AHT) is one of the most frequent pathologies in the general population. Subtypes of essential hypertension characterized by low renin levels allowed the identification of 2 different clinical entities: aldosterone-mediated mineralocorticoid receptor (MR) activation and cortisol-mediated MR activation. EVIDENCE ACQUISITION This review is based upon a search of Pubmed and Google Scholar databases, up to August 2019, for all publications relating to endocrine hypertension, apparent mineralocorticoid excess (AME) and cortisol (F) to cortisone (E) metabolism. EVIDENCE SYNTHESIS The spectrum of cortisol-mediated MR activation includes the classic AME syndrome to milder (nonclassic) forms of AME, the latter with a much higher prevalence (7.1%) than classic AME but different phenotype and genotype. Nonclassic AME (NC-AME) is mainly related to partial 11βHSD2 deficiency associated with genetic variations and epigenetic modifications (first hit) and potential additive actions of endogenous or exogenous inhibitors (ie, glycyrrhetinic acid-like factors [GALFS]) and other factors (ie, age, high sodium intake) (second hit). Subjects with NC-AME are characterized by a high F/E ratio, low E levels, normal to elevated blood pressure, low plasma renin and increased urinary potassium excretion. NC-AME condition should benefit from low-sodium and potassium diet recommendations and monotherapy with MR antagonists. CONCLUSION NC-AME has a higher prevalence and a milder phenotypical spectrum than AME. NC-AME etiology is associated to a first hit (gene and epigene level) and an additive second hit. NC-AME subjects are candidates to be treated with MR antagonists aimed to improve blood pressure, end-organ damage, and modulate the renin levels.
Collapse
Affiliation(s)
- Cristian A Carvajal
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN), Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Alejandra Tapia-Castillo
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN), Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Andrea Vecchiola
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN), Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Rene Baudrand
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN), Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Carlos E Fardella
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN), Pontificia Universidad Catolica de Chile, Santiago, Chile
| |
Collapse
|
22
|
Yan X, Jin J, Su X, Yin X, Gao J, Wang X, Zhang S, Bu P, Wang M, Zhang Y, Wang Z, Zhang Q. Intestinal Flora Modulates Blood Pressure by Regulating the Synthesis of Intestinal-Derived Corticosterone in High Salt-Induced Hypertension. Circ Res 2020; 126:839-853. [DOI: 10.1161/circresaha.119.316394] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Rationale:
High-salt diet is one of the most important risk factors for hypertension. Intestinal flora has been reported to be associated with high salt–induced hypertension (hSIH). However, the detailed roles of intestinal flora in hSIH pathogenesis have not yet been fully elucidated.
Objective:
To reveal the roles and mechanisms of intestinal flora in hSIH development.
Methods and Results:
The abovementioned issues were investigated using various techniques including 16S rRNA gene sequencing, untargeted metabolomics, selective bacterial culture, and fecal microbiota transplantation. We found that high-salt diet induced hypertension in Wistar rats. The fecal microbiota of healthy rats could dramatically lower blood pressure (BP) of hypertensive rats, whereas the fecal microbiota of hSIH rats had opposite effects. The composition, metabolism, and interrelationship of intestinal flora in hSIH rats were considerably reshaped, including the increased corticosterone level and reduced
Bacteroides
and arachidonic acid levels, which tightly correlated with BP. The serum corticosterone level was also significantly increased in rats with hSIH. Furthermore, the above abnormalities were confirmed in patients with hypertension. The intestinal
Bacteroides fragilis
could inhibit the production of intestinal-derived corticosterone induced by high-salt diet through its metabolite arachidonic acid.
Conclusions:
hSIH could be transferred by fecal microbiota transplantation, indicating the pivotal roles of intestinal flora in hSIH development. High-salt diet reduced the levels of
B fragilis
and arachidonic acid in the intestine, which increased intestinal-derived corticosterone production and corticosterone levels in serum and intestine, thereby promoting BP elevation. This study revealed a novel mechanism different from inflammation/immunity by which intestinal flora regulated BP, namely intestinal flora could modulate BP by affecting steroid hormone levels. These findings enriched the understanding of the function of intestinal flora and its effects on hypertension.
Collapse
Affiliation(s)
- Xuefang Yan
- From the Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan (X. Yan, J.J., X. Yin, J.G., X.W., S.Z., P.B., Y.Z., Q.Z.)
| | - Jiajia Jin
- From the Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan (X. Yan, J.J., X. Yin, J.G., X.W., S.Z., P.B., Y.Z., Q.Z.)
| | - Xinhuan Su
- Division of Endocrinology and Metabolism (X.S., Z.W.), Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Division of Geriatrics (X.S., Z.W.), Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xianlun Yin
- From the Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan (X. Yan, J.J., X. Yin, J.G., X.W., S.Z., P.B., Y.Z., Q.Z.)
| | - Jing Gao
- From the Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan (X. Yan, J.J., X. Yin, J.G., X.W., S.Z., P.B., Y.Z., Q.Z.)
| | - Xiaowei Wang
- From the Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan (X. Yan, J.J., X. Yin, J.G., X.W., S.Z., P.B., Y.Z., Q.Z.)
| | - Shucui Zhang
- From the Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan (X. Yan, J.J., X. Yin, J.G., X.W., S.Z., P.B., Y.Z., Q.Z.)
| | - Peili Bu
- From the Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan (X. Yan, J.J., X. Yin, J.G., X.W., S.Z., P.B., Y.Z., Q.Z.)
| | - Mansen Wang
- Medical Data Research Center, Providence Health & Services, Portland, OR (M.W.)
| | - Yun Zhang
- From the Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan (X. Yan, J.J., X. Yin, J.G., X.W., S.Z., P.B., Y.Z., Q.Z.)
| | - Zhe Wang
- Division of Endocrinology and Metabolism (X.S., Z.W.), Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Division of Geriatrics (X.S., Z.W.), Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Qunye Zhang
- From the Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan (X. Yan, J.J., X. Yin, J.G., X.W., S.Z., P.B., Y.Z., Q.Z.)
| |
Collapse
|
23
|
Tseilikman V, Dremencov E, Tseilikman O, Pavlovicova M, Lacinova L, Jezova D. Role of glucocorticoid- and monoamine-metabolizing enzymes in stress-related psychopathological processes. Stress 2020; 23:1-12. [PMID: 31322459 DOI: 10.1080/10253890.2019.1641080] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 07/03/2019] [Indexed: 02/06/2023] Open
Abstract
Glucocorticoid signaling is fundamental in healthy stress coping and in the pathophysiology of stress-related diseases, such as post-traumatic stress disorder (PTSD). Glucocorticoids are metabolized by cytochrome P450 (CYP) as well as 11-β-hydroxysteroid dehydrogenase type 1 (11βHSD1) and 2 (11βHSD2). Acute stress-induced increase in glucocorticoid concentrations stimulates the expression of several CYP sub-types. CYP is primarily responsible for glucocorticoid metabolism and its increased activity can result in decreased circulating glucocorticoids in response to repeated stress stimuli. In addition, repeated stress-induced glucocorticoid release can promote 11βHSD1 activation and 11βHSD2 inhibition, and the 11βHSD2 suppression can lead to apparent mineralocorticoid excess. The activation of CYP and 11βHSD1 and the suppression of 11βHSD2 may at least partly contribute to development of the blunted glucocorticoid response to stressors characteristic in high trait anxiety, PTSD, and other stress-related disorders. Glucocorticoids and glucocorticoid-metabolizing enzymes interact closely with other biomolecules such as inflammatory cytokines, monoamines, and some monoamine-metabolizing enzymes, namely the monoamine oxidase type A (MAO-A) and B (MAO-B). Glucocorticoids boost MAO activity and this decreases monoamine levels and induces oxidative tissue damage which then activates inflammatory cytokines. The inflammatory cytokines suppress CYP expression and activity. This dynamic cross-talk between glucocorticoids, monoamines, and their metabolizing enzymes could be a critical factor in the pathophysiology of stress-related disorders.Lay summaryGlucocorticoids, which are produced and released under the control by brain regulatory centers, are fundamental in the stress response. This review emphasizes the importance of glucocorticoid metabolism and particularly the interaction between the brain and the liver as the major metabolic organ in the body. The activity of enzymes involved in glucocorticoid metabolism is proposed to play not only an important role in positive, healthy glucocorticoid effects, but also to contribute to the development and course of stress-related diseases.
