1
|
You Q, Song H, Zhu Z, Wang J, Wang R, Du M, Fu Y, Yuan J, Tan R. Decoding the enigmatic estrogen paradox in pulmonary hypertension: delving into estrogen metabolites and metabolic enzymes. Cell Mol Biol Lett 2024; 29:155. [PMID: 39695964 DOI: 10.1186/s11658-024-00671-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
Pulmonary hypertension (PH) presents a puzzling sex bias, being more prevalent in women yet often less severe than in men, and the underlying reasons remain unclear. Studies using animal models, and limited clinical data have revealed a protective influence of exogenous estrogens, known as the estrogen paradox. Research suggests that beyond its receptor-mediated effects, estrogen acts through metabolites such as 2-ME2, 4-OHE2, and 16-OHE2, which are capable of exhibiting protective or detrimental effects in PH, prompting the need to explore their roles in PH to untangle sex differences and the estrogen paradox. Hypoxia disrupts the balance of estrogen metabolites by affecting the enzymes responsible for estrogen metabolism. Delving into the role of these metabolic enzymes not only illuminates the sex difference in PH but also provides a potential rationale for the estrogen paradox. This review delves into the intricate interplay between estrogen metabolites, metabolic enzymes, and PH, offering a deeper understanding of sex-specific differences and the perplexing estrogen paradox in the context of this condition.
Collapse
Affiliation(s)
- Qiang You
- Department of Physiology, Basic Medical School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Hequn Song
- First Clinical Medical School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Ziming Zhu
- College of Second Clinical Medical, Jining Medical University, Jining, 272067, Shandong, China
| | - Jinzheng Wang
- College of Second Clinical Medical, Jining Medical University, Jining, 272067, Shandong, China
| | - Ruixin Wang
- School of Nursing, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Mingjia Du
- School of Nursing, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yingjie Fu
- School of Pharmacy, Jining Medical University, Rizhao, 276826, Shandong, China.
| | - Jinxiang Yuan
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, 272067, Shandong, China.
| | - Rubin Tan
- Department of Physiology, Basic Medical School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
2
|
Cai W, Shu LZ, Liu DJ, Zhou L, Wang MM, Deng H. Targeting cyclin D1 as a therapeutic approach for papillary thyroid carcinoma. Front Oncol 2023; 13:1145082. [PMID: 37427143 PMCID: PMC10324616 DOI: 10.3389/fonc.2023.1145082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023] Open
Abstract
Cyclin D1 functions as a mitogenic sensor that specifically binds to CDK4/6, thereby integrating external mitogenic inputs and cell cycle progression. Cyclin D1 interacts with transcription factors and regulates various important cellular processes, including differentiation, proliferation, apoptosis, and DNA repair. Therefore, its dysregulation contributes to carcinogenesis. Cyclin D1 is highly expressed in papillary thyroid carcinoma (PTC). However, the particular cellular mechanisms through which abnormal cyclin D1 expression causes PTC are poorly understood. Unveiling the regulatory mechanisms of cyclin D1 and its function in PTC may help determine clinically effective strategies, and open up better opportunities for further research, leading to the development of novel PTC regimens that are clinically effective. This review explores the mechanisms underlying cyclin D1 overexpression in PTC. Furthermore, we discuss the role of cyclin D1 in PTC tumorigenesis via its interactions with other regulatory elements. Finally, recent progress in the development of therapeutic options targeting cyclin D1 in PTC is examined and summarized.
Collapse
Affiliation(s)
- Wei Cai
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lin-Zhen Shu
- Medical College, Nanchang University, Nanchang, China
| | - Ding-Jie Liu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Lv Zhou
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| | - Meng-Meng Wang
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huan Deng
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Azhar AS, Abdel-Naim AB, Ashour OM. 2-Methoxyestradiol inhibits carotid artery intimal hyperplasia induced by balloon injury via inhibiting JAK/STAT axis in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:59524-59533. [PMID: 35384535 DOI: 10.1007/s11356-022-19936-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Intimal hyperplasia (IH) is a common complication of vascular interventional procedures that leads to narrowing of the vessel lumen. 2-Methoxyestradiol (2ME), an estrogen metabolite, has numerous pharmacological actions, including vasoprotective and antiproliferative activities. The present study aimed to evaluate the potential of 2ME, prepared as a self-nanoemulsifying drug delivery system (SNEDDS), to inhibit IH induced by balloon injury (BI) in the rat carotid artery. The prepared 2ME SNEDDS had a particle size of 119 ± 2.3 nm and a zeta potential of -7.1 ± 1.4 mV. Animals were divided into 5 groups, namely control, sham, BI, BI + 2ME (100 μg/kg), and BI + 2ME (250 μg/kg). The obtained data indicated that 2ME significantly inhibited IH as indicated by the histological and morphometric assessment of the intima, media and lumen areas. This was associated with enhanced expression of Bax and inhibited expression of Bcl2 mRNA. Furthermore, 2ME exhibited significant antioxidant properties as evidenced by prevention of malondialdehyde accumulation as well as superoxide dismutase and catalase enzymatic exhaustion. In addition, 2ME showed significant anti-inflammatory actions as it significantly inhibited vascular content of interleukin-6, tumor necrosis factor-alpha, and nuclear factor-κB. The observed vasoprotective activities of 2ME were accompanied by inhibition of Janus kinase/signal transducers and activators of transcription (JAK/STAT) protein expression. In conclusion, this study revealed that 2ME ameliorates balloon injury-induced IH in rats via suppressing JAK/STAT axis. This may help to develop new strategies to combat IH.
