1
|
de Groot NMS, Kleber A, Narayan SM, Ciaccio EJ, Doessel O, Bernus O, Berenfeld O, Callans D, Fedorov V, Hummel J, Haissaguerre M, Natale A, Trayanova N, Spector P, Vigmond E, Anter E. Atrial fibrillation nomenclature, definitions, and mechanisms: Position paper from the international Working Group of the Signal Summit. Heart Rhythm 2024:S1547-5271(24)03564-1. [PMID: 39561931 DOI: 10.1016/j.hrthm.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/21/2024]
Abstract
The international Working Group of the Signal Summit is a consortium of experts in the field of cardiac electrophysiology dedicated to advancing knowledge on understanding and clinical application of signal recording and processing techniques. In 2023, the working group met in Reykjavik, Iceland, and laid the foundation for this manuscript. Atrial fibrillation (AF) is the most common arrhythmia in adults, with a rapidly increasing prevalence worldwide. Despite substantial research efforts, advancements in elucidating the underlying mechanisms of AF have been relatively modest. Since the discovery of pulmonary veins as a frequent trigger region for AF initiation more than 2½ decades ago, advancements in patient care have primarily focused on technologic innovations to improve the safety and efficacy of pulmonary vein isolation (PVI). Several factors may explain the limited scientific progress made. First, whereas AF initiation usually begins with an ectopic beat, the mechanisms of initiation, maintenance, and electrical propagation have not been fully elucidated in humans, largely owing to suboptimal spatiotemporal mapping. Second, underlying structural changes have not been clarified and may involve different types of reentry. Third, inconsistent definitions and terminology regarding fibrillatory characteristics contribute to the challenges of comparing results between studies. Fourth, a growing appreciation for phenotypical differences probably explains the wide range of clinical outcomes to catheter ablation in patients with seemingly similar AF types. Last, restoring sinus rhythm in advanced phenotypic forms of AF is often not feasible or may require extensive ablation with minimal or no positive impact on quality of life. The aims of this international position paper are to provide practical definitions as a foundation for discussing potential mechanisms and mapping results and to propose pathways toward meaningful advancements in AF research, ultimately leading to improved therapies for AF.
Collapse
Affiliation(s)
| | - Andre Kleber
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Sanjiv M Narayan
- Cardiovascular Division, Cardiovascular Institute, Institute of Computational and Mathematical Engineering, Stanford University, Stanford, California
| | - Edward J Ciaccio
- Division of Cardiology, Department of Medicine, Columbia University, New York, New York
| | - Olaf Doessel
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Olivier Bernus
- University of Bordeaux, INSERM, CRCTB, U1045, IHU Liryc, Bordeaux, France, Cardiac Arrhythmia Department, Bordeaux University Hospital, INSERM, Bordeaux, France
| | - Omer Berenfeld
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan
| | - David Callans
- Cardiac Electrophysiology Section, Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Vadim Fedorov
- Department of Physiology & Cell Biology, Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - John Hummel
- Section of Electrophysiology, Division of Cardiovascular Medicine, Ross Heart Hospital, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Michel Haissaguerre
- Department of Cardiac Electrophysiology and Stimulation, CHU Bordeaux, Pessac, France
| | - Andrea Natale
- Texas Cardiac Arrhythmia Institute, St David's Medical Center, Austin, Texas, Metro Health Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, Department of Biomedicine and Prevention, Division of Cardiology, University of Tor Vergata, Rome, Italy
| | - Natalia Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Peter Spector
- University of Vermont College of Medicine, Burlington, Vermont
| | - Edward Vigmond
- University of Bordeaux, CNRS, Bordeaux INP, IMB, UMR 5251, IHU Liryc, Talence, France
| | - Elad Anter
- Cardiovascular Division, Shamir Medical Center, Be'er Yaakov, Israel
| |
Collapse
|
2
|
Hunt B, Kwan E, Paccione E, Orkild B, Yazaki K, Bergquist J, Dong J, MacLeod RS, Dosdall DJ, Ranjan R. Are drivers recurring or ephemeral? observations from serial mapping of persistent atrial fibrillation. Europace 2024; 26:euae269. [PMID: 39418392 PMCID: PMC11542584 DOI: 10.1093/europace/euae269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
AIMS Rotational re-entries and ectopic foci, or 'drivers', are proposed mechanisms for persistent atrial fibrillation (persAF), but driver-based interventions have had mixed success in clinical trials. Selective targeting of drivers with multi-month stability may improve these interventions, but no prior work has investigated whether drivers can be stable on such a long timescale. OBJECTIVE We hypothesized that drivers could recur even several months after initial observation. METHODS AND RESULTS We performed serial electrophysiology studies on paced canines (n = 18, 27-35 kg) at 1-, 3-, and 6 months post-initiation of continual persAF. Using a high-density 64-electrode catheter, we captured endocardial electrograms in the left atrium (LA) and right atrium (RA) to determine the presence of drivers at each major anatomical site. We defined drivers that were repeatedly observed across consecutive studies to be recurrent. The mean probability that any driver would recur was 66% (LA: 73%, RA: 41%). We also found evidence of 'multi-recurring' drivers, i.e. those seen in all three studies. Multi-recurring drivers constituted 53% of initially observed drivers with at least one found in 92% of animals, and we found more multi-recurring drivers per animal than predicted by random chance (2.6 ± 1.5 vs. 1.2 ± 1.1, P < 0.001). Driver sites showed more enhancement than non-drivers during late gadolinium enhancement-magnetic resonance imaging (P = 0.04), but we observed no relationship between enhancement and driver recurrence type. CONCLUSION We observed recurring drivers over a 6-month period at fixed locations, confirming our hypothesis. We also found drivers to be associated with fibrosis, implying a structural basis.