Collapse
Affiliation(s)
- Vadim Tseilikman
- School of Medical Biology, South Ural State University, Chelyabinsk, Russia
| | - Eliyahu Dremencov
- School of Medical Biology, South Ural State University, Chelyabinsk, Russia
- Institute of Molecular Physiology and Genetics, Centre for Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Olga Tseilikman
- School of Medical Biology, South Ural State University, Chelyabinsk, Russia
| | - Michaela Pavlovicova
- Institute of Molecular Physiology and Genetics, Centre for Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lubica Lacinova
- Institute of Molecular Physiology and Genetics, Centre for Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
- Faculty of Natural Sciences, University of Saints Cyril and Methodius, Trnava, Slovakia
| | - Daniela Jezova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
24
|
Shi L, Yuan F, Wang X, Wang R, Liu K, Tian Y, Guo Z, Zhang X, Wang S. Mineralocorticoid Receptor-Dependent Impairment of Baroreflex Contributes to Hypertension in a Mouse Model of Primary Aldosteronism. Front Physiol 2019; 10:1434. [PMID: 31824340 PMCID: PMC6883352 DOI: 10.3389/fphys.2019.01434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/06/2019] [Indexed: 12/19/2022] Open
Abstract
Primary aldosteronism (PA) is the most common cause of secondary hypertension. The paucity of good animal models hinders our understanding of the pathophysiology of PA and the hypertensive mechanism of PA remains incompletely known. It was recently reported that genetic deletion of TWIK-related acid-sensitive potassium-1 and potassium-3 channels from mice (TASK−/−) generates aldosterone excess and mild hypertension. We addressed the hypertensive mechanism by assessing autonomic regulation of cardiovascular activity in this TASK−/− mouse line that exhibits the hallmarks of PA. Here, we demonstrate that TASK−/− mice were hypertensive with 24-h ambulatory arterial pressure. Either systemic or central blockade of the mineralocorticoid receptor (MR) markedly reduced elevated arterial pressure to normal level in TASK−/− mice. The response of heart rate to the muscarinic cholinergic receptor blocker atropine was similar between TASK−/− and wild-type mice. However, the responses of heart rate to the β-adrenergic receptor blocker propranolol and of arterial pressure to the ganglion blocker hexamethonium were enhanced in TASK−/− mice relative to the counterparts. Moreover, the bradycardiac rather than tachycardiac gain of the arterial baroreflex was significantly attenuated and blockade of MRs to a large degree rescued the dysautonomia and baroreflex gain in TASK−/− mice. Overall, the present study suggests that the MR-dependent dysautonomia and reduced baroreflex gain contribute to the development of hyperaldosteronism-related hypertension.
Collapse
Affiliation(s)
- Luo Shi
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Fang Yuan
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Xuefang Wang
- Department of Physiology, Hebei North University, Zhangjiakou, China
| | - Ri Wang
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Kun Liu
- Department of Laboratory Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yanming Tian
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Zan Guo
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Xiangjian Zhang
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Sheng Wang
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
25
|
Kumar V, Evans LC, Kurth T, Yang C, Wollner C, Nasci V, Zheleznova NN, Bukowy J, Dayton A, Cowley AW. Therapeutic Suppression of mTOR (Mammalian Target of Rapamycin) Signaling Prevents and Reverses Salt-Induced Hypertension and Kidney Injury in Dahl Salt-Sensitive Rats. Hypertension 2019; 73:630-639. [PMID: 30595123 DOI: 10.1161/hypertensionaha.118.12378] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
mTOR (mammalian target of rapamycin) signaling has emerged as a key regulator in a wide range of cellular processes ranging from cell proliferation, immune responses, and electrolyte homeostasis. mTOR consists of 2 distinct protein complexes, mTORC1 (mTOR complex 1) and mTORC2 (mTOR complex 2) with distinct downstream signaling events. mTORC1 has been implicated in pathological conditions, such as cancer and type 2 diabetes mellitus in humans, and inhibition of this pathway with rapamycin has been shown to attenuate salt-induced hypertension in Dahl salt-sensitive rats. Several studies have found that the mTORC2 pathway is involved in the regulation of renal tubular sodium and potassium transport, but its role in hypertension has remained largely unexplored. In the present study, we, therefore, determined the effect of mTORC2 inhibition with compound PP242 on salt-induced hypertension and renal injury in salt-sensitive rats. We found that PP242 not only completely prevented but also reversed salt-induced hypertension and kidney injury in salt-sensitive rats. PP242 exhibited potent natriuretic actions, and chronic administration tended to produce a negative Na+ balance even during high-salt feeding. The results indicate that mTORC2 and the related downstream associated pathways play an important role in regulation of sodium balance and arterial pressure regulation in salt-sensitive rats. Therapeutic suppression of the mTORC2 pathway represents a novel pathway for the potential treatment of hypertension.
Collapse
Affiliation(s)
- Vikash Kumar
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee
| | - Louise C Evans
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee
| | - Theresa Kurth
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee
| | - Chun Yang
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee
| | - Clayton Wollner
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee
| | - Victoria Nasci
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee
| | | | - John Bukowy
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee
| | - Alex Dayton
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee
| | - Allen W Cowley
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee
| |
Collapse
|
26
|
Hautaniemi EJ, Tikkakoski AJ, Eräranta A, Kähönen M, Hämäläinen E, Turpeinen U, Huhtala H, Mustonen J, Pörsti IH. Liquorice ingestion attenuates vasodilatation via exogenous nitric oxide donor but not via β2-adrenoceptor stimulation. PLoS One 2019; 14:e0223654. [PMID: 31626649 PMCID: PMC6799927 DOI: 10.1371/journal.pone.0223654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 09/22/2019] [Indexed: 11/19/2022] Open
Abstract
We examined the effect of liquorice ingestion on haemodynamic responses to exogenous nitric oxide donor (nitroglycerin) and β2-adrenoceptor agonist (salbutamol), and 11β-hydroxysteroid dehydrogenase activity, in 21 volunteers and 21 reference subjects. Haemodynamic data was captured before and after sublingual nitroglycerin (0.25 mg) and inhaled salbutamol (400 μg) during orthostatic challenge utilising radial pulse wave analysis and whole-body impedance cardiography. The recordings were performed at baseline and following two weeks of liquorice intake (290-370 mg/d glycyrrhizin). Urinary cortisone and cortisol metabolites were examined. Liquorice intake elevated aortic systolic and diastolic blood pressure and systemic vascular resistance when compared with the reference group. Following research drug administration the liquorice-induced increase in systemic vascular resistance was observed in the presence of nitroglycerin (p<0.05) but no longer in the presence of salbutamol. Liquorice ingestion decreased cardiac chronotropic response to upright posture (p = 0.032) in unadjusted analysis, but when adjusted for age and sex the difference in the upright change in heart rate was no longer significant. The urinary cortisone to cortisol metabolite ratio decreased from 0.70 to 0.31 (p<0.001) after liquorice intake indicating significant inhibition of the 11β-hydroxysteroid dehydrogenase type 2. In the reference group the haemodynamic variables remained virtually unchanged. These results suggest that liquorice exposure impaired vasodilatation in vivo that was induced by exogenous nitric oxide donor but not that induced by β2-adrenoceptor stimulation. Trial registration: EU Clinical Trials Register 2006-002065-39 ClinicalTrials.gov NCT01742702.
Collapse
Affiliation(s)
- Elina J. Hautaniemi
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Antti J. Tikkakoski
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland
| | - Arttu Eräranta
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mika Kähönen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland
| | - Esa Hämäläinen
- HUSLAB, Helsinki University Hospital, Helsinki, Finland
- Department of Clinical Chemistry, Biomedicum, Helsinki University, Helsinki, Finland
| | | | - Heini Huhtala
- Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Jukka Mustonen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| | - Ilkka H. Pörsti
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
- * E-mail:
| |
Collapse
|
27
|
Brocca ME, Pietranera L, de Kloet ER, De Nicola AF. Mineralocorticoid Receptors, Neuroinflammation and Hypertensive Encephalopathy. Cell Mol Neurobiol 2019; 39:483-492. [PMID: 30117098 PMCID: PMC11469880 DOI: 10.1007/s10571-018-0610-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023]
Abstract
Worldwide, raised blood pressure is estimated to affect 35-40% of the adult population and is a main conditioning factor for cardiovascular diseases and stroke. Animal models of hypertension have provided great advances concerning the pathophysiology of human hypertension, as already shown for the deoxycorticosterone-salt treated rat, the Dahl-salt sensitive rat, the Zucker obese rat and the spontaneously hypertensive rat (SHR). SHR has been widely used to study abnormalities of the brain in chronic hypertension. This review summarises present and past evidence that in the SHR, hypertension causes hippocampal tissue damage which triggers a pro-inflammatory feedforward cascade affecting this vulnerable brain region. The cascade is driven by mineralocorticoid receptor (MR) activation responding to endogenous corticosterone rather than aldosterone. Increased MR expression is a generalised feature of the SHR which seems to support first the rise in blood pressure. Then oxidative stress caused by vasculopathy and hypoxia further increases MR activation in hippocampal neurons and glia cells, activates microglia activation and pro-inflammatory mediators, and down-regulates anti-inflammatory factors. In contrast to MR, involvement of the glucocorticoid receptor (GR) in SHR is less certain. GR showed normal expression levels and blockage with an antagonist failed to reduce blood pressure of SHR. The findings support the concept that MR:GR imbalance caused by vasculopathy causes a switch in MR function towards a proverbial "death" receptor.
