1
|
Shi Y, Mao J, Wang S, Ma S, Luo L, You J. Pharmaceutical strategies for optimized mRNA expression. Biomaterials 2025; 314:122853. [PMID: 39342919 DOI: 10.1016/j.biomaterials.2024.122853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Messenger RNA (mRNA)-based immunotherapies and protein in situ production therapies hold great promise for addressing theoretically all the diseases characterized by aberrant protein levels. The safe, stable, and precise delivery of mRNA to target cells via appropriate pharmaceutical strategies is a prerequisite for its optimal efficacy. In this review, we summarize the structural characteristics, mode of action, development prospects, and limitations of existing mRNA delivery systems from a pharmaceutical perspective, with an emphasis on the impacts from formulation adjustments and preparation techniques of non-viral vectors on mRNA stability, target site accumulation and transfection efficiency. In addition, we introduce strategies for synergistical combination of mRNA and small molecules to augment the potency or mitigate the adverse effects of mRNA therapeutics. Lastly, we delve into the challenges impeding the development of mRNA drugs while exploring promising avenues for future advancements.
Collapse
Affiliation(s)
- Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Jiapeng Mao
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Siyao Ma
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, 166 Qiutaobei Road, Hangzhou, Zhejiang, 310017, PR China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China.
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310006, PR China; The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang, 310000, PR China; Jinhua Institute of Zhejiang University, 498 Yiwu Street, Jinhua, Zhejiang, 321299, PR China.
| |
Collapse
|
2
|
Fu L, Zhang Y, Farokhzad RA, Mendes BB, Conde J, Shi J. 'Passive' nanoparticles for organ-selective systemic delivery: design, mechanism and perspective. Chem Soc Rev 2023; 52:7579-7601. [PMID: 37817741 PMCID: PMC10623545 DOI: 10.1039/d2cs00998f] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Nanotechnology has shown tremendous success in the drug delivery field for more effective and safer therapy, and has recently enabled the clinical approval of RNA medicine, a new class of therapeutics. Various nanoparticle strategies have been developed to improve the systemic delivery of therapeutics, among which surface modification of targeting ligands on nanoparticles has been widely explored for 'active' delivery to a specific organ or diseased tissue. Meanwhile, compelling evidence has recently been reported that organ-selective targeting may also be achievable by systemic administration of nanoparticles without surface ligand modification. In this Review, we highlight this unique set of 'passive' nanoparticles and their compositions and mechanisms for organ-selective delivery. In particular, the lipid-based, polymer-based, and biomimetic nanoparticles with tropism to different specific organs after intravenous administration are summarized. The underlying mechanisms (e.g., protein corona and size effect) of these nanosystems for organ selectivity are also extensively discussed. We further provide perspectives on the opportunities and challenges in this exciting area of organ-selective systemic nanoparticle delivery.
Collapse
Affiliation(s)
- Liyi Fu
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yang Zhang
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ryan A Farokhzad
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Bárbara B Mendes
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - João Conde
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
3
|
Cao Y, Zhou N, Liu T, Zhang J, Wang Y, Zhang B, Zhang Z, Feng W, Zheng X. Comparative pharmacokinetic studies of Ephedra herba in common cold and nephrotic syndrome rat models. J Sep Sci 2023; 46:e2200895. [PMID: 36823773 DOI: 10.1002/jssc.202200895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023]
Abstract
Ephedra herba is a conventional Chinese medicine to treat cold, fever, asthma, edema, and lung diseases in the clinic. At present, most pharmacokinetic studies focus on the pharmacokinetic process of alkaloids in normal animals. However, the non-alkaloid components are also active. In addition, the pharmacokinetic studies under pathological state make more sense for clarifying the material basis of efficacy. In this study, a sensitive and rapid ultra-high-performance-tandem mass spectrometry method was developed and applied to determine nine bioactive components (ephedrine, pseudoephedrine, methylephedrine, (+)-catechin, epicatechin, vitexin, vicenin-2, cinnamic acid, and ferulic acid) in normal, common cold and nephrotic syndrome rats after the oral administration of Ephedra herba. Compared to the normal group, except for ferulic acid, the exposure levels of the other eight components were significantly increased and the plasma clearance clearly declined in common cold rats. Similarly, the exposure levels of seven components other than cinnamic acid and ferulic acid were also significantly augmented and the plasma clearance decreased significantly in nephrotic syndrome rats. In brief, the pathological conditions of the common cold and nephrotic syndrome could lead to alterations in the pharmacokinetics profiles of the nine components, which provide a reference for further exploration of the pharmacodynamics basis of Ephedra herba.
