1
|
Zhang FL, Li DQ. Targeting Chromatin-Remodeling Factors in Cancer Cells: Promising Molecules in Cancer Therapy. Int J Mol Sci 2022; 23:12815. [PMID: 36361605 PMCID: PMC9655648 DOI: 10.3390/ijms232112815] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 03/28/2024] Open
Abstract
ATP-dependent chromatin-remodeling complexes can reorganize and remodel chromatin and thereby act as important regulator in various cellular processes. Based on considerable studies over the past two decades, it has been confirmed that the abnormal function of chromatin remodeling plays a pivotal role in genome reprogramming for oncogenesis in cancer development and/or resistance to cancer therapy. Recently, exciting progress has been made in the identification of genetic alteration in the genes encoding the chromatin-remodeling complexes associated with tumorigenesis, as well as in our understanding of chromatin-remodeling mechanisms in cancer biology. Here, we present preclinical evidence explaining the signaling mechanisms involving the chromatin-remodeling misregulation-induced cancer cellular processes, including DNA damage signaling, metastasis, angiogenesis, immune signaling, etc. However, even though the cumulative evidence in this field provides promising emerging molecules for therapeutic explorations in cancer, more research is needed to assess the clinical roles of these genetic cancer targets.
Collapse
Affiliation(s)
- Fang-Lin Zhang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Da-Qiang Li
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
2
|
Geng B, Zhu Y, Yuan Y, Bai J, Dou Z, Sui A, Luo W. Artesunate Suppresses Choroidal Melanoma Vasculogenic Mimicry Formation and Angiogenesis via the Wnt/CaMKII Signaling Axis. Front Oncol 2021; 11:714646. [PMID: 34476217 PMCID: PMC8406848 DOI: 10.3389/fonc.2021.714646] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/26/2021] [Indexed: 01/14/2023] Open
Abstract
Angiogenesis and vasculogenic mimicry (VM) are considered to be the main processes to ensure tumor blood supply during the proliferation and metastasis of choroidal melanoma (CM). The traditional antimalarial drug artesunate (ART) has some potential anti-CM effects; however, the underlying mechanisms remain unclarified. Recent studies have shown that the Wnt5a/calmodulin-dependent kinase II (CaMKII) signaling pathway has a close correlation with angiogenesis and VM formation. This study demonstrated that ART eliminated VM formation by inhibiting the aforementioned signaling pathway in CM cells. The microvessel sprouting of the mouse aortic rings and the microvessel density of chicken chorioallantoic membrane (CAM) decreased significantly after ART treatment. VM formation assay and periodic acid schiff (PAS) staining revealed that ART inhibited VM formation in CM. Moreover, ART downregulated the expression levels of the angiogenesis-related proteins vascular endothelial growth factor receptor (VEGFR) 2, platelet-derived growth factor receptor (PDGFR) and vascular endothelial growth factor (VEGF) A, and VM-related proteins ephrin type-A receptor (EphA) 2 and vascular endothelial (VE)-cadherin. The expression of hypoxia-inducible factor (HIF)-1α, Wnt5a, and phosphorylated CaMKII was also downregulated after ART treatment. In addition, we further demonstrated that ART inhibited the proliferation, migration, and invasion of OCM-1 and C918 cells. Collectively, our results suggested that ART inhibited angiogenesis and VM formation of choroidal melanoma likely by regulating the Wnt5a/CaMKII signaling pathway. These findings further supported the feasibility of ART for cancer therapy.