Collapse
Affiliation(s)
- Maria Elvira Brocca
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Buenos Aires, Argentina
- Laboratory of Neuroactive Steroids, Cajal Institute, CSIC, Ave. Doctor Arce 37, 28002, Madrid, Spain
| | - Luciana Pietranera
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Buenos Aires, Argentina
- Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Edo Ronald de Kloet
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Alejandro Federico De Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Buenos Aires, Argentina.
- Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
28
|
Grenier C, Ralph A, Livingstone DEW, Holmes MC, Bailey MA. High Sodium Diet in 11β Hydroxysteroid Dehydrogenase Type 2 CNS Knockout Mice Induces a Proinflammatory Phenotype of Perivascular Adipose Tissue and Alterations in Arterial Reactivity. FASEB J 2019. [DOI: 10.1096/fasebj.2019.33.1_supplement.866.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Celine Grenier
- Centre for Cardiovascular ScienceEdinburghUnited Kingdom
| | - Ailsa Ralph
- Centre for Cardiovascular ScienceEdinburghUnited Kingdom
| | | | - Megan C Holmes
- Centre for Cardiovascular ScienceEdinburghUnited Kingdom
| | | |
Collapse
|
29
|
de Kloet ER, de Kloet SF, de Kloet CS, de Kloet AD. Top-down and bottom-up control of stress-coping. J Neuroendocrinol 2019; 31:e12675. [PMID: 30578574 PMCID: PMC6519262 DOI: 10.1111/jne.12675] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/12/2018] [Accepted: 12/12/2018] [Indexed: 12/17/2022]
Abstract
In this 30th anniversary issue review, we focus on the glucocorticoid modulation of limbic-prefrontocortical circuitry during stress-coping. This action of the stress hormone is mediated by mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) that are co-expressed abundantly in these higher brain regions. Via both receptor types, the glucocorticoids demonstrate, in various contexts, rapid nongenomic and slower genomic actions that coordinate consecutive stages of information processing. MR-mediated action optimises stress-coping, whereas, in a complementary fashion, the memory storage of the selected coping strategy is promoted via GR. We highlight the involvement of adipose tissue in the allocation of energy resources to central regulation of stress reactions, point to still poorly understood neuronal ensembles in the prefrontal cortex that underlie cognitive flexibility critical for effective coping, and evaluate the role of cortisol as a pleiotropic regulator in vulnerability to, and treatment of, trauma-related psychiatric disorders.
Collapse
Affiliation(s)
- Edo R. de Kloet
- Division of EndocrinologyDepartment of MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Sybren F. de Kloet
- Department of Integrative NeurophysiologyCenter for Neurogenomics and Cognitive ResearchVU‐University of AmsterdamAmsterdamThe Netherlands
| | | | - Annette D. de Kloet
- Department of Physiology and Functional GenomicsUniversity of FloridaGainesvilleFlorida
| |
Collapse
|
30
|
Guan J, Zhao M, He C, Li X, Li Y, Sun J, Wang W, Cui YL, Zhang Q, Li BY, Qiao GF. Anti-Hypertensive Action of Fenofibrate via UCP2 Upregulation Mediated by PPAR Activation in Baroreflex Afferent Pathway. Neurosci Bull 2019; 35:15-24. [PMID: 30173356 PMCID: PMC6357279 DOI: 10.1007/s12264-018-0271-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/29/2018] [Indexed: 12/31/2022] Open
Abstract
Fenofibrate, an agonist for peroxisome proliferator-activated receptor alpha (PPAR-α), lowers blood pressure, but whether this action is mediated via baroreflex afferents has not been elucidated. In this study, the distribution of PPAR-α and PPAR-γ was assessed in the nodose ganglion (NG) and the nucleus of the solitary tract (NTS). Hypertension induced by drinking high fructose (HFD) was reduced, along with complete restoration of impaired baroreceptor sensitivity, by chronic treatment with fenofibrate. The molecular data also showed that both PPAR-α and PPAR-γ were dramatically up-regulated in the NG and NTS of the HFD group. Expression of the downstream signaling molecule of PPAR-α, the mitochondrial uncoupling protein 2 (UCP2), was up-regulated in the baroreflex afferent pathway under similar experimental conditions, along with amelioration of reduced superoxide dismutase activity and increased superoxide in HFD rats. These results suggest that chronic treatment with fenofibrate plays a crucial role in the neural control of blood pressure by improving baroreflex afferent function due at least partially to PPAR-mediated up-regulation of UCP2 expression and reduction of oxidative stress.
Collapse
Affiliation(s)
- Jian Guan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Miao Zhao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Chao He
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xue Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ying Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jie Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Wei Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ya-Li Cui
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Qing Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Bai-Yan Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| | - Guo-Fen Qiao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
31
|
Culshaw GJ, Costello HM, Binnie D, Stewart KR, Czopek A, Dhaun N, Hadoke PWF, Webb DJ, Bailey MA. Impaired pressure natriuresis and non-dipping blood pressure in rats with early type 1 diabetes mellitus. J Physiol 2019; 597:767-780. [PMID: 30537108 PMCID: PMC6355628 DOI: 10.1113/jp277332] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/28/2018] [Indexed: 01/26/2023] Open
Abstract
KEY POINTS Type 1 diabetes mellitus increases cardiovascular risk; hypertension amplifies this risk, while pressure natriuresis regulates long-term blood pressure. We induced type 1 diabetes in rats by streptozotocin injection and demonstrated a substantial impairment of pressure natriuresis: acute increases in blood pressure did not increase renal medullary blood flow, tubular sodium reabsorption was not downregulated, and proximal tubule sodium reabsorption, measured by lithium clearance, was unaffected. Insulin reduced blood glucose in diabetic rats, and rescued the pressure natriuresis response without influencing lithium clearance, but did not restore medullary blood flow. Radiotelemetry showed that diastolic blood pressure was increased in diabetic rats, and its diurnal variation was reduced. Increases in medullary blood flow and decreases in distal tubule sodium reabsorption that offset acute rises in BP are impaired in early type 1 diabetes, and this impairment could be a target for preventing hypertension in type 1 diabetes. ABSTRACT Type 1 diabetes mellitus (T1DM) substantially increases cardiovascular risk, and hypertension amplifies this risk. Blood pressure (BP) and body sodium homeostasis are linked. T1DM patients have increased total exchangeable sodium, correlating directly with BP. Pressure natriuresis is an important physiological regulator of BP. We hypothesised that pressure natriuresis would be impaired, and BP increased, in the early phase of T1DM. Male Sprague-Dawley rats were injected with streptozotocin (30-45 mg/kg) or citrate vehicle. After 3 weeks, pressure natriuresis was induced by serial arterial ligation. In non-diabetic controls, this increased fractional excretion of sodium from ∼1% to ∼25% of the filtered load (P < 0.01); in T1DM rats, the response was significantly blunted, peaking at only ∼3% (P < 0.01). Mechanistically, normal lithium clearance suggested that distal tubule sodium reabsorption was not downregulated with increased BP in T1DM rats. The pressure dependence of renal medullary perfusion, considered a key factor in the integrated response, was abolished. Insulin therapy rescued the natriuretic response in diabetic rats, restoring normal downregulation of tubular sodium reabsorption when BP was increased. However, the pressure dependence of medullary perfusion was not restored, suggesting persistent vascular dysfunction despite glycaemic control. Radiotelemetry showed that T1DM did not affect systolic BP, but mean diastolic BP was ∼5 mmHg higher than in non-diabetic controls (P < 0.01), and normal diurnal variation was reduced. In conclusion, functional impairment of renal sodium and BP homeostasis is an early manifestation of T1DM, preceding hypertension and nephropathy. Early intervention to restore pressure natriuresis in T1DM may complement reductions in cardiovascular risk achieved with glycaemic control.
