1
|
Polonchuk L, Surija L, Lee MH, Sharma P, Liu Chung Ming C, Richter F, Ben-Sefer E, Rad MA, Mahmodi Sheikh Sarmast H, Shamery WA, Tran HA, Vettori L, Haeusermann F, Filipe EC, Rnjak-Kovacina J, Cox T, Tipper J, Kabakova I, Gentile C. Towards engineering heart tissues from bioprinted cardiac spheroids. Biofabrication 2021; 13. [PMID: 34265755 DOI: 10.1088/1758-5090/ac14ca] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 07/15/2021] [Indexed: 02/06/2023]
Abstract
Currentin vivoandin vitromodels fail to accurately recapitulate the human heart microenvironment for biomedical applications. This study explores the use of cardiac spheroids (CSs) to biofabricate advancedin vitromodels of the human heart. CSs were created from human cardiac myocytes, fibroblasts and endothelial cells (ECs), mixed within optimal alginate/gelatin hydrogels and then bioprinted on a microelectrode plate for drug testing. Bioprinted CSs maintained their structure and viability for at least 30 d after printing. Vascular endothelial growth factor (VEGF) promoted EC branching from CSs within hydrogels. Alginate/gelatin-based hydrogels enabled spheroids fusion, which was further facilitated by addition of VEGF. Bioprinted CSs contracted spontaneously and under stimulation, allowing to record contractile and electrical signals on the microelectrode plates for industrial applications. Taken together, our findings indicate that bioprinted CSs can be used to biofabricate human heart tissues for long termin vitrotesting. This has the potential to be used to study biochemical, physiological and pharmacological features of human heart tissue.
Collapse
Affiliation(s)
- Liudmila Polonchuk
- F Hoffmann-La Roche AG Research and Development Division, Pharmaceutical Sciences, Roche Innovation Center Basel, Grenzacherstrasse 124, Basel, Basel-Stadt CH-4070, Switzerland
| | - Lydia Surija
- The University of Sydney Faculty of Medicine and Health, Kolling Building, Kolling Institute, St Leonards, Sydney, NSW 2065, Australia
| | - Min Ho Lee
- The University of Sydney Faculty of Medicine and Health, Kolling Building, Kolling Institute, St Leonards, Sydney, NSW 2065, Australia
| | - Poonam Sharma
- The University of Sydney Faculty of Medicine and Health, Kolling Building, Kolling Institute, St Leonards, Sydney, NSW 2065, Australia.,The University of Newcastle Faculty of Health and Medicine, University Drive, Callaghan, NSW 2308, Australia.,University of Technology Sydney Faculty of Engineering and IT, Building 11, Level 10, Room 115, Ultimo, Sydney, NSW 2007, Australia
| | - Clara Liu Chung Ming
- University of Technology Sydney Faculty of Engineering and IT, Building 11, Level 10, Room 115, Ultimo, Sydney, NSW 2007, Australia
| | - Florian Richter
- The University of Sydney Faculty of Medicine and Health, Kolling Building, Kolling Institute, St Leonards, Sydney, NSW 2065, Australia
| | - Eitan Ben-Sefer
- University of Technology Sydney Faculty of Engineering and IT, Building 11, Level 10, Room 115, Ultimo, Sydney, NSW 2007, Australia
| | - Maryam Alsadat Rad
- University of Technology Sydney Faculty of Engineering and IT, Building 11, Level 10, Room 115, Ultimo, Sydney, NSW 2007, Australia
| | - Hadi Mahmodi Sheikh Sarmast
- University of Technology Sydney Faculty of Engineering and IT, Building 11, Level 10, Room 115, Ultimo, Sydney, NSW 2007, Australia
| | - Wafa Al Shamery
- University of Technology Sydney Faculty of Engineering and IT, Building 11, Level 10, Room 115, Ultimo, Sydney, NSW 2007, Australia
| | - Hien A Tran
- School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Laura Vettori
- University of Technology Sydney Faculty of Engineering and IT, Building 11, Level 10, Room 115, Ultimo, Sydney, NSW 2007, Australia
| | - Fabian Haeusermann
- F Hoffmann-La Roche AG Research and Development Division, Pharmaceutical Sciences, Roche Innovation Center Basel, Grenzacherstrasse 124, Basel, Basel-Stadt CH-4070, Switzerland
| | - Elysse C Filipe
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW 2010, Australia.,St Vincent Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | | | - Thomas Cox
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW 2010, Australia.,St Vincent Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Joanne Tipper
- University of Technology Sydney Faculty of Engineering and IT, Building 11, Level 10, Room 115, Ultimo, Sydney, NSW 2007, Australia
| | - Irina Kabakova
- University of Technology Sydney Faculty of Engineering and IT, Building 11, Level 10, Room 115, Ultimo, Sydney, NSW 2007, Australia
| | - Carmine Gentile
- The University of Sydney Faculty of Medicine and Health, Kolling Building, Kolling Institute, St Leonards, Sydney, NSW 2065, Australia.,University of Technology Sydney Faculty of Engineering and IT, Building 11, Level 10, Room 115, Ultimo, Sydney, NSW 2007, Australia
| |
Collapse
|
3
|
Huang J, Fu H, Li C, Dai J, Zhang Z. Recent advances in cell-laden 3D bioprinting: materials, technologies and applications. ACTA ACUST UNITED AC 2017. [DOI: 10.2217/3dp-2017-0010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fabrication of 3D scaffolds with patient-specific designs, high structural and component complexity, and rapid on-demand production at a low-cost by printing technique has attracted ever-increasing interests in tissue engineering. Cell-laden 3D bioprinting offers good prospects for future organ transplantation. Compared with nonbiological 3D printing, cell-laden 3D bioprinting involves more complex factors, including the choice of printing materials, the strategy of gelling, cell viability and technical challenges. Although cell-populated 3D bioprinting has so many complex factors, it has proven to be a useful and exciting tool with wide potential applications in regenerative medicine to generate a variety of transplantable tissues. In this review, we first overview the bioprinting materials, gelling strategies and some major applications of cell-laden 3D bioprinting, with main focus on the recent advances and current challenges of the field. Finally, we propose some future directions of the cell-populated 3D bioprinting in tissue engineering and regenerative medicine. [Formula: see text] In this review, we first overview the bioprinting materials, gelling strategies and some major applications of cell-populated 3D bioprinting, with main focus on the recent advances and current challenges of the field. Finally, we propose some future directions of the cell-laden 3D bioprinting in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Jie Huang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech & Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Han Fu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech & Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics & Developmental Biology, Chinese Academy of Sciences, Beijing 100190, China
| | - Chong Li
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech & Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jianwu Dai
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech & Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zhijun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech & Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|