Collapse
Affiliation(s)
- Ahmad S Azhar
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pediatric Cardiac Center of Excellence, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama M Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
4
|
Gerges SH, El-Kadi AOS. Sex differences in eicosanoid formation and metabolism: A possible mediator of sex discrepancies in cardiovascular diseases. Pharmacol Ther 2021; 234:108046. [PMID: 34808133 DOI: 10.1016/j.pharmthera.2021.108046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/07/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022]
Abstract
Arachidonic acid is metabolized by cyclooxygenase, lipoxygenase, and cytochrome P450 enzymes to produce prostaglandins, leukotrienes, epoxyeicosatrienoic acids (EETs), and hydroxyeicosatetraenoic acids (HETEs), along with other eicosanoids. Eicosanoids have important physiological and pathological roles in the body, including the cardiovascular system. Evidence from several experimental and clinical studies indicates differences in eicosanoid levels, as well as in the activity or expression levels of their synthesizing and metabolizing enzymes between males and females. In addition, there is a clear state of gender specificity in cardiovascular diseases (CVD), which tend to be more common in men compared to women, and their risk increases significantly in postmenopausal women compared to younger women. This could be largely attributed to sex hormones, as androgens exert detrimental effects on the heart and blood vessels, whereas estrogen exhibits cardioprotective effects. Many of androgen and estrogen effects on the cardiovascular system are mediated by eicosanoids. For example, androgens increase the levels of cardiotoxic eicosanoids like 20-HETE, while estrogens increase the levels of cardioprotective EETs. Thus, sex differences in eicosanoid levels in the cardiovascular system could be an important underlying mechanism for the different effects of sex hormones and the differences in CVD between males and females. Understanding the role of eicosanoids in these differences can help improve the management of CVD.
Collapse
Affiliation(s)
- Samar H Gerges
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
5
|
Jackson EK, Gillespie DG, Tofovic SP. DPP4 Inhibition, NPY 1-36, PYY 1-36, SDF-1 α, and a Hypertensive Genetic Background Conspire to Augment Cell Proliferation and Collagen Production: Effects That Are Abolished by Low Concentrations of 2-Methoxyestradiol. J Pharmacol Exp Ther 2020; 373:135-148. [PMID: 32015161 PMCID: PMC7174788 DOI: 10.1124/jpet.119.263467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/30/2020] [Indexed: 12/13/2022] Open
Abstract
By reducing their metabolism, dipeptidyl peptidase 4 inhibition (DPP4I) enhances the effects of numerous peptides including neuropeptide Y1-36 (NPY1-36), peptide YY1-36 (PYY1-36), and SDF-1α Studies show that separately NPY1-36, PYY1-36 and SDF-1α stimulate proliferation of, and collagen production by, cardiac fibroblasts (CFs), preglomerular vascular smooth muscle cells (PGVSMCs), and glomerular mesangial cells (GMCs), particularly in cells isolated from genetically hypertensive rats. Whether certain combinations of these factors, in the absence or presence of DPP4I, are more profibrotic than others is unknown. Here we contrasted 24 different combinations of conditions (DPP4I, hypertensive genotype and physiologic levels [3 nM] of NPY1-36, PYY1-36, or SDF-1α) on proliferation of, and [3H]-proline incorporation by, CFs, PGVSMCs, and GMCs. In all three cell types, the various treatment conditions differentially increased proliferation and [3H]-proline incorporation, with a hypertensive genotype + DPP4I + NPY1-36 + SDF-1α being the most efficacious combination. Although the effects of this four-way combination were similar in male versus female CFs, physiologic (1 nM) concentrations of 2-methoxyestradiol (2ME; nonestrogenic metabolite of 17β-estradiol), abolished the effects of this combination in both male and female CFs. In conclusion, this study demonstrates that CFs, PGVSMCs, and GMCs are differentially activated by various combinations of NPY1-36, PYY1-36, SDF-1α, a hypertensive genetic background and DPP4I. We hypothesize that as these progrowth conditions accumulate, a tipping point would be reached that manifests in the long term as organ fibrosis and that 2ME would obviate any profibrotic effects of DPP4I, even under the most profibrotic conditions (i.e., hypertensive genotype with high NPY1-36 + SDF-1α levels and low 2ME levels). SIGNIFICANCE STATEMENT: This work elucidates combinations of factors that could contribute to long-term profibrotic effects of dipeptidyl peptidase 4 inhibitors and suggests a novel drug combination that could prevent any potential profibrotic effects of dipeptidyl peptidase 4 inhibitors while augmenting the protective effects of this class of antidiabetic agents.
Collapse
Affiliation(s)
- Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Delbert G Gillespie
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Stevan P Tofovic
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
6
|
Landeros RV, Pastore MB, Magness RR. Effects of the Catechol and Methoxy Metabolites of 17β-Estradiol on Nitric Oxide Production by Ovine Uterine Artery Endothelial Cells. Reprod Sci 2018; 26:459-468. [PMID: 29929429 DOI: 10.1177/1933719118783265] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) production is essential to facilitate rises in uterine blood flow (UBF) during pregnancy. It has been proposed that the metabolites of E2β, 2-hydroxyestradiol (2-OHE2), 4-hydroxyestradiol (4-OHE2), 2-methoxyestradiol (2-ME2), and 4-methoxyestradiol (4-ME2) play a role in mediating vasodilation and rises in UBF during pregnancy. We previously showed that the E2β metabolites stimulate prostacyclin production in pregnancy-derived ovine uterine artery endothelial cells (P-UAECs); however, it is unknown whether the E2β metabolites also induce NO production. Herein, UAECs derived from nonpregnant and pregnant ewes were used to test the hypothesis that E2β metabolites stimulate NO production in a pregnancy-specific manner. Specific estrogen receptor (ER) and adrenergic receptor (AR) antagonists were used to determine the roles of ERs or ARs in E2β metabolite-induced NO production. E2β and its metabolites increased total nitric oxide metabolites (NOx) levels (NO2 + NO3) in P-UAECs, but not in NP-UAECs. Pretreatment with combined 1 µmol/L 1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1H-pyrazole dihydrochloride (MPP; ER-α antagonist) and 1 µmol/L 4-[2-phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5-a]pyrimidin-3-yl]phenol (PHTPP; ER-β antagonist) inhibited the rises in NOx levels stimulated by E2β and 2-ME2, but had no effect on 2-OHE2-, 4-OHE2-, or 4-ME2-stimulated rises in NOx levels. Pretreatment with yohimbine (α2-AR antagonist) and propranolol (β2,3-AR antagonist) inhibited the rises in NOx levels stimulated by 2-OHE2, but not by E2β, 4-OHE2, 2-ME2, or 4-ME2. These data demonstrate that E2β metabolites stimulate NO synthesis via ERs or ARs in UAECs in a pregnancy-specific manner, suggesting that these metabolites contribute to rises in vasodilation and UBF during pregnancy.