Collapse
Affiliation(s)
- Geoffrey J. Culshaw
- The British Heart Foundation Centre for Cardiovascular ScienceThe Queen's Medical Research InstituteThe University of Edinburgh47 Little France CrescentEdinburghEH16 4TJUK
| | - Hannah M. Costello
- The British Heart Foundation Centre for Cardiovascular ScienceThe Queen's Medical Research InstituteThe University of Edinburgh47 Little France CrescentEdinburghEH16 4TJUK
| | - David Binnie
- The British Heart Foundation Centre for Cardiovascular ScienceThe Queen's Medical Research InstituteThe University of Edinburgh47 Little France CrescentEdinburghEH16 4TJUK
| | - Kevin R. Stewart
- The British Heart Foundation Centre for Cardiovascular ScienceThe Queen's Medical Research InstituteThe University of Edinburgh47 Little France CrescentEdinburghEH16 4TJUK
| | - Alicja Czopek
- The British Heart Foundation Centre for Cardiovascular ScienceThe Queen's Medical Research InstituteThe University of Edinburgh47 Little France CrescentEdinburghEH16 4TJUK
| | - Neeraj Dhaun
- The British Heart Foundation Centre for Cardiovascular ScienceThe Queen's Medical Research InstituteThe University of Edinburgh47 Little France CrescentEdinburghEH16 4TJUK
| | - Patrick W. F. Hadoke
- The British Heart Foundation Centre for Cardiovascular ScienceThe Queen's Medical Research InstituteThe University of Edinburgh47 Little France CrescentEdinburghEH16 4TJUK
| | - David J. Webb
- The British Heart Foundation Centre for Cardiovascular ScienceThe Queen's Medical Research InstituteThe University of Edinburgh47 Little France CrescentEdinburghEH16 4TJUK
| | - Matthew A. Bailey
- The British Heart Foundation Centre for Cardiovascular ScienceThe Queen's Medical Research InstituteThe University of Edinburgh47 Little France CrescentEdinburghEH16 4TJUK
| |
Collapse
|
32
|
White PC. Alterations of Cortisol Metabolism in Human Disorders. Horm Res Paediatr 2018; 89:320-330. [PMID: 29843121 DOI: 10.1159/000485508] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 11/21/2017] [Indexed: 11/19/2022] Open
Abstract
The interconversion of active and inactive corticosteroids - cortisol and cortisone, respectively, in humans - is modulated by isozymes of 11β-hydroxysteroid dehydrogenase (11-HSD). Studies of this process have provided crucial insights into glucocorticoid effects in a wide variety of tissues. The 11-HSD1 isozyme functions mainly as an oxoreductase (cortisone to cortisol) and is expressed at high levels in the liver and other glucocorticoid target tissues. Because it is required for full physiological effects of cortisol, it has emerged as a drug target for metabolic syndrome and type 2 diabetes. Mutations in the corresponding HSD11B1 gene, or in the H6PD gene encoding hexose-6-phosphate dehydrogenase (which supplies the NADPH required for the oxoreductase activity of 11-HSD1), cause apparent cortisone reductase deficiency, a rare syndrome of adrenocortical hyperactivity and hyperandrogenism. In contrast, the 11-HSD2 isozyme functions as a dehydrogenase (cortisol to cortisone) and is expressed mainly in mineralocorticoid target tissues, where it bars access of cortisol to the mineralocorticoid receptor. Mutations in the HSD11B2 gene encoding 11-HSD2 cause the syndrome of apparent mineralocorticoid excess, a severe form of familial hypertension. The role of this enzyme in the pathogenesis of common forms of low-renin hypertension remains uncertain.
Collapse
|
33
|
Aldosterone-sensitive HSD2 neurons in mice. Brain Struct Funct 2018; 224:387-417. [PMID: 30343334 DOI: 10.1007/s00429-018-1778-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/03/2018] [Indexed: 02/07/2023]
Abstract
Sodium deficiency elevates aldosterone, which in addition to epithelial tissues acts on the brain to promote dysphoric symptoms and salt intake. Aldosterone boosts the activity of neurons that express 11-beta-hydroxysteroid dehydrogenase type 2 (HSD2), a hallmark of aldosterone-sensitive cells. To better characterize these neurons, we combine immunolabeling and in situ hybridization with fate mapping and Cre-conditional axon tracing in mice. Many cells throughout the brain have a developmental history of Hsd11b2 expression, but in the adult brain one small brainstem region with a leaky blood-brain barrier contains HSD2 neurons. These neurons express Hsd11b2, Nr3c2 (mineralocorticoid receptor), Agtr1a (angiotensin receptor), Slc17a6 (vesicular glutamate transporter 2), Phox2b, and Nxph4; many also express Cartpt or Lmx1b. No HSD2 neurons express cholinergic, monoaminergic, or several other neuropeptidergic markers. Their axons project to the parabrachial complex (PB), where they intermingle with AgRP-immunoreactive axons to form dense terminal fields overlapping FoxP2 neurons in the central lateral subnucleus (PBcL) and pre-locus coeruleus (pLC). Their axons also extend to the forebrain, intermingling with AgRP- and CGRP-immunoreactive axons to form dense terminals surrounding GABAergic neurons in the ventrolateral bed nucleus of the stria terminalis (BSTvL). Sparse axons target the periaqueductal gray, ventral tegmental area, lateral hypothalamic area, paraventricular hypothalamic nucleus, and central nucleus of the amygdala. Dual retrograde tracing revealed that largely separate HSD2 neurons project to pLC/PB or BSTvL. This projection pattern raises the possibility that a subset of HSD2 neurons promotes the dysphoric, anorexic, and anhedonic symptoms of hyperaldosteronism via AgRP-inhibited relay neurons in PB.
Collapse
|
34
|
Carvajal CA, Tapia-Castillo A, Valdivia CP, Allende F, Solari S, Lagos CF, Campino C, Martínez-Aguayo A, Vecchiola A, Pinochet C, Godoy C, Iturrieta V, Baudrand R, Fardella CE. Serum Cortisol and Cortisone as Potential Biomarkers of Partial 11β-Hydroxysteroid Dehydrogenase Type 2 Deficiency. Am J Hypertens 2018; 31:910-918. [PMID: 29617893 DOI: 10.1093/ajh/hpy051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/29/2018] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Pathogenic variations in HSD11B2 gene triggers the apparent mineralocorticoid excess syndrome (AME). There is scarce information regarding the phenotypes of subjects carrying heterozygous pathogenic variants in HSD11B2 gene. We investigated if serum cortisol/cortisone (F/E) ratio and cortisone are useful for identifying partial 11βHSD2 deficiency in those heterozygous subjects. METHODS We studied two patients diagnosed with AME and their families carrying either D223N or R213C mutation. We also evaluated 32 healthy control subjects (13 children and 19 adults) to obtain normal references ranges for all measured variables. Case 1: A boy carrying D223N mutation in HSD11B2 gene and Case 2: A girl carrying R213C mutation. We assessed serum F/E ratio and cortisone by HPLC-MS/MS, aldosterone, plasma-renin-activity(PRA), electrolytes, and HSD11B2 genetic analyses. RESULTS The normal values (median [interquartile range]) in children for serum F/E and cortisone (µg/dl) were 2.56 [2.21-3.69] and 2.54 [2.35-2.88], and in adults were 4.42 [3.70-4.90] and 2.23 [1.92-2.57], respectively. Case 1 showed a very high serum F/E 28.8 and low cortisone 0.46 µg/dl. His mother and sister were normotensives and heterozygous for D223N mutation with high F/E (13.2 and 6.0, respectively) and low cortisone (2.0 and 2.2, respectively). Case 2 showed a very high serum F/E 175 and suppressed cortisone 0.11 µg/dl. Her parents and sister were heterozygous for the R213C mutation with normal phenotype, but high F/E and low cortisone. Heterozygous subjects showed normal aldosterone, PRA, but lower fractional excretion of sodium and urinary Na/K ratio than controls. CONCLUSION Serum F/E ratio and cortisone allow to identify partial 11βHSD2 deficiencies, as occurs in heterozygous subjects, who would be susceptible to develop arterial hypertension.