Collapse
Affiliation(s)
- Bochao Geng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuanzhang Zhu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yingying Yuan
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jingyi Bai
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhizhi Dou
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Aihua Sui
- Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenjuan Luo
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Kong C, Lyu D, He C, Li R, Lu Q. Dioscin elevates lncRNA MANTIS in therapeutic angiogenesis for heart diseases. Aging Cell 2021; 20:e13392. [PMID: 34081836 PMCID: PMC8282240 DOI: 10.1111/acel.13392] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/13/2021] [Accepted: 05/08/2021] [Indexed: 01/16/2023] Open
Abstract
Dioscin has been widely used in clinics for coronary artery disease (CAD) treatment for years in China. However, the underlying mechanism for Dioscin‐mediated cardioprotective effect has not been elucidated. Here, we showed that Dioscin significantly rescues the cardiac function in mouse model of myocardial infarction (MI), accompanied by the reduction of cardiac fibrosis and apoptosis, resulting from elevated angiogenesis. Mechanistically, Dioscin promotes the proliferation and migration of hypoxic endothelial cells via the up‐regulation of lncRNA MANTIS, which serves as a scaffolding lncRNA within a chromatin remodeling complex. Meanwhile, it enables pol II binding to the transcription start sites, which leads to induced expression of angiogenesis‐related genes, including SOX18, SMAD6, and COUP‐TFII. Conversely, IncRNA MANTIS silencing prevents Dioscin‐induced migration and angiogenesis in hypoxic endothelial cells. Taken together, these data provide new insights that clarifies the cardioprotective effects of Dioscin against myocardial infarcted injury and confirms the effect on angiogenic activity of endothelial cells. This will build a solid theoretical basis for clinical therapeutic strategies.
Collapse
Affiliation(s)
- Chuiyu Kong
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine School of Pharmacy Nanjing Medical University Nanjing China
| | - Dayin Lyu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine School of Pharmacy Nanjing Medical University Nanjing China
| | - Chang He
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine School of Pharmacy Nanjing Medical University Nanjing China
| | - Rui Li
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine School of Pharmacy Nanjing Medical University Nanjing China
| | - Qiulun Lu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine School of Pharmacy Nanjing Medical University Nanjing China
| |
Collapse
|
4
|
Li Y, Zhang J, Sun H, Chen Y, Li W, Yu X, Zhao X, Zhang L, Yang J, Xin W, Jiang Y, Wang G, Shi W, Zhu D. lnc-Rps4l-encoded peptide RPS4XL regulates RPS6 phosphorylation and inhibits the proliferation of PASMCs caused by hypoxia. Mol Ther 2021; 29:1411-1424. [PMID: 33429084 PMCID: PMC8058491 DOI: 10.1016/j.ymthe.2021.01.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/29/2020] [Accepted: 01/02/2021] [Indexed: 02/06/2023] Open
Abstract
Pulmonary artery smooth muscle cells (PASMCs) proliferation caused by hypoxia is an important pathological process of pulmonary hypertension (PH). Prevention of PASMCs proliferation can effectively reduce PH mortality. Long non-coding RNAs (lncRNAs) are involved in the proliferation process. Recent evidence has demonstrated that functional peptides encoded by lncRNAs play important roles in cell pathophysiological process. Our previous study has demonstrated that lnc-Rps4l with high coding ability mediates the PASMCs proliferation under hypoxic conditions. We hypothesize in this study that a lnc-Rps4l-encoded peptide is involved in hypoxic-induced PASMCs proliferation. The presence of peptide 40S ribosomal protein S4 X isoform-like (RPS4XL) encoded by lnc-Rps4l in PASMCs under hypoxic conditions was confirmed by bioinformatics, immunofluorescence, and immunohistochemistry. Inhibition of proliferation by the peptide RPS4XL was demonstrated in hypoxic PASMCs by MTT, bromodeoxyuridine (BrdU) incorporation, and immunofluorescence assays. By using the bioinformatics, coimmunoprecipitation (coIP), and mass spectrometry, RPS6 was identified to interact with RPS4XL. Furthermore, lnc-Rps4l-encoded peptide RPS4XL inhibited the RPS6 process via binding to RPS6 and inhibiting RPS6 phosphorylation at p-RPS6 (Ser240+Ser244) phosphorylation site. These results systematically elucidate the role and regulatory network of Rps4l-encoded peptide RPS4XL in PASMCs proliferation. These discoveries provide potential targets for early diagnosis and a leading compound for treatment of hypoxic PH.