Collapse
Affiliation(s)
- Rosalina Villalon Landeros
- 1 Department of Obstetrics and Gynecology, Perinatal Research Laboratories, University of Wisconsin-Madison, Madison, WI, USA
| | - Mayra B Pastore
- 2 Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Ronald R Magness
- 1 Department of Obstetrics and Gynecology, Perinatal Research Laboratories, University of Wisconsin-Madison, Madison, WI, USA.,3 Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA.,4 Department of Animal Science, University of Wisconsin-Madison, Madison, WI, USA.,5 Department of Obstetrics and Gynecology, Morsani College of Medicine, Perinatal Research Vascular Center, University of South Florida, Tampa, FL, USA
| |
Collapse
|
7
|
Deficiency in catechol-o-methyltransferase is linked to a disruption of glucose homeostasis in mice. Sci Rep 2017; 7:7927. [PMID: 28801594 PMCID: PMC5554180 DOI: 10.1038/s41598-017-08513-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 07/11/2017] [Indexed: 02/06/2023] Open
Abstract
2-methoxyestradiol (2-ME), an estrogen metabolite generated via catechol-o-methyltransferase (COMT), is multifunctional methoxy-catechol. Here, we report that COMT deficiency leads to glucose intolerance and 2-ME rescues COMT-deficient-associated metabolic defects. Liver COMT protein was suppressed in high fat diet (HFD)-fed or in pregnant mice. COMT suppression, by Ro41-0960 or siRNA, in HFD fed mice or in pregnant mice exacerbated glucose intolerance; 2-ME intervention ameliorated these defects. 2-ME effects on glucose tolerance were associated with AMPK phosphorylation in the liver and in islet cells. Metformin restored liver COMT protein levels, and metformin-induced liver AMPK phosphorylation was abolished by COMT inhibition. The amelioration in glucose tolerance by 2-ME was associated with biphasic insulin secretion in an environment-dependent manner. 2-ME-induced insulin secretion was associated with the AMPK phosphorylation, PDX-1 phosphorylation, and MST-1 suppression in MIN-6 cells. Furthermore 2-ME displayed PPARγ agonist-like activity. These results suggest that COMT is an enzyme to maintain glucose homeostasis and 2-ME is a potential endogenous multi-target anti-diabetic candidate.
Collapse
|
8
|
Yao YF, Wang ZC, Wu SY, Li QF, Yu C, Liang XY, Lv PC, Duan YT, Zhu HL. Identification of novel 1-indolyl acetate-5-nitroimidazole derivatives of combretastatin A-4 as potential tubulin polymerization inhibitors. Biochem Pharmacol 2017; 137:10-28. [DOI: 10.1016/j.bcp.2017.04.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 04/25/2017] [Indexed: 01/26/2023]
|
9
|
Ueki N, Kanasaki K, Kanasaki M, Takeda S, Koya D. Catechol-O-Methyltransferase Deficiency Leads to Hypersensitivity of the Pressor Response Against Angiotensin II. Hypertension 2017; 69:1156-1164. [DOI: 10.1161/hypertensionaha.117.09247] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/01/2017] [Accepted: 04/04/2017] [Indexed: 11/16/2022]
Abstract
Catechol-O-methyltransferase (COMT) metabolizes 2-hydroxyestradiol into 2-methoxyestradiol (2-ME); COMT deficiency has shown to be associated with hypertension in men and preeclampsia, the disease associated with hypersensitivity of pressor response against angiotensin II (Ang II). Here, we found that COMT deficiency could explain the hypersensitivity of pressor response against Ang II in mice because of the lack of 2-ME–dependent suppression of angiotensin II receptor type 1 (AT1R). Male C57BL/6 mice were subjected to COMT inhibitor (COMTi: 25 mg/kg per day) or oil (control) for 4 weeks, with or without low-dose Ang II infusion (ANGII: 70 ng/kg per minute) for the last 3 weeks. The Ang II–infused mice were treated with 2-ME (10 ng/d) or vehicle for the last 1 week. We obtained the following experimental groups: control, ANGII, COMTi, COMTi+ANGII, and COMTi+ANGII+2-ME. We performed similar experiments using the in vivo administration of small interfering RNA of COMT instead of COMTi. Neither ANGII nor COMTi exhibited significant alterations in systolic blood pressure. Compared with ANGII or COMTi, COMTi+ANGII displayed significantly higher systolic blood pressure, albuminuria, and glomerular endotheliosis; 2-ME normalized such alterations. Similar phenotypes were observed in COMT small interfering RNA–treated mice. In the aorta of COMT-deficient mice, AT1R expression was increased; 2-ME suppressed AT1R expression. The 2-ME exhibited peroxisome proliferator–activated receptor γ agonistic activity in vitro and ex vivo plasma from pregnant female mice as well. In vitro, 2-ME suppressed both basal and Ang II–induced AT1R levels in a peroxisome proliferator–activated receptor γ–dependent manner. The 2-ME is relevant to combat COMT deficiency–associated hypertensive disorders via suppression of AT1R by its peroxisome proliferator–activated receptor γ activity.