Collapse
Affiliation(s)
- Cristian A Carvajal
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII), Santiago, Chile
| | - Alejandra Tapia-Castillo
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII), Santiago, Chile
- Faculty of Medicine, Universidad del Desarrollo, Santiago, Chile
| | - Carolina P Valdivia
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fidel Allende
- Department of Clinical Laboratories, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sandra Solari
- Department of Clinical Laboratories, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos F Lagos
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII), Santiago, Chile
- Facultad de Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Carmen Campino
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII), Santiago, Chile
| | - Alejandro Martínez-Aguayo
- Endocrinology Pediatrics Division, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrea Vecchiola
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII), Santiago, Chile
| | - Constanza Pinochet
- Endocrinology Pediatrics Division, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Godoy
- Endocrinology Pediatrics Division, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Virginia Iturrieta
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rene Baudrand
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos E Fardella
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII), Santiago, Chile
| |
Collapse
|
35
|
Ivy JR, Evans LC, Moorhouse R, Richardson RV, Al-Dujaili EAS, Flatman PW, Kenyon CJ, Chapman KE, Bailey MA. Renal and Blood Pressure Response to a High-Salt Diet in Mice With Reduced Global Expression of the Glucocorticoid Receptor. Front Physiol 2018; 9:848. [PMID: 30038578 PMCID: PMC6046455 DOI: 10.3389/fphys.2018.00848] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/14/2018] [Indexed: 01/02/2023] Open
Abstract
Salt-sensitive hypertension is common in glucocorticoid excess. Glucocorticoid resistance also presents with hypercortisolemia and hypertension but the relationship between salt intake and blood pressure (BP) is not well defined. GRβgeo/+ mice have global glucocorticoid receptor (GR) haploinsufficiency and increased BP. Here we examined the effect of high salt diet on BP, salt excretion and renal blood flow in GRβgeo/+mice. Basal BP was ∼10 mmHg higher in male GRβgeo/+ mice than in GR+/+ littermates. This modest increase was amplified by ∼10 mmHg following a high-salt diet in GRβgeo/+ mice. High salt reduced urinary aldosterone excretion but increased renal mineralocorticoid receptor expression in both genotypes. Corticosterone, and to a lesser extent deoxycorticosterone, excretion was increased in GRβgeo/+ mice following a high-salt challenge, consistent with enhanced 24 h production. GR+/+ mice increased fractional sodium excretion and reduced renal vascular resistance during the high salt challenge, retaining neutral sodium balance. In contrast, sodium excretion and renal vascular resistance did not adapt to high salt in GRβgeo/+ mice, resulting in transient sodium retention and sustained hypertension. With high-salt diet, Slc12a3 and Scnn1a mRNAs were higher in GRβgeo/+ than controls, and this was reflected in an exaggerated natriuretic response to thiazide and benzamil, inhibitors of NCC and ENaC, respectively. Reduction in GR expression causes salt-sensitivity and an adaptive failure of the renal vasculature and tubule, most likely reflecting sustained mineralocorticoid receptor activation. This provides a mechanistic basis to understand the hypertension associated with loss-of-function polymorphisms in GR in the context of habitually high salt intake.
Collapse
Affiliation(s)
- Jessica R Ivy
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
| | - Louise C Evans
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
| | - Rebecca Moorhouse
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
| | - Rachel V Richardson
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
| | - Emad A S Al-Dujaili
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
| | - Peter W Flatman
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
| | - Christopher J Kenyon
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
| | - Karen E Chapman
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew A Bailey
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
36
|
Gasparini S, Melo MR, Andrade-Franzé GMF, Geerling JC, Menani JV, Colombari E. Aldosterone infusion into the 4th ventricle produces sodium appetite with baroreflex attenuation independent of renal or blood pressure changes. Brain Res 2018; 1698:70-80. [PMID: 29928872 DOI: 10.1016/j.brainres.2018.06.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/05/2018] [Accepted: 06/16/2018] [Indexed: 02/07/2023]
Abstract
Aldosterone infusion into the 4th ventricle (4th V), upstream the nucleus of the solitary tract (NTS), produces strong 0.3 M NaCl intake. In the present study, we investigated whether aldosterone infusion into the 4th V activates HSD2 neurons, changes renal excretion, or alters blood pressure and cardiovascular reflexes. Chronic infusion of aldosterone (100 ng/h) into the 4th V increased daily 0.3 M NaCl intake (up to 44 ± 10, vs. vehicle: 5.6 ± 3.4 ml/24 h) and also c-Fos expression in HSD2 neurons in the NTS and in non-HSD2 neurons in the NTS. Natriuresis, diuresis and positive sodium balance were present in rats that ingested 0.3 M NaCl, however, renal excretion was not modified by 4th V aldosterone in rats that had no access to NaCl. 4th V aldosterone also reduced baroreflex sensitivity (-2.8 ± 0.5, vs. vehicle: -5.1 ± 0.9 bpm/mmHg) in animals that had sodium available, without changing blood pressure. The results suggest that sodium intake induced by aldosterone infused into the 4th V is associated with activation of NTS neurons, among them the HSD2 neurons. Aldosterone infused into the 4th V in association with sodium intake also impairs baroreflex sensitivity, without changing arterial pressure.
Collapse
Affiliation(s)
- S Gasparini
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil; Departament of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - M R Melo
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - G M F Andrade-Franzé
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - J C Geerling
- Departament of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - J V Menani
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - E Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil.
| |
Collapse
|
37
|
de Kloet ER, Meijer OC, de Nicola AF, de Rijk RH, Joëls M. Importance of the brain corticosteroid receptor balance in metaplasticity, cognitive performance and neuro-inflammation. Front Neuroendocrinol 2018; 49:124-145. [PMID: 29428549 DOI: 10.1016/j.yfrne.2018.02.003] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/25/2018] [Accepted: 02/07/2018] [Indexed: 01/14/2023]
Abstract
Bruce McEwen's discovery of receptors for corticosterone in the rat hippocampus introduced higher brain circuits in the neuroendocrinology of stress. Subsequently, these receptors were identified as mineralocorticoid receptors (MRs) that are involved in appraisal processes, choice of coping style, encoding and retrieval. The MR-mediated actions on cognition are complemented by slower actions via glucocorticoid receptors (GRs) on contextualization, rationalization and memory storage of the experience. These sequential phases in cognitive performance depend on synaptic metaplasticity that is regulated by coordinate MR- and GR activation. The receptor activation includes recruitment of coregulators and transcription factors as determinants of context-dependent specificity in steroid action; they can be modulated by genetic variation and (early) experience. Interestingly, inflammatory responses to damage seem to be governed by a similarly balanced MR:GR-mediated action as the initiating, terminating and priming mechanisms involved in stress-adaptation. We conclude with five questions challenging the MR:GR balance hypothesis.
Collapse
Affiliation(s)
- E R de Kloet
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - O C Meijer
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - A F de Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental, Buenos Aires, Argentina.
| | - R H de Rijk
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands & Department of Clinical Psychology, Leiden University, The Netherlands.
| | - M Joëls
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands; University of Groningen, University Medical Center Groningen, The Netherlands.
| |
Collapse
|
38
|
Hermidorff MM, de Assis LVM, Isoldi MC. Genomic and rapid effects of aldosterone: what we know and do not know thus far. Heart Fail Rev 2018; 22:65-89. [PMID: 27942913 DOI: 10.1007/s10741-016-9591-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Aldosterone is the most known mineralocorticoid hormone synthesized by the adrenal cortex. The genomic pathway displayed by aldosterone is attributed to the mineralocorticoid receptor (MR) signaling. Even though the rapid effects displayed by aldosterone are long known, our knowledge regarding the receptor responsible for such event is still poor. It is intense that the debate whether the MR or another receptor-the "unknown receptor"-is the receptor responsible for the rapid effects of aldosterone. Recently, G protein-coupled estrogen receptor-1 (GPER-1) was elegantly shown to mediate some aldosterone-induced rapid effects in several tissues, a fact that strongly places GPER-1 as the unknown receptor. It has also been suggested that angiotensin receptor type 1 (AT1) also participates in the aldosterone-induced rapid effects. Despite this open question, the relevance of the beneficial effects of aldosterone is clear in the kidneys, colon, and CNS as aldosterone controls the important water reabsorption process; on the other hand, detrimental effects displayed by aldosterone have been reported in the cardiovascular system and in the kidneys. In this line, the MR antagonists are well-known drugs that display beneficial effects in patients with heart failure and hypertension; it has been proposed that MR antagonists could also play an important role in vascular disease, obesity, obesity-related hypertension, and metabolic syndrome. Taken altogether, our goal here was to (1) bring a historical perspective of both genomic and rapid effects of aldosterone in several tissues, and the receptors and signaling pathways involved in such processes; and (2) critically address the controversial points within the literature as regarding which receptor participates in the rapid pathway display by aldosterone.
