2
|
Wang J, Verkerk AO, Wilders R, Zhang Y, Zhang K, Prakosa A, Rivaud MR, Marsman EMJ, Boender AR, Klerk M, Fokkert L, de Jonge B, Neef K, Kirzner OF, Bezzina CR, Remme CA, Tan HL, Boukens BJ, Devalla HD, Trayanova NA, Christoffels VM, Barnett P, Boink GJJ. SCN10A-short gene therapy to restore conduction and protect against malignant cardiac arrhythmias. Eur Heart J 2025; 46:1747-1762. [PMID: 39973098 PMCID: PMC12055233 DOI: 10.1093/eurheartj/ehaf053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/27/2024] [Accepted: 01/23/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND AND AIMS Life-threatening arrhythmias are a well-established consequence of reduced cardiac sodium current (INa). Gene therapy approaches to increase INa have demonstrated potential benefits to prevent arrhythmias. However, the development of such therapies is hampered by the large size of sodium channels. In this study, SCN10A-short (S10s), a short transcript encoding the carboxy-terminal domain of the human neuronal sodium channel, was evaluated as a gene therapy target to increase INa and prevent arrhythmias. METHODS Adeno-associated viral vector overexpressing S10s was injected into wild type and Scn5a-haploinsufficient mice on which patch-clamp studies, optical mapping, electrocardiogram analyses, and ischaemia reperfusion were performed. In vitro and in silico studies were conducted to further explore the effect of S10s gene therapy in the context of human hearts. RESULTS Cardiac S10s overexpression increased cellular INa, maximal action potential upstroke velocity, and action potential amplitude in Scn5a-haploinsufficient cardiomyocytes. S10s gene therapy rescues conduction slowing in Scn5a-haploinsufficient mice and prevented ventricular tachycardia induced by ischaemia-reperfusion in wild type mice. S10s overexpression increased maximal action potential upstroke velocity in human inducible pluripotent stem cell-derived cardiomyocytes and prevented inducible arrhythmias in simulated human heart models. CONCLUSIONS S10s gene therapy may be effective to treat cardiac conduction abnormalities and associated arrhythmias.
Collapse
Affiliation(s)
- Jianan Wang
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
| | - Arie O Verkerk
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
- Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
| | - Ronald Wilders
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
| | - Yingnan Zhang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kelly Zhang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Adityo Prakosa
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Mathilde R Rivaud
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
| | - E Madelief J Marsman
- Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
| | - Arie R Boender
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
- PacingCure B.V., Roetersstraat 35, Amsterdam 1018 WB, The Netherlands
| | - Mischa Klerk
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
| | - Lianne Fokkert
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
| | - Berend de Jonge
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
| | - Klaus Neef
- PacingCure B.V., Roetersstraat 35, Amsterdam 1018 WB, The Netherlands
- Netherlands Heart Institute, Moreelsepark 1, Utrecht 3511 EP, The Netherlands
| | - Osne F Kirzner
- PacingCure B.V., Roetersstraat 35, Amsterdam 1018 WB, The Netherlands
- Department of Anaesthesiology, Amsterdam University Medical Centers, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| | - Connie R Bezzina
- Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
| | - Carol Ann Remme
- Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
| | - Hanno L Tan
- Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
- PacingCure B.V., Roetersstraat 35, Amsterdam 1018 WB, The Netherlands
- Netherlands Heart Institute, Moreelsepark 1, Utrecht 3511 EP, The Netherlands
| | - Bastiaan J Boukens
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, Maastricht 6229 ER, The Netherlands
| | - Harsha D Devalla
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
| | - Natalia A Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
| | - Phil Barnett
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
| | - Gerard J J Boink
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
- PacingCure B.V., Roetersstraat 35, Amsterdam 1018 WB, The Netherlands
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| |
Collapse
|
7
|
Zhong L, Yan Z, Jiang D, Weng KC, Ouyang Y, Zhang H, Lin X, Xiao C, Yang H, Yao J, Kang X, Wang C, Huang C, Shen B, Chung SK, Jiang ZH, Zhu W, Neher E, Silva JR, Hou P. Targeting the I Ks Channel PKA Phosphorylation Axis to Restore Its Function in High-Risk LQT1 Variants. Circ Res 2024; 135:722-738. [PMID: 39166328 PMCID: PMC11392204 DOI: 10.1161/circresaha.124.325009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024]
Abstract
BACKGROUND The KCNQ1+KCNE1 (IKs) potassium channel plays a crucial role in cardiac adaptation to stress, in which β-adrenergic stimulation phosphorylates the IKs channel through the cyclic adenosine monophosphate (cAMP)/PKA (protein kinase A) pathway. Phosphorylation increases the channel current and accelerates repolarization to adapt to an increased heart rate. Variants in KCNQ1 can cause long-QT syndrome type 1 (LQT1), and those with defective cAMP effects predispose patients to the highest risk of cardiac arrest and sudden death. However, the molecular connection between IKs channel phosphorylation and channel function, as well as why high-risk LQT1 mutations lose cAMP sensitivity, remain unclear. METHODS Regular patch clamp and voltage clamp fluorometry techniques were utilized to record pore opening and voltage sensor movement of wild-type and mutant KCNQ1/IKs channels. The clinical phenotypic penetrance of each LQT1 mutation was analyzed as a metric for assessing their clinical risk. The patient-specific-induced pluripotent stem-cell model was used to test mechanistic findings in physiological conditions. RESULTS By systematically elucidating mechanisms of a series of LQT1 variants that lack cAMP sensitivity, we identified molecular determinants of IKs channel regulation by phosphorylation. These key residues are distributed across the N-terminus of KCNQ1 extending to the central pore region of IKs. We refer to this pattern as the IKs channel PKA phosphorylation axis. Next, by examining LQT1 variants from clinical databases containing 10 579 LQT1 carriers, we found that the distribution of the most high-penetrance LQT1 variants extends across the IKs channel PKA phosphorylation axis, demonstrating its clinical relevance. Furthermore, we found that a small molecule, ML277, which binds at the center of the phosphorylation axis, rescues the defective cAMP effects of multiple high-risk LQT1 variants. This finding was then tested in high-risk patient-specific induced pluripotent stem cell-derived cardiomyocytes, where ML277 remarkably alleviates the beating abnormalities. CONCLUSIONS Our findings not only elucidate the molecular mechanism of PKA-dependent IKs channel phosphorylation but also provide an effective antiarrhythmic strategy for patients with high-risk LQT1 variants.
Collapse
Affiliation(s)
- Ling Zhong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Zhenzhen Yan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Dexiang Jiang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Kuo-Chan Weng
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO (K.-C.W., J.R.S.)
| | - Yue Ouyang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Hangyu Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Xiaoqing Lin
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Chenxin Xiao
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Huaiyu Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University (H.Y.)
| | - Jing Yao
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, China (J.Y.)
| | - Xinjiang Kang
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China (X.K.)
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China (X.K.)
- College of Life Sciences, Liaocheng University, China (X.K.)
| | - Changhe Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Department of Neurology, First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, China (C.W.)
| | - Chen Huang
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Bing Shen
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Sookja Kim Chung
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Zhi-Hong Jiang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Wandi Zhu
- Cardiovascular Medicine Division and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (W.Z.)
| | - Erwin Neher
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Jonathan R Silva
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO (K.-C.W., J.R.S.)
| | - Panpan Hou
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| |
Collapse
|