Collapse
Affiliation(s)
- Norikazu Ueki
- From the Department of Obstetrics and Gynecology, Juntendo University, Tokyo, Japan (N.U., S.T.); and Department of Diabetology and Endocrinology (N.U., K.K., M.K., D.K.) and Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute (K.K., D.K.), Kanazawa Medical University, Ishikawa, Japan
| | - Keizo Kanasaki
- From the Department of Obstetrics and Gynecology, Juntendo University, Tokyo, Japan (N.U., S.T.); and Department of Diabetology and Endocrinology (N.U., K.K., M.K., D.K.) and Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute (K.K., D.K.), Kanazawa Medical University, Ishikawa, Japan
| | - Megumi Kanasaki
- From the Department of Obstetrics and Gynecology, Juntendo University, Tokyo, Japan (N.U., S.T.); and Department of Diabetology and Endocrinology (N.U., K.K., M.K., D.K.) and Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute (K.K., D.K.), Kanazawa Medical University, Ishikawa, Japan
| | - Satoru Takeda
- From the Department of Obstetrics and Gynecology, Juntendo University, Tokyo, Japan (N.U., S.T.); and Department of Diabetology and Endocrinology (N.U., K.K., M.K., D.K.) and Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute (K.K., D.K.), Kanazawa Medical University, Ishikawa, Japan
| | - Daisuke Koya
- From the Department of Obstetrics and Gynecology, Juntendo University, Tokyo, Japan (N.U., S.T.); and Department of Diabetology and Endocrinology (N.U., K.K., M.K., D.K.) and Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute (K.K., D.K.), Kanazawa Medical University, Ishikawa, Japan
| |
Collapse
|
10
|
MicroRNA-210 suppresses glucocorticoid receptor expression in response to hypoxia in fetal rat cardiomyocytes. Oncotarget 2017; 8:80249-80264. [PMID: 29113299 PMCID: PMC5655194 DOI: 10.18632/oncotarget.17801] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 04/29/2017] [Indexed: 11/25/2022] Open
Abstract
Hypoxia is a common intrauterine stressor, often resulting in intrauterine growth restriction and increased risk for cardiovascular disease later in life. The aim of this work was to test the hypothesis that microRNA-210 (miR-210) mediates the detrimental suppression of glucocorticoid receptor (GR) in response to hypoxia in fetal rat cardiomyocytes. Cardiomyocytes isolated from gestational day 21 Sprague Dawley fetal rats showed increased miR-210 levels and reduced GR abundance after exposure to ex vivo hypoxia (1% O2). In regard to mechanisms, the different contributions of hypoxia response elements (HREs) motifs in the regulation of miR-210 promoter activity and the miR-210-mediated repression of GR expression were determined in rat embryonic heart-derived myogenic cell line H9c2. Moreover, using a cell culture-based model of hypoxia-reoxygenation injury, we assessed the cytotoxic effects of GR suppression under hypoxic conditions. The results showed that hypoxia induced HIF-1α-dependent miR-210 production, as well as miR-210-mediated GR suppression, in cardiomyocytes. Furthermore, inhibition or knockdown of GR exacerbated cell death in response to hypoxia-reoxygenation injury. Altogether, the present study demonstrates that the HIF-1α-dependent miR-210-mediated suppression of GR in fetal rat cardiomyocytes increases cell death in response to hypoxia, providing novel evidence for a possible mechanistic link between fetal hypoxia and programming of ischemic-sensitive phenotype in the developing heart.
Collapse
|
11
|
Zhang Y, Li P, Gao Q, Simoncini T, Fu X. 2-Methoxyestradiol prevents monocyte adhesion to vascular endothelial cells via downregulation of VCAM-1 expression. Gynecol Endocrinol 2016; 32:571-6. [PMID: 26880304 DOI: 10.3109/09513590.2016.1141880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
2-Methoxyestradiol (2-ME) reduces atherosclerotic lesion formation. However, the underlying mechanisms remain largely unknown. In this work, we investigated the effect of 2-ME on monocyte adhesion to vascular endothelial cells. Lipopolysaccharides (LPS) greatly increased the attachment of monocyte onto cultured human umbilical vascular endothelial cells (HUVECs), which was inhibited by 2-ME in a dose- and time-dependent manner, or by the vascular cell adhesion protein-1 (VCAM-1) neutralizing antibody, suggesting that a functional releationship between 2-ME and VCAM-1 may exist. In accordance with this, treatment with 2-ME (10(-)(7)-10(-)(5) M) for 6-48 h downregulated VCAM-1 protein expression. Meanwhile, the nuclear factor κB (NF-κB) p65 subunit activity and its nuclear translocation was inhibited by 2-ME in HUVECs. The PI3K inhibitor wortmannin or the specific Akt siRNA both inhibited the effects of 2-ME, suggesting that 2-ME inhibited p65 activity via PI3K/Akt signaling. In conclusion, 2-ME inhibits VCAM-1 expression and thus prevents monocyte adhesion to vascular endothelial cells via regulation of PI3K/Akt and NF-κB signaling. These findings will be helpful for better understanding the mechanisms through which 2-ME improves endothelial function.
Collapse
Affiliation(s)
- Yongfu Zhang
- a Department of Anesthesiology , Guangzhou Women and Children's Medical Center , Guangzhou, Guangdong Province , China
| | - Ping Li
- b School of Basic Sciences, Guangzhou Medical University , Guangzhou, Guangdong Province , China
| | - Qi Gao
- c Department of Anesthesiology , Longhua Hospital , Shenzhen, Guangdong Province , China , and
| | - Tommaso Simoncini
- d Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Reproductive Medicine and Child Development, University of Pisa , Pisa , Italy
| | - Xiaodong Fu
- b School of Basic Sciences, Guangzhou Medical University , Guangzhou, Guangdong Province , China
| |
Collapse
|
12
|
Inhibition of hypoxia inducible factor-1α attenuates abdominal aortic aneurysm progression through the down-regulation of matrix metalloproteinases. Sci Rep 2016; 6:28612. [PMID: 27363580 PMCID: PMC4929442 DOI: 10.1038/srep28612] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 06/06/2016] [Indexed: 12/19/2022] Open
Abstract
Hypoxia inducible factor-1α (HIF-1α) pathway is associated with many vascular diseases, including atherosclerosis, arterial aneurysms, pulmonary hypertension and chronic venous diseases. Significant HIF-1α expression could be found at the rupture edge at human abdominal aortic aneurysm (AAA) tissues. While our initial in vitro experiments had shown that deferoxamine (DFO) could attenuate angiotensin II (AngII) induced endothelial activations; we unexpectedly found that DFO augmented the severity of AngII-induced AAA, at least partly through increased accumulation of HIF-1α. The findings promoted us to test whether aneurysmal prone factors could up-regulate the expression of MMP-2 and MMP-9 through aberrantly increased HIF-1α and promote AAA development. AngII induced AAA in hyperlipidemic mice model was used. DFO, as a prolyl hydroxylase inhibitor, stabilized HIF-1α and augmented MMPs activities. Aneurysmal-prone factors induced HIF-1α can cause overexpression of MMP-2 and MMP-9 and promote aneurysmal progression. Pharmacological HIF-1α inhibitors, digoxin and 2-ME could ameliorate AngII induced AAA in vivo. HIF-1α is pivotal for the development of AAA. Our study provides a rationale for using HIF-1α inhibitors as an adjunctive medical therapy in addition to current cardiovascular risk-reducing regimens.