Collapse
Affiliation(s)
- Milla Marques Hermidorff
- Laboratory of Hypertension, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG, 35400-000, Brazil
| | - Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Mauro César Isoldi
- Laboratory of Hypertension, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG, 35400-000, Brazil.
| |
Collapse
|
39
|
Hernandez M, Watkins J, Vu J, Hayward L. DOCA/salt hypertension alters Period1 and orexin-related gene expression in the medulla and hypothalamus of male rats: Diurnal influences. Auton Neurosci 2018; 210:34-43. [DOI: 10.1016/j.autneu.2017.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 10/18/2022]
|
40
|
Clinical, genetic, and structural basis of apparent mineralocorticoid excess due to 11β-hydroxysteroid dehydrogenase type 2 deficiency. Proc Natl Acad Sci U S A 2017; 114:E11248-E11256. [PMID: 29229831 DOI: 10.1073/pnas.1716621115] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations in 11β-hydroxysteroid dehydrogenase type 2 gene (HSD11B2) cause an extraordinarily rare autosomal recessive disorder, apparent mineralocorticoid excess (AME). AME is a form of low renin hypertension that is potentially fatal if untreated. Mutations in the HSD11B2 gene result either in severe AME or a milder phenotype (type 2 AME). To date, ∼40 causative mutations have been identified. As part of the International Consortium for Rare Steroid Disorders, we have diagnosed and followed the largest single worldwide cohort of 36 AME patients. Here, we present the genotype and clinical phenotype of these patients, prominently from consanguineous marriages in the Middle East, who display profound hypertension and hypokalemic alkalosis. To correlate mutations with phenotypic severity, we constructed a computational model of the HSD11B2 protein. Having used a similar strategy for the in silico evaluation of 150 mutations of CYP21A2, the disease-causing gene in congenital adrenal hyperplasia, we now provide a full structural explanation for the clinical severity of AME resulting from each known HSD11B2 missense mutation. We find that mutations that allow the formation of an inactive dimer, alter substrate/coenzyme binding, or impair structural stability of HSD11B2 yield severe AME. In contrast, mutations that cause an indirect disruption of substrate binding or mildly alter intramolecular interactions result in type 2 AME. A simple in silico evaluation of novel missense mutations could help predict the often-diverse phenotypes of an extremely rare monogenic disorder.
Collapse
|
41
|
Mullins LJ, Conway BR, Menzies RI, Denby L, Mullins JJ. Renal disease pathophysiology and treatment: contributions from the rat. Dis Model Mech 2017; 9:1419-1433. [PMID: 27935823 PMCID: PMC5200898 DOI: 10.1242/dmm.027276] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The rat has classically been the species of choice for pharmacological studies and disease modeling, providing a source of high-quality physiological data on cardiovascular and renal pathophysiology over many decades. Recent developments in genome engineering now allow us to capitalize on the wealth of knowledge acquired over the last century. Here, we review rat models of hypertension, diabetic nephropathy, and acute and chronic kidney disease. These models have made important contributions to our understanding of renal diseases and have revealed key genes, such as Ace and P2rx7, involved in renal pathogenic processes. By targeting these genes of interest, researchers are gaining a better understanding of the etiology of renal pathologies, with the promised potential of slowing disease progression or even reversing the damage caused. Some, but not all, of these target genes have proved to be of clinical relevance. However, it is now possible to generate more sophisticated and appropriate disease models in the rat, which can recapitulate key aspects of human renal pathology. These advances will ultimately be used to identify new treatments and therapeutic targets of much greater clinical relevance. Summary: This Review highlights the key role that the rat continues to play in improving our understanding of the etiologies of renal pathologies, and how these insights have opened up new therapeutic avenues.
Collapse
Affiliation(s)
- Linda J Mullins
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Bryan R Conway
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Robert I Menzies
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Laura Denby
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - John J Mullins
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
42
|
Abstract
The metabolic syndrome describes a clustering of risk factors—visceral obesity, dyslipidaemia, insulin resistance, and salt-sensitive hypertension—that increases mortality related to cardiovascular disease, type 2 diabetes, cancer, and non-alcoholic fatty liver disease. The prevalence of these concurrent comorbidities is ~ 25–30% worldwide, and metabolic syndrome therefore presents a significant global public health burden. Evidence from clinical and preclinical studies indicates that glucocorticoid excess is a key causal feature of metabolic syndrome. This is not increased systemic in circulating cortisol, rather increased bioavailability of active glucocorticoids within tissues. This review examines the role of covert glucocorticoid excess on the hypertension of the metabolic syndrome. Here, the role of the 11β-hydroxysteroid dehydrogenase enzymes, which exert intracrine and paracrine control over glucocorticoid signalling, is examined. 11βHSD1 amplifies glucocorticoid action in cells and contributes to hypertension through direct and indirect effects on the kidney and vasculature. The deactivation of glucocorticoid by 11βHSD2 controls ligand access to glucocorticoid and mineralocorticoid receptors: loss of function promotes salt retention and hypertension. As for hypertension in general, high blood pressure in the metabolic syndrome reflects a complex interaction between multiple systems. The clear association between high dietary salt, glucocorticoid production, and metabolic disorders has major relevance for human health and warrants systematic evaluation.
Collapse
Affiliation(s)
- Matthew A Bailey
- The British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
43
|
Liem DG. Infants' and Children's Salt Taste Perception and Liking: A Review. Nutrients 2017; 9:E1011. [PMID: 28902163 PMCID: PMC5622771 DOI: 10.3390/nu9091011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/01/2017] [Accepted: 09/08/2017] [Indexed: 12/14/2022] Open
Abstract
Sodium is an essential nutrient for the human body. It is widely used as sodium chloride (table salt) in (processed) foods and overconsumed by both children and adults, placing them at risk for adverse health effects such as high blood pressure and cardiovascular diseases. The current review focusses on the development of salt taste sensitivity and preferences, and its association with food intake. Three -to- four month old infants are able to detect and prefer sodium chloride solutions over plain water, which is thought to be a biological unlearned response. Liking for water with sodium chloride mostly decreases when infants enter early childhood, but liking for sodium chloride in appropriate food contexts such as soup and snack foods remains high. The increased acceptance and preference of sodium chloride rich foods coincides with infants' exposure to salty foods, and is therefore thought to be mostly a learned response. Children prefer higher salt concentrations than adults, but seem to be equally sensitive to salt taste. The addition of salt to foods increases children's consumption of those foods. However, children's liking for salt taste as such does not seem to correlate with children's consumption of salty foods. Decreasing the exposure to salty tasting foods during early infancy is recommended. Salt plays an important role in children's liking for a variety of foods. It is, however, questionable if children's liking for salt per se influences the intake of salty foods.
Collapse
Affiliation(s)
- Djin G Liem
- Centre for Advanced Sensory Science, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, VIC 3125, Australia.
| |
Collapse
|
44
|
Randall Sakai: A behavioral neuroscientist and neuroendocrinologist. Physiol Behav 2017; 178:10-12. [DOI: 10.1016/j.physbeh.2016.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/09/2016] [Accepted: 10/11/2016] [Indexed: 11/18/2022]
|
45
|
Joëls M, de Kloet ER. 30 YEARS OF THE MINERALOCORTICOID RECEPTOR: The brain mineralocorticoid receptor: a saga in three episodes. J Endocrinol 2017. [PMID: 28634266 DOI: 10.1530/joe-16-0660] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In 1968, Bruce McEwen discovered that 3H-corticosterone administered to adrenalectomised rats is retained in neurons of hippocampus rather than those of hypothalamus. This discovery signalled the expansion of endocrinology into the science of higher brain regions. With this in mind, our contribution highlights the saga of the brain mineralocorticoid receptor (MR) in three episodes. First, the precloning era dominated by the conundrum of two types of corticosterone-binding receptors in the brain, which led to the identification of the high-affinity corticosterone receptor as the 'promiscuous' MR cloned in 1987 by Jeff Arriza and Ron Evans in addition to the classical glucocorticoid receptor (GR). Then, the post-cloning period aimed to disentangle the function of the brain MR from that of the closely related GR on different levels of biological complexity. Finally, the synthesis section that highlights the two faces of brain MR: Salt and Stress. 'Salt' refers to the regulation of salt appetite, and reciprocal arousal, motivation and reward, by a network of aldosterone-selective MR-expressing neurons projecting from nucleus tractus solitarii (NTS) and circumventricular organs. 'Stress' is about the limbic-forebrain nuclear and membrane MRs, which act as a switch in the selection of the best response to cope with a stressor. For this purpose, activation of the limbic MR promotes selective attention, memory retrieval and the appraisal process, while driving emotional expressions of fear and aggression. Subsequently, rising glucocorticoid concentrations activate GRs in limbic-forebrain circuitry underlying executive functions and memory storage, which contribute in balance with MR-mediated actions to homeostasis, excitability and behavioural adaptation.
