1
|
Zilli AMH, Zilli EM. Review of Evidence and Perspectives of Flavonoids on Metabolic Syndrome and Neurodegenerative Disease. Protein Pept Lett 2021; 28:725-734. [PMID: 33504293 DOI: 10.2174/0929866528666210127152359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/08/2020] [Accepted: 12/09/2020] [Indexed: 11/22/2022]
Abstract
Flavonoids are commonly found in fruits, vegetables, and plant-derived foods and may promote various health benefits when included in the diet. The biological activity of flavonoids is normally associated to their potent antioxidant and anti-inflammatory effects, since oxidative stress is associated to conditions such as diabetes, obesity, cardiovascular and neurodegenerative diseases. Additionally, flavonoids may be related to metabolic diseases through their effects on inflammatory mediators and pathways, barrier integrity and gut microbiota composition. The extensive metabolism undergone by flavonoids in humans and the individual differences in their bioavailability to target organs hinder the interpretation of results from cell and animal models. Prospective human studies therefore provide an important perspective: In the field of neurodegenerative disease, carefully designed cohort studies have uncovered important associations between flavonoid intake and reduction in dementia risk, especially regarding specific flavonols, but also anthocyanins. Alternative mechanisms of action, such as changes in the gut microbiota or modulation of the production of toxic proteins, such as amyloid and tau, likely account for an important component of their positive effects, and their elucidation may lead to public health benefits of large magnitude.
Collapse
Affiliation(s)
- Aline M Hilzendeger Zilli
- Glenn Biggs Institute for Alzheimer and Neurodegenerative Diseases, University of Texas Health and Science Center, San Antonio, TX. United States
| | - Eduardo M Zilli
- Glenn Biggs Institute for Alzheimer and Neurodegenerative Diseases, University of Texas Health and Science Center, San Antonio, TX. United States
| |
Collapse
|
2
|
Dragano NRV, Fernø J, Diéguez C, López M, Milbank E. Reprint of: Recent Updates on Obesity Treatments: Available Drugs and Future Directions. Neuroscience 2020; 447:191-215. [PMID: 33046217 DOI: 10.1016/j.neuroscience.2020.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the last thirty years, obesity has reached epidemic proportions and is now regarded as a major health issue in contemporary society trending to serious economic and social burdens. The latest projections of the World Health Organization are alarming. By 2030, nearly 60% of the worldwide population could be either obese or overweight, highlighting the needs to find innovative treatments. Currently, bariatric surgery is the most effective way to efficiently lower body mass. Although great improvements in terms of recovery and patient care were made in these surgical procedures, bariatric surgery remains an option for extreme forms of obesity and seems unable to tackle obesity pandemic expansion. Throughout the last century, numerous pharmacological strategies targeting either peripheral or central components of the energy balance regulatory system were designed to reduce body mass, some of them reaching sufficient levels of efficiency and safety. Nevertheless, obesity drug therapy remains quite limited on its effectiveness to actually overcome the obesogenic environment. Thus, innovative unimolecular polypharmacology strategies, able to simultaneously target multiple actors involved in the obesity initiation and expansion, were developed during the last ten years opening a new promising avenue in the pharmacological management of obesity. In this review, we first describe the clinical features of obesity-associated conditions and then focus on the outcomes of currently approved drug therapies for obesity as well as new ones expecting to reach the clinic in the near future.
Collapse
Affiliation(s)
- Nathalia R V Dragano
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain.
| | - Johan Fernø
- Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Carlos Diéguez
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Miguel López
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Edward Milbank
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain.
