1
|
Albany CJ, Trevelin SC, Giganti G, Lombardi G, Scottà C. Getting to the Heart of the Matter: The Role of Regulatory T-Cells (Tregs) in Cardiovascular Disease (CVD) and Atherosclerosis. Front Immunol 2019; 10:2795. [PMID: 31849973 PMCID: PMC6894511 DOI: 10.3389/fimmu.2019.02795] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/14/2019] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of mortality worldwide. Atherosclerosis is directly associated with CVD and is characterized by slow progressing inflammation which results in the deposition and accumulation of lipids beneath the endothelial layer in conductance and resistance arteries. Both chronic inflammation and disease progression have been associated with several risk factors, including but not limited to smoking, obesity, diabetes, genetic predisposition, hyperlipidemia, and hypertension. Currently, despite increasing incidence and significant expense on the healthcare system in both western and developing countries, there is no curative therapy for atherosclerosis. Instead patients rely on surgical intervention to avoid or revert vessel occlusion, and pharmacological management of the aforementioned risk factors. However, neither of these approaches completely resolve the underlying inflammatory environment which perpetuates the disease, nor do they result in plaque regression. As such, immunomodulation could provide a novel therapeutic option for atherosclerosis; shifting the balance from proatherogenic to athero-protective. Indeed, regulatory T-cells (Tregs), which constitute 5-10% of all CD4+ T lymphocytes in the peripheral blood, have been shown to be athero-protective and could function as new targets in both CVD and atherosclerosis. This review aims to give a comprehensive overview about the roles of Tregs in CVD, focusing on atherosclerosis.
Collapse
Affiliation(s)
- Caraugh J Albany
- British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, King's College London, London, United Kingdom.,Peter Gorer Department of Immunobiology, School of Immunology and Microbiological Sciences, King's College London, London, United Kingdom
| | - Silvia C Trevelin
- British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, King's College London, London, United Kingdom
| | - Giulio Giganti
- Peter Gorer Department of Immunobiology, School of Immunology and Microbiological Sciences, King's College London, London, United Kingdom.,Department of Internal Medicine, University of Milan, Milan, Italy
| | - Giovanna Lombardi
- Peter Gorer Department of Immunobiology, School of Immunology and Microbiological Sciences, King's College London, London, United Kingdom
| | - Cristiano Scottà
- Peter Gorer Department of Immunobiology, School of Immunology and Microbiological Sciences, King's College London, London, United Kingdom
| |
Collapse
|
2
|
Bouin A, Nguyen Y, Wehbe M, Renois F, Fornes P, Bani-Sadr F, Metz D, Andreoletti L. Major Persistent 5' Terminally Deleted Coxsackievirus B3 Populations in Human Endomyocardial Tissues. Emerg Infect Dis 2018; 22:1488-90. [PMID: 27434549 PMCID: PMC4982168 DOI: 10.3201/eid2208.160186] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We performed deep sequencing analysis of the enterovirus 5′ noncoding region in cardiac biopsies from a patient with dilated cardiomyopathy. Results displayed a mix of deleted and full-length coxsackievirus B3, characterized by a low viral RNA load (8.102 copies/μg of nucleic acids) and a low viral RNA positive-sense to RNA negative-sense ratio of 4.8.
