1
|
Liu H, Chen R, Wu K, Zhang Y, Wang X, Zhou N. Ratiometric fluorescent biosensor for detection and real-time imaging of nitric oxide in mitochondria of living cells. Biosens Bioelectron 2024; 248:116000. [PMID: 38183790 DOI: 10.1016/j.bios.2024.116000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/20/2023] [Accepted: 01/01/2024] [Indexed: 01/08/2024]
Abstract
Nitric oxide (NO), a ubiquitous gaseous messenger, plays critical roles in various pathological and physiological progresses. The abnormal levels of NO in organisms are closely related to a large number of maladies. Mitochondria are the main area that produce NO in mammalian cells. Thus, detecting and real-time imaging of NO in mitochondria is of great significance for exploring the biological functions of NO. Herein, a ratiometric fluorescent biosensor (Mito-GNP-pNO520) is developed for sensitive and selective detection and real-time imaging of NO in mitochondria of living cells. The detection is achieved through the fluorescence off-on response of Mito-GNP-pNO520 toward NO. This biosensor shows excellent characteristics, such as high sensitivity toward NO with a low detection limit of 0.25 nM, exclusive selectivity to NO without interference from other substances, good biological stability and low cytotoxicity. More importantly, the biosensor is specifically located in mitochondria, enabling the detection and real-time imaging of endogenous and exogenous NO in mitochondria of living cells. Therefore, our biosensor offers a new approach for dynamic detecting and real-time imaging of NO in subcellular organelles, providing an opportunity to explore new biological effects of NO.
Collapse
Affiliation(s)
- Hao Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Rou Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Kexin Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Yuting Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Xiaoli Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China.
| | - Nandi Zhou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| |
Collapse
|
2
|
Chen PL, Huang KT, Chen LY, Hsu K. Erythroid anion Exchanger-1 (band 3) transports nitrite for nitric oxide metabolism. Free Radic Biol Med 2024; 210:237-245. [PMID: 38042224 DOI: 10.1016/j.freeradbiomed.2023.11.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Nitrite (NO2-) interacts with hemoglobin (Hb) in various ways to regulate blood flow. During hypoxic vasodilation, nitrite is reduced by deoxyHb to yield nitric oxide (NO). While NO, a hydrophobic gas, could freely diffuse across the cell membrane, how the reactant nitrite anion could permeate through the red blood cell (RBC) membrane remains unclear. We hypothesized that Cl-/HCO3- anion exchanger-1 (AE1; band 3) abundantly embedded in the RBC membrane could transport NO2-, as HCO3- and NO2- exhibit similar hydrated radii. Here, we monitored NO/N2O3 generated from NO2- inside human RBCs by DAF-FM fluorophore. NO2-, not NO3-, increased intraerythrocytic DAF-FM fluorescence. To test the involvement of AE1-mediated transport in intraerythrocytic NO/N2O3 production from nitrite, we lowered Cl- or HCO3- in the RBC-incubating buffer by 20 % and indeed observed slower rise of the DAF-FM fluorescence. Anti-extracellular AE1, but not anti-intracellular AE1 antibodies, reduced the rates of NO formation from nitrite. The AE1 blocker DIDS similarly reduced the rates of NO/N2O3 production from nitrite in a dose-dependent fashion, confirming that nitrite entered RBCs through AE1. Nitrite inside the RBCs reacted with both deoxyHb and oxyHb, as evidenced by 6.1 % decrease in deoxyHb, 14.7 % decrease in oxyHb, and 20.7 % increase in methemoglobin (metHb). Lowering Cl- in the milieu equally delayed metHb production from nitrite-oxyHb and nitrite-deoxyHb reactions. Thus, AE1-mediated NO2- transport facilitates NO2--Hb reactions inside the red cells, supporting NOx metabolism in circulation.
Collapse
Affiliation(s)
- Pin-Lung Chen
- The Laboratory of Immunogenetics, Department of Medical Research, MacKay Memorial Hospital, Tamsui, New Taipei City, Taiwan
| | - Kuang-Tse Huang
- Department of Chemical Engineering, National Chung-Cheng University, Chia-Yi, Taiwan
| | - Li-Yang Chen
- The Laboratory of Immunogenetics, Department of Medical Research, MacKay Memorial Hospital, Tamsui, New Taipei City, Taiwan
| | - Kate Hsu
- The Laboratory of Immunogenetics, Department of Medical Research, MacKay Memorial Hospital, Tamsui, New Taipei City, Taiwan; MacKay Junior College of Medicine, Nursing, and Management, New Taipei City, Taiwan; Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan.
| |
Collapse
|
3
|
Zhou Y, Wang T, Fan H, Liu S, Teng X, Shao L, Shen Z. Research Progress on the Pathogenesis of Aortic Aneurysm and Dissection in Metabolism. Curr Probl Cardiol 2024; 49:102040. [PMID: 37595858 DOI: 10.1016/j.cpcardiol.2023.102040] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Aortic aneurysm and dissection are complicated diseases having both high prevalence and mortality. It is usually diagnosed at advanced stages and posing diagnostic and therapeutic challenges due to the limitations of current detecting methods for aortic dissection used in clinics. Metabonomics demonstrated its great potential capability in the early diagnosis and personalized treatment of several diseases. Emerging evidence suggests that metabolic disorders including amino acid metabolism, glycometabolism, and lipid metabolism disturbance are involved in the pathogenesis of aortic aneurysm and dissection by affecting multiple functional aortic cells. The purpose of this review is to provide new insights into the metabolism alterations and their related regulatory mechanisms with a focus on recent advances and findings and provide a theoretical basis for the diagnosis, prevention, and drug development for aortic aneurysm and dissection.