Collapse
Affiliation(s)
- Yiying Li
- Biopharmaceutical Key Laboratory of Heilongjiang Province, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province 150081, P.R. China
| | - Junting Zhang
- Biopharmaceutical Key Laboratory of Heilongjiang Province, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province 150081, P.R. China
| | - Hanliang Sun
- Biopharmaceutical Key Laboratory of Heilongjiang Province, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province 150081, P.R. China
| | - Yujie Chen
- Biopharmaceutical Key Laboratory of Heilongjiang Province, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province 150081, P.R. China
| | - Wendi Li
- College of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang Province 150081, P.R. China
| | - Xiufeng Yu
- Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, P.R. China
| | - Xijuan Zhao
- Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, P.R. China
| | - Lixin Zhang
- Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, P.R. China
| | - Jianfeng Yang
- College of Pharmacy, Harbin Medical University, Daqing 163319, P.R. China
| | - Wei Xin
- Biopharmaceutical Key Laboratory of Heilongjiang Province, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province 150081, P.R. China
| | - Yuan Jiang
- Biopharmaceutical Key Laboratory of Heilongjiang Province, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province 150081, P.R. China
| | - Guilin Wang
- College of Medical Laboratory Science and Technology, Harbin Medical University, Daqing, Heilongjiang Province 163319, P.R. China
| | - Wenbin Shi
- College of Medical Laboratory Science and Technology, Harbin Medical University, Daqing, Heilongjiang Province 163319, P.R. China
| | - Daling Zhu
- Biopharmaceutical Key Laboratory of Heilongjiang Province, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province 150081, P.R. China; Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, P.R. China.
| |
Collapse
|
5
|
Ahmadi S, Zobeiri M, Bradburn S. Molecular mechanisms underlying actions of certain long noncoding RNAs in Alzheimer's disease. Metab Brain Dis 2020; 35:681-693. [PMID: 32185592 DOI: 10.1007/s11011-020-00564-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/05/2020] [Indexed: 01/08/2023]
Abstract
Long non-coding RNAs (lncRNAs) are a group of non-protein coding RNAs that have more than 200 nucleotides. LncRNAs play an important role in the regulation of protein-coding genes at the transcriptional and post-transcriptional levels. They are found in most organs, with a high prevalence in the central nervous system. Accumulating data suggests that lncRNAs are involved in various neurodegenerative disorders, including the onset and progression of Alzheimer's disease (AD). Recent insights suggest lncRNAs, such as BACE1-AS, 51A, 17A, NDM29 and AS-UCHL1, are dysregulated in AD tissues. Furthermore, there are ongoing efforts to explore the clinical usability of lncRNAs as biomarkers in the disease. In this review, we explore the mechanisms by which aberrant expressions of the most studied lncRNAs contribute to the neuropathologies associated with AD, including amyloid β plaques and neurofibrillary tangles. Understanding the molecular mechanisms of lncRNAs in patients with AD will reveal novel diagnosis strategies and more effective therapeutic targets.
Collapse
Affiliation(s)
- Shamseddin Ahmadi
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran.