Collapse
Affiliation(s)
- Marian Joëls
- Department of Translational NeuroscienceBrain Center Rudolf Magnus, University Medical Center, Utrecht, The Netherlands
- University of GroningenUniversity Medical Center, Groningen, The Netherlands
| | - E Ronald de Kloet
- Division of EndocrinologyDepartment of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
46
|
Ueda K, Nishimoto M, Hirohama D, Ayuzawa N, Kawarazaki W, Watanabe A, Shimosawa T, Loffing J, Zhang MZ, Marumo T, Fujita T. Renal Dysfunction Induced by Kidney-Specific Gene Deletion of Hsd11b2 as a Primary Cause of Salt-Dependent Hypertension. Hypertension 2017; 70:111-118. [PMID: 28559392 DOI: 10.1161/hypertensionaha.116.08966] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 03/31/2017] [Accepted: 04/10/2017] [Indexed: 01/21/2023]
Abstract
Genome-wide analysis of renal sodium-transporting system has identified specific variations of Mendelian hypertensive disorders, including HSD11B2 gene variants in apparent mineralocorticoid excess. However, these genetic variations in extrarenal tissue can be involved in developing hypertension, as demonstrated in former studies using global and brain-specific Hsd11b2 knockout rodents. To re-examine the importance of renal dysfunction on developing hypertension, we generated kidney-specific Hsd11b2 knockout mice. The knockout mice exhibited systemic hypertension, which was abolished by reducing salt intake, suggesting its salt-dependency. In addition, we detected an increase in renal membrane expressions of cleaved epithelial sodium channel-α and T53-phosphorylated Na+-Cl- cotransporter in the knockout mice. Acute intraperitoneal administration of amiloride-induced natriuresis and increased urinary sodium/potassium ratio more in the knockout mice compared with those in the wild-type control mice. Chronic administration of amiloride and high-KCl diet significantly decreased mean blood pressure in the knockout mice, which was accompanied with the correction of hypokalemia and the resultant decrease in Na+-Cl- cotransporter phosphorylation. Accordingly, a Na+-Cl- cotransporter blocker hydrochlorothiazide significantly decreased mean blood pressure in the knockout mice. Chronic administration of mineralocorticoid receptor antagonist spironolactone significantly decreased mean blood pressure of the knockout mice along with downregulation of cleaved epithelial sodium channel-α and phosphorylated Na+-Cl- cotransporter expression in the knockout kidney. Our data suggest that kidney-specific deficiency of 11β-HSD2 leads to salt-dependent hypertension, which is attributed to mineralocorticoid receptor-epithelial sodium channel-Na+-Cl- cotransporter activation in the kidney, and provides evidence that renal dysfunction is essential for developing the phenotype of apparent mineralocorticoid excess.
Collapse
Affiliation(s)
- Kohei Ueda
- From the Division of Clinical Epigenetics, Research Center of Advanced Science and Technology, The University of Tokyo, Japan (K.U., M.N., D.H., N.A., W.K., A.W., T.M., T.F.); Department of Clinical Laboratory, International University of Health and Welfare, School of Medicine, Tokyo, Japan (T.S.); CREST, Japan Agency for Medical Research and Development (AMED), Tokyo (T.S., T.M., T.F.); National Center of Competence in Research 'Kidney Control of Homeostasis', Zurich, Switzerland (J.L.); Institute of Anatomy, University of Zurich, Switzerland (J.L.); Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (M.-Z.Z.); and Department of Nephrology and Endocrinology, National Defense Medical College, Saitama, Japan (A.W.).
| | - Mitsuhiro Nishimoto
- From the Division of Clinical Epigenetics, Research Center of Advanced Science and Technology, The University of Tokyo, Japan (K.U., M.N., D.H., N.A., W.K., A.W., T.M., T.F.); Department of Clinical Laboratory, International University of Health and Welfare, School of Medicine, Tokyo, Japan (T.S.); CREST, Japan Agency for Medical Research and Development (AMED), Tokyo (T.S., T.M., T.F.); National Center of Competence in Research 'Kidney Control of Homeostasis', Zurich, Switzerland (J.L.); Institute of Anatomy, University of Zurich, Switzerland (J.L.); Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (M.-Z.Z.); and Department of Nephrology and Endocrinology, National Defense Medical College, Saitama, Japan (A.W.)
| | - Daigoro Hirohama
- From the Division of Clinical Epigenetics, Research Center of Advanced Science and Technology, The University of Tokyo, Japan (K.U., M.N., D.H., N.A., W.K., A.W., T.M., T.F.); Department of Clinical Laboratory, International University of Health and Welfare, School of Medicine, Tokyo, Japan (T.S.); CREST, Japan Agency for Medical Research and Development (AMED), Tokyo (T.S., T.M., T.F.); National Center of Competence in Research 'Kidney Control of Homeostasis', Zurich, Switzerland (J.L.); Institute of Anatomy, University of Zurich, Switzerland (J.L.); Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (M.-Z.Z.); and Department of Nephrology and Endocrinology, National Defense Medical College, Saitama, Japan (A.W.)
| | - Nobuhiro Ayuzawa
- From the Division of Clinical Epigenetics, Research Center of Advanced Science and Technology, The University of Tokyo, Japan (K.U., M.N., D.H., N.A., W.K., A.W., T.M., T.F.); Department of Clinical Laboratory, International University of Health and Welfare, School of Medicine, Tokyo, Japan (T.S.); CREST, Japan Agency for Medical Research and Development (AMED), Tokyo (T.S., T.M., T.F.); National Center of Competence in Research 'Kidney Control of Homeostasis', Zurich, Switzerland (J.L.); Institute of Anatomy, University of Zurich, Switzerland (J.L.); Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (M.-Z.Z.); and Department of Nephrology and Endocrinology, National Defense Medical College, Saitama, Japan (A.W.)
| | - Wakako Kawarazaki
- From the Division of Clinical Epigenetics, Research Center of Advanced Science and Technology, The University of Tokyo, Japan (K.U., M.N., D.H., N.A., W.K., A.W., T.M., T.F.); Department of Clinical Laboratory, International University of Health and Welfare, School of Medicine, Tokyo, Japan (T.S.); CREST, Japan Agency for Medical Research and Development (AMED), Tokyo (T.S., T.M., T.F.); National Center of Competence in Research 'Kidney Control of Homeostasis', Zurich, Switzerland (J.L.); Institute of Anatomy, University of Zurich, Switzerland (J.L.); Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (M.-Z.Z.); and Department of Nephrology and Endocrinology, National Defense Medical College, Saitama, Japan (A.W.)
| | - Atsushi Watanabe
- From the Division of Clinical Epigenetics, Research Center of Advanced Science and Technology, The University of Tokyo, Japan (K.U., M.N., D.H., N.A., W.K., A.W., T.M., T.F.); Department of Clinical Laboratory, International University of Health and Welfare, School of Medicine, Tokyo, Japan (T.S.); CREST, Japan Agency for Medical Research and Development (AMED), Tokyo (T.S., T.M., T.F.); National Center of Competence in Research 'Kidney Control of Homeostasis', Zurich, Switzerland (J.L.); Institute of Anatomy, University of Zurich, Switzerland (J.L.); Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (M.-Z.Z.); and Department of Nephrology and Endocrinology, National Defense Medical College, Saitama, Japan (A.W.)
| | - Tatsuo Shimosawa
- From the Division of Clinical Epigenetics, Research Center of Advanced Science and Technology, The University of Tokyo, Japan (K.U., M.N., D.H., N.A., W.K., A.W., T.M., T.F.); Department of Clinical Laboratory, International University of Health and Welfare, School of Medicine, Tokyo, Japan (T.S.); CREST, Japan Agency for Medical Research and Development (AMED), Tokyo (T.S., T.M., T.F.); National Center of Competence in Research 'Kidney Control of Homeostasis', Zurich, Switzerland (J.L.); Institute of Anatomy, University of Zurich, Switzerland (J.L.); Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (M.-Z.Z.); and Department of Nephrology and Endocrinology, National Defense Medical College, Saitama, Japan (A.W.)