Collapse
Affiliation(s)
- Yumin Cao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, P. R. China
| | - Ning Zhou
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, P. R. China.,Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of Zhengzhou, P. R. China
| | - Tong Liu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, P. R. China
| | - Jinying Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, P. R. China
| | - Yongxiang Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, P. R. China
| | - Bingxian Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, P. R. China
| | - Zhenkai Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, P. R. China
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, P. R. China.,Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of Zhengzhou, P. R. China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, P. R. China
| | - Xiaoke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, P. R. China.,Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of Zhengzhou, P. R. China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, P. R. China
| |
Collapse
|
4
|
Tan N, Sun CX, Zhu HJ, Li DY, Huang SG, He SD. Baicalin attenuates adriamycin-induced nephrotic syndrome by regulating fibrosis procession and inflammatory reaction. Genes Genomics 2021; 43:1011-1021. [PMID: 34129194 DOI: 10.1007/s13258-021-01107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/19/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Baicalin has anti-inflammatory, antibacterial, blood platelet aggregation-inhibiting, free oxygen radical-clearing, and endotoxin-decreasing properties. However, its molecular mechanism involved in the treatment of Adriamycin-induced nephrotic syndrome (NS) is still unclear. OBJECTIVE This study aimed to explore the effects of baicalin on Adriamycin-induced nephrotic syndrome (NS) and to characterize the genes involved in this progression. METHODS We established Adriamycin-induced NS model in 32 rats and used six rats in Sham group. Urinary total protein content and creatinine serum were assessed as physiological indicators. H&E staining was used to observe the pathological changes. We determined gene expression profiles using transcriptome sequencing in the rat kidney tissues from Sham, Adriamycin, and Adriamycin + baicalin groups. KEGG was carried out to analyze the enriched pathways of differentially expressed genes among these groups. RESULTS Baicalin treatment relieved renal injury in NS rats. Expression of 363 genes was significantly different between the Adriamycin and Adriamycin + baicalin M groups. Most of the differentially expressed genes were enriched in pathways involved in epithelial-mesenchymal transition (EMT), fibrosis, apoptosis, and inflammation. CONCLUSIONS Overall, these data suggest that Adriamycin-induced NS can be attenuated by baicalin through the suppression of fibrosis-related genes and inflammatory reactions. Baicalin is a potential drug candidate for the treatment of NS, and the identified genes represent potential therapeutic targets.
Collapse
Affiliation(s)
- Ning Tan
- Traditional Chinese Medicine Department of Rheumatism, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), 89 Taoyuan Road, Nanshan District, Shenzhen, 518052, Guangdong, China
| | - Chen-Xia Sun
- Traditional Chinese Medicine Department of Rheumatism, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), 89 Taoyuan Road, Nanshan District, Shenzhen, 518052, Guangdong, China
| | - Hui-Jun Zhu
- Traditional Chinese Medicine Department of Rheumatism, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), 89 Taoyuan Road, Nanshan District, Shenzhen, 518052, Guangdong, China
| | - De-Yu Li
- Traditional Chinese Medicine Department of Rheumatism, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), 89 Taoyuan Road, Nanshan District, Shenzhen, 518052, Guangdong, China
| | - Sheng-Guang Huang
- Traditional Chinese Medicine Department of Rheumatism, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), 89 Taoyuan Road, Nanshan District, Shenzhen, 518052, Guangdong, China
| | - Shou-Di He
- Traditional Chinese Medicine Department of Rheumatism, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), 89 Taoyuan Road, Nanshan District, Shenzhen, 518052, Guangdong, China.