| |
Collapse
|
3
|
Dragano NRV, Fernø J, Diéguez C, López M, Milbank E. Recent Updates on Obesity Treatments: Available Drugs and Future Directions. Neuroscience 2020; 437:215-239. [PMID: 32360593 DOI: 10.1016/j.neuroscience.2020.04.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022]
Abstract
In the last thirty years, obesity has reached epidemic proportions and is now regarded as a major health issue in contemporary society trending to serious economic and social burdens. The latest projections of the World Health Organization are alarming. By 2030, nearly 60% of the worldwide population could be either obese or overweight, highlighting the needs to find innovative treatments. Currently, bariatric surgery is the most effective way to efficiently lower body mass. Although great improvements in terms of recovery and patient care were made in these surgical procedures, bariatric surgery remains an option for extreme forms of obesity and seems unable to tackle obesity pandemic expansion. Throughout the last century, numerous pharmacological strategies targeting either peripheral or central components of the energy balance regulatory system were designed to reduce body mass, some of them reaching sufficient levels of efficiency and safety. Nevertheless, obesity drug therapy remains quite limited on its effectiveness to actually overcome the obesogenic environment. Thus, innovative unimolecular polypharmacology strategies, able to simultaneously target multiple actors involved in the obesity initiation and expansion, were developed during the last ten years opening a new promising avenue in the pharmacological management of obesity. In this review, we first describe the clinical features of obesity-associated conditions and then focus on the outcomes of currently approved drug therapies for obesity as well as new ones expecting to reach the clinic in the near future.
Collapse
Affiliation(s)
- Nathalia R V Dragano
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain.
| | - Johan Fernø
- Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Carlos Diéguez
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Miguel López
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Edward Milbank
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain.
| |
Collapse
|
4
|
Chen H, Zhou W, Ruan Y, Yang L, Xu N, Chen R, Yang R, Sun J, Zhang Z. Reversal of angiotensin ll-induced β-cell dedifferentiation via inhibition of NF-κb signaling. Mol Med 2018; 24:43. [PMID: 30134927 PMCID: PMC6092859 DOI: 10.1186/s10020-018-0044-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/30/2018] [Indexed: 12/11/2022] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is characterized by pancreatic β-cell failure, which arises from metabolic stress and results in β cell dedifferentiation, leading to β-cell death. Pathological activation of the renin–angiotensin system (RAS) contributes to increase cell stress, while RAS intervention reduces the onset of T2DM in high-risk populations and promotes insulin secretion in rodents. In this study, we investigated whether and how RAS induces β-cell dedifferentiation and the mechanism underlying this process. Methods In vitro, with the methods of quantitative real-time reverse transcriptase-PCR (qRT-PCR) and western blotting, we examined the change of cell identity-related gene expression, progenitor like gene expression, cellular function, and nuclear factor kappa b (NF-κb) signaling activity in β cell lines after exposure to angiotensin II (AngII) and disruption of RAS. In vivo, parallel studies were performed using db/db mice. Related protein expression was detected by Immunofluorescence analysis. Result Activation of RAS induced dedifferentiation and impaired insulin secretion, eventually leading to β-cell failure. Mechanistically, Angll induced β-cell dedifferentiation via NF-κb signaling, while treatment with lrbesartan and sc-514 reversed the progenitor state of β cells. Conclusion The present study found that RAS might induce β-cell dedifferentiation via angiotensin II receptor type 1 activation, which was promoted by NF-κb signaling. Therefore, blocking RAS or NF-kb signaling efficiently reversed the dedifferentiated status of β cells, suggesting a potential therapy for patients with type 2 diabetes. Electronic supplementary material The online version of this article (10.1186/s10020-018-0044-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hong Chen
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, 253, Gongyedadao Middle, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Wenjun Zhou
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, 253, Gongyedadao Middle, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Yuting Ruan
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, 253, Gongyedadao Middle, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Lei Yang
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, 253, Gongyedadao Middle, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Ningning Xu
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, 253, Gongyedadao Middle, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Rongping Chen
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, 253, Gongyedadao Middle, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Rui Yang
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, 253, Gongyedadao Middle, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Jia Sun
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, 253, Gongyedadao Middle, Guangzhou, Guangdong, 510282, People's Republic of China.
| | - Zhen Zhang
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, 253, Gongyedadao Middle, Guangzhou, Guangdong, 510282, People's Republic of China.