Collapse
|
13
|
Rigassi L, Barchiesi Bozzolo F, Lucchinetti E, Zaugg M, Fingerle J, Rosselli M, Imthurn B, Jackson EK, Dubey RK. 2-Methoxyestradiol blocks the RhoA/ROCK1 pathway in human aortic smooth muscle cells. Am J Physiol Endocrinol Metab 2015; 309:E995-1007. [PMID: 26487003 PMCID: PMC4816197 DOI: 10.1152/ajpendo.00267.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/08/2015] [Indexed: 11/22/2022]
Abstract
2-Methoxyestradiol (2-ME), a metabolite of estradiol with little affinity for estrogen receptors, inhibits proliferation of vascular smooth muscle cells; however, the molecular mechanisms underlying this effect are incompletely understood. Our previous work shows that 2-ME inhibits initiation (blocks phosphorylation of ERK and Akt) and progression (reduces cyclin expression and increases expression of cyclin inhibitors) of the mitogenic pathway and interferes with mitosis (disrupts tubulin organization). Because the RhoA/ROCK1 pathway (RhoA → ROCK1 → myosin phosphatase targeting subunit → myosin light chain) is involved in cytokinesis, herein we tested the concept that 2-ME also blocks the RhoA/ROCK1 pathway. Because of the potential importance of 2-ME for preventing/treating vascular diseases, experiments were conducted in female human aortic vascular smooth muscle cells. Microarray transcriptional profiling suggested an effect of 2-ME on the RhoA/ROCK1 pathway. Indeed, 2-ME blocked mitogen-induced GTP-bound RhoABC expression and membrane-bound RhoA, suggesting interference with the activation of RhoA. 2-ME also reduced ROCK1 expression, suggesting reduced production of the primary downstream signaling kinase of the RhoA pathway. Moreover, 2-ME inhibited RhoA/ROCK1 pathway downstream signaling, including phosphorylated myosin phosphatase targeting subunit and myosin light chain; the ROCK1 inhibitor H-1152 mimicked these effects of 2-ME; both 2-ME and H-1152 blocked cytokinesis. 2-ME also reduced the expression of tissue factor, yet another downstream signaling component of the RhoA/ROCK1 pathway. We conclude that 2-ME inhibits the pathway RhoA → ROCK1 → myosin phosphatase targeting subunit → myosin light chain, and this likely contributes to the reduced cytokinesis in 2-ME treated HASMCs.
Collapse
Affiliation(s)
- Lisa Rigassi
- Department of Reproductive Endocrinology, University Hospital Zurich, Zurich, Switzerland
| | | | - Eliana Lucchinetti
- Department of Anesthesiology and Pain Medicine and Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada; and
| | - Michael Zaugg
- Department of Anesthesiology and Pain Medicine and Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada; and
| | - Jürgen Fingerle
- Preclinical Pharma Research 60/209, F Hoffmann-La-Roche, Basel, Switzerland
| | - Marinella Rosselli
- Department of Reproductive Endocrinology, University Hospital Zurich, Zurich, Switzerland
| | - Bruno Imthurn
- Department of Reproductive Endocrinology, University Hospital Zurich, Zurich, Switzerland
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Raghvendra K Dubey
- Department of Reproductive Endocrinology, University Hospital Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland;
| |
Collapse
|
14
|
|
15
|
Chen W, Cui Y, Zheng S, Huang J, Li P, Simoncini T, Zhang Y, Fu X. 2-methoxyestradiol induces vasodilation by stimulating NO release via PPARγ/PI3K/Akt pathway. PLoS One 2015; 10:e0118902. [PMID: 25748432 PMCID: PMC4351983 DOI: 10.1371/journal.pone.0118902] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/21/2015] [Indexed: 11/18/2022] Open
Abstract
The endogenous estradiol metabolite 2-methoxyestradiol (2-ME) reduces atherosclerotic lesion formation, while the underlying mechanisms remain obscure. In this work, we investigated the vasodilatory effect of 2-ME and the role of nitric oxide (NO) involved. In vivo studies using noninvasive tail-cuff methods showed that 2-ME decreased blood pressure in Sprague Dawley rats. Furthermore, in vitro studies showed that cumulative addition of 2-ME to the aorta caused a dose- and endothelium-dependent vasodilation. This effect was unaffected by the pretreatment with the pure estrogen receptor antagonist ICI 182,780, but was largely impaired by endothelial nitric oxide synthase (eNOS) inhibitor NG-nitro-L-arginine methyl ester (L-NAME) or by phosphoinositide 3-kinase (PI3K) inhibitor wortmannin (WM). Moreover, 2-ME(10−7 ∼10−5 M)enhanced phosphorylation of Akt and eNOS and promoted NO release from cultured human umbilical endothelial cells (HUVECs). These effects were blocked by PI3K inhibitor WM, or by the transfection with Akt specific siRNA, indicating that endothelial Akt/eNOS/NO cascade plays a crucial role in 2-ME-induced vasodilation. The peroxisome proliferator-activated receptor γ (PPARγ) mRNA and protein expression were detected in HUVECs and the antagonist GW9662 or the transfection with specific PPARγ siRNA inhibited 2-ME-induced eNOS and Akt phosphorylation, leading to the impairment of NO production and vasodilation. In conclusion, 2-ME induces vasodilation by stimulating NO release. These actions may be mediated by PPARγ and the subsequent activation of Akt/eNOS cascade in vascular endothelial cells.