Collapse
Affiliation(s)
- Bram Hunt
- Department of Biomedical Engineering, 36 S. Wasatch Drive, SMBB 3100, University of Utah, Salt Lake City, UT 84112, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, 95 S 2000 E, Bldg. 500, University of Utah, Salt Lake City, UT 84112, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, 30 North Mario Capecchi Dr, 3rd Floor North, University of Utah, Salt Lake City, UT 84112, USA
| | - Eugene Kwan
- Department of Biomedical Engineering, 36 S. Wasatch Drive, SMBB 3100, University of Utah, Salt Lake City, UT 84112, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, 95 S 2000 E, Bldg. 500, University of Utah, Salt Lake City, UT 84112, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, 30 North Mario Capecchi Dr, 3rd Floor North, University of Utah, Salt Lake City, UT 84112, USA
| | - Eric Paccione
- Department of Biomedical Engineering, 36 S. Wasatch Drive, SMBB 3100, University of Utah, Salt Lake City, UT 84112, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, 95 S 2000 E, Bldg. 500, University of Utah, Salt Lake City, UT 84112, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, 30 North Mario Capecchi Dr, 3rd Floor North, University of Utah, Salt Lake City, UT 84112, USA
| | - Benjamin Orkild
- Department of Biomedical Engineering, 36 S. Wasatch Drive, SMBB 3100, University of Utah, Salt Lake City, UT 84112, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, 95 S 2000 E, Bldg. 500, University of Utah, Salt Lake City, UT 84112, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, 30 North Mario Capecchi Dr, 3rd Floor North, University of Utah, Salt Lake City, UT 84112, USA
| | - Kyoichiro Yazaki
- Nora Eccles Harrison Cardiovascular Research and Training Institute, 95 S 2000 E, Bldg. 500, University of Utah, Salt Lake City, UT 84112, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, 30 North Mario Capecchi Dr, 3rd Floor North, University of Utah, Salt Lake City, UT 84112, USA
| | - Jake Bergquist
- Department of Biomedical Engineering, 36 S. Wasatch Drive, SMBB 3100, University of Utah, Salt Lake City, UT 84112, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, 95 S 2000 E, Bldg. 500, University of Utah, Salt Lake City, UT 84112, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, 30 North Mario Capecchi Dr, 3rd Floor North, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiawei Dong
- Department of Biomedical Engineering, 36 S. Wasatch Drive, SMBB 3100, University of Utah, Salt Lake City, UT 84112, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, 95 S 2000 E, Bldg. 500, University of Utah, Salt Lake City, UT 84112, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, 30 North Mario Capecchi Dr, 3rd Floor North, University of Utah, Salt Lake City, UT 84112, USA
| | - Robert S MacLeod
- Department of Biomedical Engineering, 36 S. Wasatch Drive, SMBB 3100, University of Utah, Salt Lake City, UT 84112, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, 95 S 2000 E, Bldg. 500, University of Utah, Salt Lake City, UT 84112, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA
| | - Derek J Dosdall
- Department of Biomedical Engineering, 36 S. Wasatch Drive, SMBB 3100, University of Utah, Salt Lake City, UT 84112, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, 95 S 2000 E, Bldg. 500, University of Utah, Salt Lake City, UT 84112, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, 30 North Mario Capecchi Dr, 3rd Floor North, University of Utah, Salt Lake City, UT 84112, USA
- Division of Cardiothoracic Surgery, Department of Surgery, University of Utah, Salt Lake City, UT, USA
| | - Ravi Ranjan
- Department of Biomedical Engineering, 36 S. Wasatch Drive, SMBB 3100, University of Utah, Salt Lake City, UT 84112, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, 95 S 2000 E, Bldg. 500, University of Utah, Salt Lake City, UT 84112, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, 30 North Mario Capecchi Dr, 3rd Floor North, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
3
|