| |
Collapse
|
5
|
Abstract
For a century, nephrosclerosis was ascribed to nonmalignant hypertension and aging. However, it was intuitively perceived that hypertension may follow rather than explain this nephrovasculopathy. Hypertensive nephrosclerosis was long considered a major cause of end-stage renal failure (ESRD). This is especially true in blacks of African descent but not in other ethnic populations. The term 'nephrosclerosis' is still an easy way out to classify a patient with renal insufficiency. This leads to neglect the possibility of an overlooked nephropathy complicated by hypertension and to believe that drastic blood pressure control may retard the progression to ESRD. Several clinical and experimental lines of evidence lead to the understanding that nephrosclerosis, especially in blacks, is a genetic renovasculopathy that precedes the rise in blood pressure. The identification of coding region variants in APOL1 encoding apolipoprotein L-1 in black but also white and Asians opens new lines of research on the genetics of nephroangiosclerosis and of FSGS. Metabolic derangements, such as obesity, oxidative stress, dyslipidemia and atherosclerosis may be considered confounding factors with regard to nephrosclerosis. Histomorphometric studies led to sorting out the lesions due to aging from those stemming from hypertension. They shed new light not only on glomerular lesions that comprise ischemic obsolescence but also on glomerulomegaly and focal-segmental sclerosis, the latter due to a loss of renal autoregulation. It appears that the control of hypertension is not credited with the expected benefit for slowing the decline of renal function. 'Nephrosclerosis' can be considered an umbrella term of poor significance that should be replaced by its pathologic description, that is, arterionephrosclerosis and incite to elucidate the various genetic and metabolic factors that lead to a lesion in quest of a specific disease.
Collapse
Affiliation(s)
- Alain Meyrier
- Service de Néphrologie, AP-HP, Hôpital Georges Pompidou, Université Paris-Descartes, Paris, France
| |
Collapse
|
6
|
Meyrier A. Nephrosclerosis: update on a centenarian. Nephrol Dial Transplant 2014; 30:1833-41. [PMID: 25488894 DOI: 10.1093/ndt/gfu366] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 11/03/2014] [Indexed: 12/23/2022] Open
Abstract
Nephrosclerosis is an umbrella term defining changes in all compartments of the kidney, changes caused by hypertension and by ageing. Among other lesions, arteriolosclerosis and arteriolohyalinosis play a major role in inducing glomerular ischaemic shrinking and sclerosis along with glomerulomegaly and focal-segmental glomerulosclerosis (FSGS). These lesions are accompanied by tubulointerstitial inflammation and fibrosis that predict the decline of renal function. Nephrosclerosis is a major cause of renal insufficiency in blacks of African descent with a severe, early form of renovasculopathy and a rapid course to renal failure with predominant lesions of FSGS. It seems that in blacks, separate genetic factors independently lead to vascular lesions and to hypertension with a different time-scale of their onset and of their progression, nephroangiosclerosis preceding the onset of hypertension. Conversely, true and histologically identified nephrosclerosis in white Europeans rarely leads to end-stage renal disease in the absence of malignant hypertension. Various animal models demonstrate that renal vascular lesions may exist in the absence of hypertension. These experiments also point to a major role of angiotensin II and of a number of independent and overlapping cellular and molecular pathways in a cascade of inflammatory events that end in renal fibrosis. Two pathophysiologic mechanisms are at work in inducing glomerular lesions and tubulointerstitial fibrosis: a loss of autoregulation of the renal blood flow caused by an arteriolohyalinosis of the glomerular afferent arteriole and ischaemia that fosters the generation of hypoxia inducible-fibrosing factors. Not all antihypertensive drugs equally protect the kidney from nephrosclerosis. Angiotensin II antagonists exert a favourable effect on hyperfiltration. Conversely, dihydropyridine calcium-channel blockers and vasodilators do not withstand the derangement of renal autoregulation.
Collapse
Affiliation(s)
- Alain Meyrier
- Université Paris-Descartes, Paris, France Département de Néphrologie, Hôpital Georges Pompidou (AP-HP), Paris, France
| |
Collapse
|
7
|
Rahmouni K. Obesity-associated hypertension: recent progress in deciphering the pathogenesis. Hypertension 2014; 64:215-21. [PMID: 24821943 PMCID: PMC4184930 DOI: 10.1161/hypertensionaha.114.00920] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/12/2014] [Indexed: 01/05/2023]
Affiliation(s)
- Kamal Rahmouni
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
8
|
Affiliation(s)
- Robert M. Carey
- From the Department of Medicine, University of Virginia Health System, Charlottesville
| |
Collapse
|