| | - Mohammad Zobeiri
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Steven Bradburn
- Bioscience Research Centre, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
6
|
Li Y, Zhang X, Zheng Q, Zhang Y, Ma Y, Zhu C, Yang L, Peng X, Wang Q, Wang B, Meng X, Li H, Liu J. YAP1 Inhibition in HUVECs Is Associated with Released Exosomes and Increased Hepatocarcinoma Invasion and Metastasis. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 21:86-97. [PMID: 32516736 PMCID: PMC7281784 DOI: 10.1016/j.omtn.2020.05.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/04/2020] [Accepted: 05/18/2020] [Indexed: 12/21/2022]
Abstract
Hepatocellular carcinoma is one of the most common gastrointestinal malignancies. Anti-angiogenesis therapies have recently demonstrated promise in the treatment of malignancies, although early treatment benefits may be accompanied by metastasis over time. Additional and more effective anti-angiogenic treatment modalities are therefore needed. We previously found that Yes-associated protein 1 (YAP1) expression is increased in hepatocellular carcinoma (HCC), particularly around tumor-associated blood vessels, suggesting a role in angiogenesis. The YAP1 inhibitor verteporfin is presently in anti-angiogenic clinical trials for the treatment of various cancers. Depleted YAP1 from vascular endothelial cells effectively reduced proliferation and tube formation, validating its utility as an anti-angiogenesis target. We also showed that YAP1 depletion or inhibition in vascular endothelial cells leads to increased release of exosomes containing the long non-coding RNA (lncRNA) MALAT1 into the tumor microenvironment. Direct exosomal transfer of MALAT1 to hepatic cells leads to increased hepatic cell invasion and migration via activation of extracellular signal-regulated kinase 1/2 (ERK1/2) signaling. These observations may explain the occurrence of distant tumor metastasis with YAP1-associated anti-angiogenic therapy over time. It provides insight into new pathways and treatment paradigms that may be targeted to increase the long-term success of anti-angiogenic therapies.
Collapse
Affiliation(s)
- Yan Li
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; Department of Radiation Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xiaodong Zhang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Qianqian Zheng
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yijun Zhang
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yingbo Ma
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Chen Zhu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Qi Wang
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Biao Wang
- Department of Biochemistry and Molecular Biology, Academy of life sciences of China Medical University, Shenyang, China
| | - Xin Meng
- Department of Biochemistry and Molecular Biology, Academy of life sciences of China Medical University, Shenyang, China
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Jingang Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| |
Collapse
|
7
|
Noncoding RNAs versus Protein Biomarkers in Cardiovascular Disease. Trends Mol Med 2020; 26:583-596. [PMID: 32470385 DOI: 10.1016/j.molmed.2020.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/23/2020] [Accepted: 02/06/2020] [Indexed: 12/31/2022]
Abstract
The development of more sensitive protein biomarker assays results in continuous improvements in detectability, extending the range of clinical applications to the detection of subclinical cardiovascular disease (CVD). However, these efforts have not yet led to improvements in risk assessment compared with existing risk scores. Noncoding RNAs (ncRNAs) have been assessed as biomarkers, and miRNAs have attracted most attention. More recently, other ncRNA classes have been identified, including long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs). Here, we compare emerging ncRNA biomarkers in the cardiovascular field with protein biomarkers for their potential in clinical application, focusing on myocardial injury.
Collapse
|
8
|
Wang T, Liu Y, Wang Y, Huang X, Zhao W, Zhao Z. Long non-coding RNA XIST promotes extracellular matrix degradation by functioning as a competing endogenous RNA of miR-1277-5p in osteoarthritis. Int J Mol Med 2019; 44:630-642. [PMID: 31198977 PMCID: PMC6605283 DOI: 10.3892/ijmm.2019.4240] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 05/23/2019] [Indexed: 12/15/2022] Open
Abstract
Osteoarthritis (OA) is a common and troublesome disease among the elderly, and is characterized by extracellular matrix (ECM) degradation. The function of the long non‑coding RNA X‑inactive‑specific transcript (XIST) and its working mechanism in ECM degradation remains unclear. In the present study, XIST was revealed to be upregulated in OA specimens and in articular chondrocytes (ACs) derived from OA tissue (AC/OA) and interleukin‑1β (IL‑1β)‑treated ACs. Loss‑of‑function experiments demonstrated that downregulation of XIST suppressed the degradation of the ECM in AC/OA and AC/IL‑1β‑5.0 cells. Furthermore, XIST, matrix metalloproteinase 13 (MMP‑13) and ADAM metallopeptidase with thrombospondin type 1 motif 5 (ADAMTS5) were identified as targets of microRNA (miR)‑1277‑5p, and the reciprocal inhibitive effect between XIST and miR‑1277‑5p was elucidated. Furthermore, the role of XIST in ECM degradation was confirmed to be functioning as a competing endogenous RNA (ceRNA) of miR‑1277‑5p. Finally, the protective effect of the downregulation of XIST on ECM degradation was verified in an OA rat model. In conclusion, the present study suggests that XIST promotes MMP‑13 and ADAMTS5 expression, indicating ECM degradation, by functioning as a ceRNA of miR‑1277‑5p in OA. The present study proposed a novel potential target with a new working mechanism in molecular treating of OA.