Collapse
Affiliation(s)
- Weiyu Chen
- School of Basic Sciences, Guangzhou Medical University, Guangzhou, 510182, Guangdong Province, China; Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong Province, China
| | - Yuhong Cui
- School of Basic Sciences, Guangzhou Medical University, Guangzhou, 510182, Guangdong Province, China
| | - Shuhui Zheng
- Research Center of Translational Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong Province, China
| | - Jinghe Huang
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong Province, China
| | - Ping Li
- School of Basic Sciences, Guangzhou Medical University, Guangzhou, 510182, Guangdong Province, China
| | - Tommaso Simoncini
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Reproductive Medicine and Child Development, University of Pisa, Pisa, 56100, Italy
| | - Yongfu Zhang
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou, 510180, Guangdong Province, China
| | - Xiaodong Fu
- School of Basic Sciences, Guangzhou Medical University, Guangzhou, 510182, Guangdong Province, China
| |
Collapse
|
16
|
Zhang Y, Wang T, Shen Y, Wang X, Baker PN, Zhao A. 2-Methoxyestradiol deficiency is strongly related to hypertension in early onset severe pre-eclampsia. Pregnancy Hypertens 2014; 4:215-9. [PMID: 26104608 DOI: 10.1016/j.preghy.2014.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 04/21/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVE 2-Methoxyestradiol (2ME) deficiency leading to placental insufficiency has been related to pre-eclampsia (PE). Here we investigate whether 2ME is related to clinical profiles and vasoactive factors in early onset severe PE patients. METHODS 28 severe PE patients and 20 uncomplicated normal pregnant women, with gestational weeks between 24 and 32weeks, were recruited. All cases and controls had singleton pregnancies and were matched for maternal age, parity, body mass index, and gestational weeks. Plasma levels of 2ME, estradiol (E2), soluble Fms-like tyrosine kinase-1 (sFLT-1), endothelin-1 (ET-1), nitric oxide (NO) were determined. RESULTS PE patients had significant lower 2ME [906(422-1768) vs. 2032(1400-2910)pg/mL, P=0.002], higher sFLT-1 [5.55(3.24-11.22) vs. 3.13(2.17-5.36)ng/mL, P=0.015] and higher NO [122.40(72.92-168.23) vs. 45.83(25.52-61.46)μmol/L, P=0.0008] levels in their plasma than the controls. In the PE group, plasma 2ME level correlated negatively with systolic pressure (r=-0.48, P=0.012), diastolic pressure (r=-0.52, P=0.007) and mean arterial pressure (r=-0.54, P=0.005) even after controlling for maternal age; 2ME level did not correlate with proteinuria, plasma levels of E2, sFLT-1, ET-1 or NO. In the control group, plasma 2ME level did not correlate with any of the above clinical profiles or laboratory measurements. CONCLUSIONS 2ME levels were markedly lower in early onset severe PE and they correlated inversely with blood pressure only in women with PE. Although we cannot tell whether lower 2ME level is the causation or the result of PE, our study provides clinical evidences that 2ME deficiency is strongly related to hypertension in early onset severe PE patients.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200127, China
| | - Tongdan Wang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yao Shen
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaoling Wang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Philip N Baker
- Liggins Institute, The University of Auckland, Auckland 1142, New Zealand
| | - Aimin Zhao
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
17
|
Koganti S, Snyder R, Gumaste U, Karamyan VT, Thekkumkara T. 2-methoxyestradiol binding of GPR30 down-regulates angiotensin AT(1) receptor. Eur J Pharmacol 2013; 723:131-40. [PMID: 24262995 DOI: 10.1016/j.ejphar.2013.10.064] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 10/22/2013] [Accepted: 10/31/2013] [Indexed: 11/26/2022]
Abstract
Controlling angiotensin AT1 receptor function has been shown to be protective for many pathophysiological disorders. Although estrogen metabolite, 2-methoxyestradiol (2ME2) can down-regulate angiotensin AT1 receptor expression independently of nuclear receptors, no specific cellular targets have been identified. This study was focused on identification and validation of a cellular target responsible for 2ME2-mediated angiotensin AT1 receptor down-regulation in a continuously passaged rat liver epithelial cell line. Cell membranes were isolated and used to determine 2ME2 specific binding. Cell membranes exposed to [(3)H]2ME2 showed specific saturable binding, which was found to be pertussis toxin (PTx) sensitive. Under similar conditions, G-protein coupled receptor 30 (GPR30) agonist (G1) and antagonist (G15) inhibited 2ME2 specific binding. In these cells GPR30 was found localized to endoplasmic reticulum (ER) membranes. In intact cells, G1 down-regulated angiotensin AT1 receptor expression and this effect was reversed by G15. Furthermore, 2ME2 mediated activation of epidermal growth factor receptor (EGFR) followed by ERK1/2 phosphorylation, an essential signaling step in angiotensin AT1 receptor down-regulation, was abrogated by G15, suggesting that this signal is GPR30 dependent. Additionally, EGF was found to independently down-regulate angiotensin AT1 receptor in an ERK1/2-dependent manner. In summary, our results demonstrate for the first time that 2ME2 down-regulation of angiotensin AT1 receptor is dependent on ER membrane-associated GRP30. Moreover, this effect is facilitated by GPR30 dependent transactivation of EGFR and ERK1/2 phosphorylation. This study provides further understanding of the physiological significance of 2ME2 and its role in modulating angiotensin AT1 receptor expression.