| | - Johannes Loffing
- From the Division of Clinical Epigenetics, Research Center of Advanced Science and Technology, The University of Tokyo, Japan (K.U., M.N., D.H., N.A., W.K., A.W., T.M., T.F.); Department of Clinical Laboratory, International University of Health and Welfare, School of Medicine, Tokyo, Japan (T.S.); CREST, Japan Agency for Medical Research and Development (AMED), Tokyo (T.S., T.M., T.F.); National Center of Competence in Research 'Kidney Control of Homeostasis', Zurich, Switzerland (J.L.); Institute of Anatomy, University of Zurich, Switzerland (J.L.); Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (M.-Z.Z.); and Department of Nephrology and Endocrinology, National Defense Medical College, Saitama, Japan (A.W.)
| | - Ming-Zhi Zhang
- From the Division of Clinical Epigenetics, Research Center of Advanced Science and Technology, The University of Tokyo, Japan (K.U., M.N., D.H., N.A., W.K., A.W., T.M., T.F.); Department of Clinical Laboratory, International University of Health and Welfare, School of Medicine, Tokyo, Japan (T.S.); CREST, Japan Agency for Medical Research and Development (AMED), Tokyo (T.S., T.M., T.F.); National Center of Competence in Research 'Kidney Control of Homeostasis', Zurich, Switzerland (J.L.); Institute of Anatomy, University of Zurich, Switzerland (J.L.); Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (M.-Z.Z.); and Department of Nephrology and Endocrinology, National Defense Medical College, Saitama, Japan (A.W.)
| | - Takeshi Marumo
- From the Division of Clinical Epigenetics, Research Center of Advanced Science and Technology, The University of Tokyo, Japan (K.U., M.N., D.H., N.A., W.K., A.W., T.M., T.F.); Department of Clinical Laboratory, International University of Health and Welfare, School of Medicine, Tokyo, Japan (T.S.); CREST, Japan Agency for Medical Research and Development (AMED), Tokyo (T.S., T.M., T.F.); National Center of Competence in Research 'Kidney Control of Homeostasis', Zurich, Switzerland (J.L.); Institute of Anatomy, University of Zurich, Switzerland (J.L.); Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (M.-Z.Z.); and Department of Nephrology and Endocrinology, National Defense Medical College, Saitama, Japan (A.W.)
| | - Toshiro Fujita
- From the Division of Clinical Epigenetics, Research Center of Advanced Science and Technology, The University of Tokyo, Japan (K.U., M.N., D.H., N.A., W.K., A.W., T.M., T.F.); Department of Clinical Laboratory, International University of Health and Welfare, School of Medicine, Tokyo, Japan (T.S.); CREST, Japan Agency for Medical Research and Development (AMED), Tokyo (T.S., T.M., T.F.); National Center of Competence in Research 'Kidney Control of Homeostasis', Zurich, Switzerland (J.L.); Institute of Anatomy, University of Zurich, Switzerland (J.L.); Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (M.-Z.Z.); and Department of Nephrology and Endocrinology, National Defense Medical College, Saitama, Japan (A.W.).
| |
Collapse
|
47
|
de Kloet ER, Joëls M. Brain mineralocorticoid receptor function in control of salt balance and stress-adaptation. Physiol Behav 2017; 178:13-20. [PMID: 28089704 DOI: 10.1016/j.physbeh.2016.12.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/14/2016] [Accepted: 12/20/2016] [Indexed: 12/13/2022]
Abstract
We will highlight in honor of Randall Sakai the peculiar characteristics of the brain mineralocorticoid receptor (MR) in its response pattern to the classical mineralocorticoid aldosterone and the naturally occurring glucocorticoids corticosterone and cortisol. Neurons in the nucleus tractus solitarii (NTS) and circumventricular organs express MR, which mediate selectively the action of aldosterone on salt appetite, sympathetic outflow and volume regulation. The MR-containing NTS neurons innervate limbic-forebrain circuits enabling aldosterone to also modulate reciprocally arousal, motivation, fear and reward. MR expressed in abundance in this limbic-forebrain circuitry, is target of cortisol and corticosterone in modulation of appraisal processes, memory performance and selection of coping strategy. Complementary to this role of limbic MR is the action mediated by the lower affinity glucocorticoid receptors (GR), which promote subsequently memory storage of the experience and facilitate behavioral adaptation. Current evidence supports the hypothesis that an imbalance between MR- and GR-mediated actions compromises resilience and adaptation to stress.
Collapse
Affiliation(s)
- Edo Ronald de Kloet
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - Marian Joëls
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands; University of Groningen, University Medical Center Groningen, The Netherlands
| |
Collapse
|
48
|
Jarvie BC, Palmiter RD. HSD2 neurons in the hindbrain drive sodium appetite. Nat Neurosci 2016; 20:167-169. [PMID: 27918529 DOI: 10.1038/nn.4451] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 11/02/2016] [Indexed: 12/11/2022]
Abstract
Sodium-depleted animals develop an appetite for aversive concentrations of sodium. Here we show that chemogenetic activation of aldosterone-sensitive neurons that express 11β-hydroxysteroid dehydrogenase type 2 (HSD2) in the nucleus of the solitary tract is sufficient to drive consumption of sodium-containing solutions in mice, independently of thirst or hunger. These HSD2-positive neurons are necessary for full expression of sodium appetite and have distinct downstream targets that are activated during sodium depletion.
Collapse
Affiliation(s)
- Brooke C Jarvie
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Richard D Palmiter
- Department of Biochemistry, University of Washington, Seattle, Washington, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA
| |
Collapse
|
49
|
Agbor LN, Ibeawuchi SRC, Hu C, Wu J, Davis DR, Keen HL, Quelle FW, Sigmund CD. Cullin-3 mutation causes arterial stiffness and hypertension through a vascular smooth muscle mechanism. JCI Insight 2016; 1:e91015. [PMID: 27882355 DOI: 10.1172/jci.insight.91015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cullin-3 (CUL3) mutations (CUL3Δ9) were previously identified in hypertensive patients with pseudohypoaldosteronism type-II (PHAII), but the mechanism causing hypertension and whether this is driven by renal tubular or extratubular mechanisms remains unknown. We report that selective expression of CUL3Δ9 in smooth muscle acts by interfering with expression and function of endogenous CUL3, resulting in impaired turnover of the CUL3 substrate RhoA, increased RhoA activity, and augmented RhoA/Rho kinase signaling. This caused vascular dysfunction and increased arterial pressure under baseline conditions and a marked increase in arterial pressure, collagen deposition, and vascular stiffness in response to a subpressor dose of angiotensin II, which did not cause hypertension in control mice. Inhibition of total cullin activity increased the level of CUL3 substrates cyclin E and RhoA, and expression of CUL3Δ9 decreased the level of the active form of endogenous CUL3 in human aortic smooth muscle cells. These data indicate that selective expression of the Cul3Δ9 mutation in vascular smooth muscle phenocopies the hypertension observed in Cul3Δ9 human subjects and suggest that mutations in CUL3 cause human hypertension in part through a mechanism involving smooth muscle dysfunction initiated by a loss of CUL3-mediated degradation of RhoA.
Collapse
Affiliation(s)
| | | | | | - Jing Wu
- Department of Pharmacology and
| | | | | | | | - Curt D Sigmund
- Department of Pharmacology and.,UIHC for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
50
|
Mansley MK, Ivy JR, Bailey MA. ISN Forefronts Symposium 2015: The Evolution of Hypertension-Old Genes, New Concepts. Kidney Int Rep 2016; 1:197-203. [PMID: 27722209 PMCID: PMC5044930 DOI: 10.1016/j.ekir.2016.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/26/2016] [Accepted: 08/02/2016] [Indexed: 12/17/2022] Open
Abstract
Hypertension is known as the “silent killer,” driving the global public health burden of cardiovascular and renal disease. Blood pressure homeostasis is intimately associated with sodium balance and the distribution of sodium between fluid compartments and within tissues. On a population level, most societies consume 10 times more salt that the 0.5 g required by physiological need. This high salt intake is strongly linked to hypertension and to the World Health Organization targeting a ∼30% relative reduction in mean population salt intake to arrest the global mortality due to cardiovascular disease. But how does a habitually high-salt diet cause blood pressure to rise? In this focused review, we discuss 2 “evolutionary medicine” concepts, presented at the ISN Forefront Meeting “Immunomodulation of Cardio-renal Function.” We first examine how ancestral variants in genes that conferred a selection advantage during early human development are now maladaptive. We then discuss the conservation of “renal” sodium transport processes across multiple organ systems, including the brain. These systems influence sodium appetite and can exert an often-overlooked effect on long-term blood pressure control.
Collapse
Affiliation(s)
- Morag K Mansley
- The British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - Jessica R Ivy
- The British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - Matthew A Bailey
- The British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|