Collapse
Affiliation(s)
- Tao Wang
- 4th Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Yize Liu
- 4th Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Yong Wang
- 4th Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Xuyang Huang
- 2nd Department of Neurology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Wei Zhao
- 4th Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Zhonghai Zhao
- Department of Rehabilitation, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| |
Collapse
|
9
|
Zampetaki A, Albrecht A, Steinhofel K. Long Non-coding RNA Structure and Function: Is There a Link? Front Physiol 2018; 9:1201. [PMID: 30197605 PMCID: PMC6117379 DOI: 10.3389/fphys.2018.01201] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/10/2018] [Indexed: 01/12/2023] Open
Abstract
RNA has emerged as the prime target for diagnostics, therapeutics and the development of personalized medicine. In particular, the non-coding RNAs (ncRNAs) that do not encode proteins, display remarkable biochemical versatility. They can fold into complex structures and interact with proteins, DNA and other RNAs, modulating the activity, DNA targets or partners of multiprotein complexes. Thus, ncRNAs confer regulatory plasticity and represent a new layer of epigenetic control that is dysregulated in disease. Intriguingly, for long non-coding RNAs (lncRNAs, >200 nucleotides length) structural conservation rather than nucleotide sequence conservation seems to be crucial for maintaining their function. LncRNAs tend to acquire complex secondary and tertiary structures and their functions only impose very subtle sequence constraints. In the present review we will discuss the biochemical assays that can be employed to determine the lncRNA structural configurations. The implications and challenges of linking function and lncRNA structure to design novel RNA therapeutic approaches will also be analyzed.
Collapse
Affiliation(s)
- Anna Zampetaki
- King's British Heart Foundation Centre, King's College London, London, United Kingdom
| | - Andreas Albrecht
- Faculty of Science and Technology, Middlesex University, London, United Kingdom
| | | |
Collapse
|
10
|
Long noncoding RNA lncHERG promotes cell proliferation, migration and invasion in glioblastoma. Oncotarget 2017; 8:108031-108041. [PMID: 29296221 PMCID: PMC5746123 DOI: 10.18632/oncotarget.22446] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 10/27/2017] [Indexed: 01/05/2023] Open
Abstract
Long noncoding RNAs have recently been proven to regulate tumorgenesis in many cancers. However, their biological functions in glioblastoma remain largely unknown. Here we found an uncharacteristic lncRNA lncHERG that is highly expressed in human glioblastoma (GBM). We found that lncHERG knockdown inhibited cell proliferation, migration and invasion in glioblastoma in vitro and in vivo. Moreover, the higher expression of lncHERG in patients with glioblastoma indicated lower survival rate and poorer prognosis. Mechanistically, we found that lncHERG can serve as a sponge for miR-940 which is a tumor suppressor in cervical cancer and whose function has not been defined in glioblastoma. We showed that miR-940 was down-regulated in glioblastoma tissues compared to peritumor tissues. LncHERG knockdown impaired cell proliferation, migration and invasion while inhibition of miR-940 in the meantime reversed this trend. In conclusion, our study highlights the essential role of lncHERG in glioblastoma by acting as a competing endogenous RNA of miR-940, which may serve as a new prognostic biomarker in glioblastoma.
Collapse
|