Collapse
Affiliation(s)
- Sivaramakrishna Koganti
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, 1300 Coulter Drive, Amarillo, TX 79106, United States
| | - Russell Snyder
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, 1300 Coulter Drive, Amarillo, TX 79106, United States
| | - Upendra Gumaste
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, 1300 Coulter Drive, Amarillo, TX 79106, United States
| | - Vardan T Karamyan
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, United States
| | - Thomas Thekkumkara
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, 1300 Coulter Drive, Amarillo, TX 79106, United States.
| |
Collapse
|
18
|
Abstract
Sex differences in the incidence of liver cirrhosis and portal hypertension have been reported by epidemiological studies. Previous studies have indicated that estrogen therapy improved hepatic fibrosis, inhibited the activation of hepatic stellate cells, and reduced portal pressure, whereas the administration of exogenous estrogens resulted in some potential risks, limiting their clinical use. However, the biological actions of estrogens are mediated by three subtypes of estrogen receptors (ERs): ERα, ERβ, and G-protein-coupled ER. These ER subtypes act in distinct ways and exert different biological effects that mediate genomic and nongenomic events, resulting in tissue-specific responses. In addition, active estrogen metabolites, with little or no affinity for ERs, could mediate the fibrosuppressive effect of estrogens through an ER-independent pathway. Taken together, such specific estrogen derivatives as ER selective agonists, or active estrogen metabolites, would provide novel therapeutic opportunities, stratifying this hormonal treatment, thereby reducing undesired side-effects in the treatment of liver cirrhosis and portal hypertension.
Collapse
|
19
|
Quezada M, Alvarez M, Peña OA, Henríquez S, d' Alençon CA, Lange S, Oliva B, Owen GI, Allende ML. Antiangiogenic, antimigratory and antiinflammatory effects of 2-methoxyestradiol in zebrafish larvae. Comp Biochem Physiol C Toxicol Pharmacol 2013; 157:141-9. [PMID: 23142146 DOI: 10.1016/j.cbpc.2012.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 10/30/2012] [Accepted: 10/31/2012] [Indexed: 12/13/2022]
Abstract
2-Methoxyestradiol (2ME), an endogenous metabolite of 17β-estradiol, has been previously reported to possess antiangiogenic and antitumor properties. Herein, we demonstrate that the effects of this antiangiogenic steroid can be readily assayed in live zebrafish, introducing a convenient and robust new model system as a screening tool for both single cell and collective cell migration assays. Using the in vitro mammalian endothelial cell line EA.hy926, we first show that cell migration and angiogenesis, as estimated by wound assay and tube formation respectively, are antagonized by 2ME. In zebrafish (Danio rerio) larvae, dose-dependent exposure to 2ME diminishes (1) larval angiogenesis, (2) leukocyte recruitment to damaged lateral line neuromasts and (3) retards the lateral line primordium in its migration along the body. Our results indicate that 2ME has an effect on collective cell migration in vivo as well as previously reported anti-tumorigenic activity and suggests that the molecular mechanisms governing cell migration in a variety of contexts are conserved between fish and mammals. Moreover, we exemplify the versatility of the zebrafish larvae for testing diverse physiological processes and screening for antiangiogenic and antimigratory drugs in vivo.
Collapse
Affiliation(s)
- Marisol Quezada
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Women continue to be underrepresented in clinical trials, particularly in Phases I and II of experimental drug studies in spite of legislative guidelines in the USA, Canada, the European Union, Australia, and Japan requiring the inclusion of women in clinical trials. As such, women remain a vulnerable population subject to the adverse effects of pharmacological therapies. Thus, women experience higher rates of adverse drug reactions than do men and for women of reproductive age or who may be pregnant, therapeutic options may be limited. This chapter provides a brief history of inclusion of sex and gender as variables in clinical trials, summarizes governmental legislation for consideration of sex and gender in clinical trials and provides specific examples of drugs which have been withdrawn from the market because of side effects in women. Additional information related to sex and gender in preclinical testing, trial design, challenges to recruitment of women for clinical trials and statistical methods for analysis of data also is considered.
Collapse
|
21
|
Yager JD. Catechol- O-methyltransferase: characteristics, polymorphisms and role in breast cancer. ACTA ACUST UNITED AC 2012; 9:e41-e46. [PMID: 23734165 DOI: 10.1016/j.ddmec.2012.10.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Catechol estrogens are carcinogenic, probably because of their estrogenicity and potential for further oxidative metabolism to reactive quinones. Estrogenic quinones cause oxidative DNA damage as well as form mutagenic depurinating adenine and guanine adducts. O-Methylation by catechol-O-methyltransferase (COMT) blocks their estrogenicity and prevents their oxidation to quinones. A single gene encodes both membrane bound (MB) and soluble (S) forms of COMT. The COMT gene contains 34 single nucleotide polymorphisms (SNPs). The valine108 (S-COMT)/158 (MB-COMT) SNP encodes a low activity form of COMT and has been widely studied as a putative risk factor for breast cancer, with inconsistent results. Investigations of two other SNPs in the promoter of MB-COMT that may affect its expression have also provided mixed results. Future studies on the role of COMT in breast cancer should incorporate measurement of biomarkers that reflect COMT activity and its protective effects.