Collapse
|
3
|
Ha DM, Carpenter LC, Koutakis P, Swanson SA, Zhu Z, Hanna M, DeSpiegelaere HK, Pipinos II, Casale GP. Transforming growth factor-beta 1 produced by vascular smooth muscle cells predicts fibrosis in the gastrocnemius of patients with peripheral artery disease. J Transl Med 2016; 14:39. [PMID: 26847457 PMCID: PMC4743093 DOI: 10.1186/s12967-016-0790-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 01/06/2016] [Indexed: 12/03/2022] Open
Abstract
Background Lower leg ischemia, myopathy, and limb dysfunction are distinguishing features of peripheral artery disease (PAD). The myopathy of PAD is characterized by myofiber degeneration in association with extracellular matrix expansion, and increased expression of transforming growth factor-beta 1 (TGF-β1; a pro-fibrotic cytokine). In this study, we evaluated cellular expression of TGF-β1 in gastrocnemius of control (CTRL) and PAD patients and its relationship to deposited collagen, fibroblast accumulation and limb hemodynamics. Methods Gastrocnemius biopsies were collected from PAD patients with claudication (PAD-II; N = 25) and tissue loss (PAD-IV; N = 20) and from CTRL patients (N = 20). TGF-β1 in slide-mounted specimens was labeled with fluorescent antibodies and analyzed by quantitative wide-field, fluorescence microscopy. We evaluated co-localization of TGF-β1 with vascular smooth muscle cells (SMC) (high molecular weight caldesmon), fibroblasts (TE-7 antigen), macrophages (CD163), T cells (CD3) and endothelial cells (CD31). Collagen was stained with Masson Trichrome and collagen density was determined by quantitative bright-field microscopy with multi-spectral imaging. Results Collagen density increased from CTRL to PAD-II to PAD-IV specimens (all differences p < 0.05) and was prominent around microvessels. TGF-β1 expression increased with advancing disease (all differences p < 0.05), correlated with collagen density across all specimens (r = 0.864; p < 0.001), associated with fibroblast accumulation, and was observed exclusively in SMC. TGF-β1 expression inversely correlated with ankle-brachial index across PAD patients (r = −0.698; p < 0.001). Conclusions Our findings support a progressive fibrosis in the gastrocnemius of PAD patients that is caused by elevated TGF-β1 production in the SMC of microvessels in response to tissue hypoxia. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0790-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Duy M Ha
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA. .,Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Lauren C Carpenter
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Panagiotis Koutakis
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Stanley A Swanson
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Zhen Zhu
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Mina Hanna
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Holly K DeSpiegelaere
- Department of Surgery and VA Research Service, VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA.
| | - Iraklis I Pipinos
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA. .,Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA. .,Department of Surgery and VA Research Service, VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA. .,983280 Nebraska Medical Center, Omaha, NE, 68198-7690, USA.
| | - George P Casale
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA. .,987690 Nebraska Medical Center, Omaha, NE, 68198-7690, USA.
| |
Collapse
|
4
|
Huang X, Irmak S, Lu YF, Pipinos I, Casale G, Subbiah J. Spontaneous and coherent anti-Stokes Raman spectroscopy of human gastrocnemius muscle biopsies in CH-stretching region for discrimination of peripheral artery disease. BIOMEDICAL OPTICS EXPRESS 2015; 6:2766-2777. [PMID: 26309742 PMCID: PMC4541506 DOI: 10.1364/boe.6.002766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/21/2015] [Accepted: 06/24/2015] [Indexed: 06/04/2023]
Abstract
Peripheral Artery Disease (PAD) is a common manifestation of atherosclerosis, characterized by lower leg ischemia and myopathy in association with leg dysfunction. In the present study, Spontaneous and coherent anti-Stokes Raman scattering (CARS) spectroscopic techniques in CH-stretching spectral region were evaluated for discriminating healthy and diseased tissues of human gastrocnemius biopsies of control and PAD patients. Since Raman signatures of the tissues in the fingerprint region are highly complex and CH containing moieties are dense, CH-stretching limited spectral range was used to classify the diseased tissues. A total of 181 Raman spectra from 9 patients and 122 CARS spectra from 12 patients were acquired. Due to the high dimensionality of the data in Raman and CARS measurements, principal component analysis (PCA) was first performed to reduce the dimensionality of the data (6 and 9 principal scores for Raman and CARS, respectively) in the CH-stretching region, followed by a discriminant function analysis (DFA) to classify the samples into different categories based on disease severity. The CH2 and CH3 vibrational signatures were observed in the Raman and CARS spectroscopy. Raman and CARS data in conjunction with PCA-DFA analysis were capable of differentiating healthy and PAD gastrocnemius with an accuracy of 85.6% and 78.7%, respectively.
Collapse
Affiliation(s)
- X. Huang
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0511, USA
| | - S. Irmak
- Biological Systems Engineering, University of Nebraska, Lincoln, NE 68583-0726, USA
| | - Y. F. Lu
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0511, USA
| | - I. Pipinos
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198-5182, USA
| | - G. Casale
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198-5182, USA
| | - J. Subbiah
- Biological Systems Engineering, University of Nebraska, Lincoln, NE 68583-0726, USA
| |
Collapse
|