Collapse
Affiliation(s)
- Yihong Zhou
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Tingyu Wang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Hongyou Fan
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Shan Liu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Xiaomei Teng
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Lianbo Shao
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China.
| |
Collapse
|
4
|
Dobrynina LA, Shabalina AA, Shamtieva KV, Kremneva EI, Zabitova MR, Krotenkova MV, Burmak AG, Gnedovskaya EV. L-Arginine-eNOS-NO Functional System in Brain Damage and Cognitive Impairments in Cerebral Small Vessel Disease. Int J Mol Sci 2023; 24:14537. [PMID: 37833984 PMCID: PMC10572456 DOI: 10.3390/ijms241914537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/23/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
Cerebral small vessel disease (CSVD) is a significant cause of cognitive impairment (CI), disability, and mortality. The insufficient effectiveness of antihypertensive therapy in curbing the disease justifies the search for potential targets for modifying therapy and indicators supporting its use. Using a laser-assisted optical rotational cell analyzer (LORRCA, Mechatronics, The Netherlands), the rheological properties and deformability of erythrocytes before and after incubation with 10 μmol/L of L-arginine, the nitric oxide (NO) donor, blood-brain barrier (BBB) permeability assessed by dynamic contrast-enhanced MRI, clinical, and MRI signs were studied in 73 patients with CSVD (48 women, mean age 60.1 ± 6.5 years). The control group consisted of 19 volunteers (14 women (73.7%), mean age 56.9 ± 6.4 years). The erythrocyte disaggregation rate (y-dis) after incubation with L-arginine showed better performance than other rheological characteristics in differentiating patients with reduced NO bioavailability/NO deficiency by its threshold values. Patients with y-dis > 113 s-1 had more severe CI, arterial hypertension, white matter lesions, and increased BBB permeability in grey matter and normal-appearing white matter (NAWM). A test to assess changes in the erythrocyte disaggregation rate after incubation with L-arginine can be used to identify patients with impaired NO bioavailability. L-arginine may be part of a therapeutic strategy for CSVD with CI.
Collapse
Affiliation(s)
| | | | | | | | - Maryam R. Zabitova
- Research Center of Neurology, 80 Volokolamskoe Shosse, 125367 Moscow, Russia; (L.A.D.); (A.A.S.); (K.V.S.); (E.I.K.); (M.V.K.); (A.G.B.); (E.V.G.)
| | | | | | | |
Collapse
|
5
|
Dobrynina LA, Shabalina AA, Shamtieva KV, Kremneva EI, Zabitova MR, Burmak AG, Byrochkina AA, Akhmetshina YI, Gnedovskaya EV, Krotenkova MV. [Nitric oxide availability in cerebral microangiopathy]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:47-54. [PMID: 37682095 DOI: 10.17116/jnevro202312308247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
OBJECTIVE To develop a test of individual nitric oxide (NO) availability based on changes in erythrocyte rheological properties after incubation with a NO donor and to evaluate the role of these disorders in brain damage and development of cognitive impairment (CI) in cerebral small vessel disease (cSVD). MATERIAL AND METHODS In 73 cSVD patients (48 (65.8%) women, mean age 60.1±6.5), the rheological properties of erythrocytes before and after incubation with 10 μmol/L L-arginine-NO donor were evaluated using a laser-optical rotating cell analyzer, and the blood-brain barrier (BBB) permeability by MRI-T1 dynamic contrast. RESULTS Among the studied parameters of erythrocyte rheological properties, the best characteristic by ROC analysis was the rate of erythrocyte disaggregation (y-dis) after incubation with L-arginine (area under the curve 0.733 (0.609-0.856), sensitivity 67%, specificity 79%). Patients with a y-dis threshold >113 sec-1 had more severe CI, arterial hypertension, white matter lesions, and increased BBB permeability in gray matter and normal-appearing white matter. CONCLUSION The prolonged rate of erythrocyte disaggregation in cSVD patients after incubation with L-arginine indicates the risk for disease progression due to decreased NO bioavailability/disruption of the functional L-arginine-eNOS-NO system. This test can be used to assess individual NO bioavailability and potentially identify indications for modifying therapy with NO donors such as L-arginine. Clinical trials are needed to standardize and evaluate the efficacy of NO donor therapy in patients with cSVD and CI.
Collapse
Affiliation(s)
| | | | | | | | | | - A G Burmak
- Research Center of Neurology, Moscow, Russia
| | | | | | | | | |
Collapse
|