| |
Collapse
|
5
|
Giménez VMM, Fuentes LB, Kassuha DE, Manucha W. Current Drug Nano-targeting Strategies for Improvement in the Diagnosis and Treatment of Prevalent Pathologies such as Cardiovascular and Renal Diseases. Curr Drug Targets 2020; 20:1496-1504. [PMID: 31267869 DOI: 10.2174/1389450120666190702162533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/10/2019] [Accepted: 06/17/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND The kidney and cardiovascular system are closely related to each other during the modulation of the cardiovascular homeostasis. However, the search for new alternatives for the treatment and diagnosis of cardiovascular diseases does not take into account this relationship, so their evaluation results and the advantages offered by their global and integrative analysis are wasted. For example, a variety of receptors that are overexpressed in both pathologies is large enough to allow expansion in the search for new molecular targets and ligands. Nanotechnology offers pharmacological targeting strategies to kidney, heart, and blood vessels for overcoming one of the essential restrictions of traditional cardiovascular therapies the ones related to their unspecific pharmacodynamics distribution in these critical organs. RECENT FINDINGS Drug or contrast agent nano-targeting for treatment or diagnosis of atherosclerosis, thrombosis, renal cancer or fibrosis, glomerulonephritis, among other renal, cardiac and blood vessels pathologies would allow an increase in their efficacy and a reduction of their side effects. Such effects are possible because, through pharmacological targeting, the drug is mainly found at the desired site. Review Purpose: In this mini-review, active, passive, and physical targeting strategies of several nanocarriers that have been assessed and proposed for the treatment and diagnosis of different cardiovascular diseases, are being addressed.
Collapse
Affiliation(s)
- Virna Margarita Martín Giménez
- Instituto de Investigaciones en Ciencias Quimicas, Facultad de Ciencias Quimicas y Tecnologicas, Universidad Catolica de Cuyo, San Juan, Argentina
| | - Lucía Beatriz Fuentes
- Facultad de Quimica, Bioquimica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - Diego Enrique Kassuha
- Instituto de Investigaciones en Ciencias Quimicas, Facultad de Ciencias Quimicas y Tecnologicas, Universidad Catolica de Cuyo, San Juan, Argentina
| | - Walter Manucha
- Instituto de Medicina y Biologia Experimental de Cuyo, Consejo Nacional de Investigacion Científica y Tecnologica (IMBECU-CONICET), Mendoza, Argentina.,Laboratorio de Farmacología Experimental Básica y Traslacional. Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
6
|
Han SJ, Williams RM, D'Agati V, Jaimes EA, Heller DA, Lee HT. Selective nanoparticle-mediated targeting of renal tubular Toll-like receptor 9 attenuates ischemic acute kidney injury. Kidney Int 2020; 98:76-87. [PMID: 32386967 DOI: 10.1016/j.kint.2020.01.036] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/24/2020] [Accepted: 01/31/2020] [Indexed: 12/12/2022]
Abstract
We developed an innovative therapy for ischemic acute kidney injury with discerning kidney-targeted delivery of a selective Toll-like receptor 9 (TLR9) antagonist in mice subjected to renal ischemia reperfusion injury. Our previous studies showed that mice deficient in renal proximal tubular TLR9 were protected against renal ischemia reperfusion injury demonstrating a critical role for renal proximal tubular TLR9 in generating ischemic acute kidney injury. Herein, we used 300-400 nm polymer-based mesoscale nanoparticles that localize to the renal tubules after intravenous injection. Mice were subjected to sham surgery or 30 minutes renal ischemia and reperfusion injury after receiving mesoscale nanoparticles encapsulated with a selective TLR9 antagonist (unmethylated CpG oligonucleotide ODN2088) or mesoscale nanoparticles encapsulating a negative control oligonucleotide. Mice treated with the encapsulated TLR9 antagonist either six hours before renal ischemia, at the time of reperfusion or 1.5 hours after reperfusion were protected against ischemic acute kidney injury. The ODN2088-encapsulated nanoparticles attenuated renal tubular necrosis, inflammation, decreased proinflammatory cytokine synthesis. neutrophil and macrophage infiltration and apoptosis, decreased DNA fragmentation and caspase 3/8 activation when compared to the negative control nanoparticle treated mice. Taken together, our studies further suggest that renal proximal tubular TLR9 activation exacerbates ischemic acute kidney injury by promoting renal tubular inflammation, apoptosis and necrosis after ischemia reperfusion. Thus, our studies suggest a potential promising therapy for ischemic acute kidney injury with selective kidney tubular targeting of TLR9 using mesoscale nanoparticle-based drug delivery.
Collapse
Affiliation(s)
- Sang Jun Han
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| | - Ryan M Williams
- Department of Molecular Pharmacology & Chemistry, Memorial Sloan Kettering Cancer Center, New York, New York, USA; Department of Biomedical Engineering, City College of New York, New York, New York, USA
| | - Vivette D'Agati
- Department of Pathology, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| | - Edgar A Jaimes
- Renal Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Daniel A Heller
- Department of Molecular Pharmacology & Chemistry, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - H Thomas Lee
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York, USA.
| |
Collapse
|