Collapse
Affiliation(s)
- James D Yager
- Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205, United States
| |
Collapse
|
22
|
Koganti S, Snyder R, Thekkumkara T. Pharmacologic effects of 2-methoxyestradiol on angiotensin type 1 receptor down-regulation in rat liver epithelial and aortic smooth muscle cells. ACTA ACUST UNITED AC 2012; 9:76-93. [PMID: 22366193 DOI: 10.1016/j.genm.2012.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 01/04/2012] [Accepted: 01/20/2012] [Indexed: 11/18/2022]
Abstract
BACKGROUND Delayed onset of cardiovascular disease (CVD) in female patients is not well understood, but could be due in part to the protective effect of estrogen before menopause. Experimental studies have identified the angiotensin type 1 receptor (AT1R) as a key factor in the progression of CVD. OBJECTIVE We examined the effects of the estrogen metabolite 2-methoxyestradiol (2ME2) on AT1R expression. METHODS Rat liver cells were exposed to 2ME2 for 24 hours, and angiotensin II (AngII) binding and AT1R mRNA expressions were assessed. RESULTS In the presence of 2ME2, cells exhibited significant down-regulation of AngII binding that was both dose and time dependent, independent of estrogen receptors (ERα/ERβ). Down-regulation of AngII binding was AT1R specific, with no change in receptor affinity. Under similar conditions, we observed lower expression of AT1R mRNA, significant inhibition of AngII-mediated increase in intracellular Ca(2+), and increased phosphorylation of ERK1/2. Pretreatment of cells with the MEK inhibitor PD98059 prevented 2ME2-induced ERK1/2 phosphorylation and down-regulation of AT1R expression, which suggests that the observed inhibitory effect is mediated through ERK1/2 signaling intermediates. Similar analyses in stably transfected CHO (Chinese hamster ovary) cell lines with a constitutively active cytomegalovirus promoter showed no change in AT1R expression, which suggests that 2ME2-mediated effects are through transcriptional regulation. The effects of 2ME2 on AT1R down-regulation through ERK1/2 were consistently reproduced in primary rat aortic smooth muscle cells. CONCLUSIONS Because AT1R has a critical role in the control of CVD, 2ME2-induced changes in receptor expression may provide beneficial effects to the cardiovascular and other systems.
Collapse
MESH Headings
- 2-Methoxyestradiol
- Angiotensin II/drug effects
- Angiotensin II/genetics
- Angiotensin II/metabolism
- Animals
- Aorta/drug effects
- Cricetinae
- Down-Regulation
- Estradiol/analogs & derivatives
- Estradiol/pharmacology
- Female
- Gene Expression Regulation/drug effects
- Humans
- Liver/drug effects
- Male
- Microscopy, Fluorescence
- Myocytes, Smooth Muscle/drug effects
- RNA, Messenger/metabolism
- Rats
- Receptor, Angiotensin, Type 1/drug effects
- Receptor, Angiotensin, Type 2/drug effects
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Sivaramakrishna Koganti
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | | | | |
Collapse
|
23
|
Wilhelmson AS, Bourghardt-Fagman J, Gogos JA, Fogelstrand P, Tivesten A. Catechol-O-methyltransferase is dispensable for vascular protection by estradiol in mouse models of atherosclerosis and neointima formation. Endocrinology 2011; 152:4683-90. [PMID: 22009725 DOI: 10.1210/en.2011-1458] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Estradiol is converted to the biologically active metabolite 2-methoxyestradiol via the activity of the enzyme catechol-O-methyltransferase (COMT). Exogenous administration of both estradiol and 2-methoxyestradiol reduces experimental atherosclerosis and neointima formation, and COMT-dependent formation of 2-methoxyestradiol likely mediates the antimitogenic effect of estradiol on smooth muscle cells in vitro. This study evaluated whether 2-methoxyestradiol mediates the vasculoprotective actions of estradiol in vivo. Wild-type (WT) and COMT knockout (COMTKO) mice on an apolipoprotein E-deficient background were gonadectomized and treated with estradiol or placebo. Exogenous estradiol reduced atherosclerotic lesion formation in both females (WT, -78%; COMTKO, -82%) and males (WT, -48%; COMTKO, -53%) and was equally effective in both genotypes. We further evaluated how exogenous estradiol affected neointima formation after ligation of the carotid artery in ovariectomized female mice; estradiol reduced intimal hyperplasia to a similar extent in both WT (-80%) and COMTKO (-77%) mice. In ovarian-intact female COMTKO mice, atherosclerosis was decreased (-25%) compared with WT controls. In conclusion, the COMT enzyme is dispensable for vascular protection by exogenous estradiol in experimental atherosclerosis and neointima formation in vivo. Instead, COMT deficiency in virgin female mice with intact endogenous production of estradiol results in relative protection against atherosclerosis.
Collapse
Affiliation(s)
- Anna S Wilhelmson
- Wallenberg Laboratory for Cardiovascular Research, Institute of Medicine, Sahlgrenska University Hospital, University of Gothenburg, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
24
|
Serum 2-methoxyestradiol, an estrogen metabolite, is positively associated with serum HDL-C in a population-based sample. Lipids 2011; 47:35-8. [PMID: 21809102 DOI: 10.1007/s11745-011-3600-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 07/12/2011] [Indexed: 01/27/2023]
Abstract
Serum HDL cholesterol (HDL-C) is inversely associated with coronary artery disease, ischemic stroke, and atherosclerosis in men and women. Among postmenopausal women, oral conjugated equine estrogen (CEE) increases serum HDL-C. This is due to activation of hepatic nuclear estrogen receptors, resulting in increased HDL-C expression, as well as modulation of proteins which metabolize HDL-C. 2-methoxyestradiol (2-MeOE2), an estrogen metabolite, has several vasculoprotective effects and may play a role in HDL-C production. 2-MeOE2 inhibits HMG-CoA reductase in vitro but no study has examined the relationship between serum 2-MeOE2 and serum HDL-C. A population-based sample provided information regarding demographic characteristics and use of antihyperlipidemic medications. Serum was analyzed for 17β-estradiol (E2), estrogen metabolites (EMs), and lipoproteins. Results included serum EM data from 51 men and 47 postmenopausal women. Preliminary analysis revealed no correlation between 2-MeOE2 and serum HDL-C in men so the current analysis includes only women (N = 40) with no missing demographic, medication, EM, or lipoprotein data. Linear regression revealed that serum 2-MeOE2 and antihyperlipidemic medications were positively associated with serum HDL-C (β = 0.276, P = 0.043, and β = 0.307, P = 0.047, respectively) when age, race/ethnicity, and body mass index were held constant. Prospective studies are needed to determine if 2-MeOE2 is causally related to HDL-C in women.
Collapse
|
25
|
|