Medvedev RY, Afolabi SO, Turner DGP, Glukhov AV. Mechanisms of stretch-induced electro-anatomical remodeling and atrial arrhythmogenesis. J Mol Cell Cardiol 2024; 193:11-24. [PMID: 38797242 PMCID: PMC11260238 DOI: 10.1016/j.yjmcc.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Atrial fibrillation (AF) is the most common cardiac rhythm disorder, often occurring in the setting of atrial distension and elevated myocardialstretch. While various mechano-electrochemical signal transduction pathways have been linked to AF development and progression, the underlying molecular mechanisms remain poorly understood, hampering AF therapies. In this review, we describe different aspects of stretch-induced electro-anatomical remodeling as seen in animal models and in patients with AF. Specifically, we focus on cellular and molecular mechanisms that are responsible for mechano-electrochemical signal transduction and the development of ectopic beats triggering AF from pulmonary veins, the most common source of paroxysmal AF. Furthermore, we describe structural changes caused by stretch occurring before and shortly after the onset of AF as well as during AF progression, contributing to longstanding forms of AF. We also propose mechanical stretch as a new dimension to the concept "AF begets AF", in addition to underlying diseases. Finally, we discuss the mechanisms of these electro-anatomical alterations in a search for potential therapeutic strategies and the development of novel antiarrhythmic drugs targeted at the components of mechano-electrochemical signal transduction not only in cardiac myocytes, but also in cardiac non-myocyte cells.
Collapse
Affiliation(s)
- Roman Y Medvedev
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Saheed O Afolabi
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA; Department of Pharmacology and Therapeutics, University of Ilorin, Ilorin, Nigeria
| | - Daniel G P Turner
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Alexey V Glukhov
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
4
|
Colman MA, Sharma R, Aslanidi OV, Zhao J. Patchy fibrosis promotes trigger-substrate interactions that both generate and maintain atrial fibrillation. Interface Focus 2023; 13:20230041. [PMID: 38106913 PMCID: PMC10722214 DOI: 10.1098/rsfs.2023.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023] Open
Abstract
Fibrosis has been mechanistically linked to arrhythmogenesis in multiple cardiovascular conditions, including atrial fibrillation (AF). Previous studies have demonstrated that fibrosis can create functional barriers to conduction which may promote excitation wavebreak and the generation of re-entry, while also acting to pin re-entrant excitation in stable rotors during AF. However, few studies have investigated the role of fibrosis in the generation of AF triggers in detail. We apply our in-house computational framework to study the impact of fibrosis on the generation of AF triggers and trigger-substrate interactions in two- and three-dimensional atrial tissue models. Our models include a reduced and efficient description of stochastic, spontaneous cellular triggers as well as a simple model of heterogeneous inter-cellular coupling. Our results demonstrate that fibrosis promotes the emergence of focal excitations, primarily through reducing the electrotonic load on individual fibre strands. This enables excitation to robustly initiate within these single strands before spreading to neighbouring strands and inducing a full tissue focal excitation. Enhanced conduction block can allow trigger-substrate interactions that result in the emergence of complex, re-entrant excitation patterns. This study provides new insight into the mechanisms by which fibrosis promotes the triggers and substrate necessary to induce and sustain arrhythmia.
Collapse
Affiliation(s)
| | - Roshan Sharma
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Oleg V. Aslanidi
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Jichao Zhao
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Colman MA, Benson AP. A simple approach for image-based modelling of the heart that enables robust simulation of highly heterogeneous electrical excitation. Sci Rep 2023; 13:15119. [PMID: 37704647 PMCID: PMC10499818 DOI: 10.1038/s41598-023-39244-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/21/2023] [Indexed: 09/15/2023] Open
Abstract
Remodelling of cardiac tissue structure, including intercellular electrical coupling, is a major determinant of the complex and heterogeneous excitation patterns associated with cardiac arrhythmias. Evaluation of the precise mechanisms by which local tissue structure determines global arrhythmic excitation patterns is a major challenge that may be critically important for the development of effective treatment strategies. Computational modelling is a key tool in the study of cardiac arrhythmias, yet the established approaches for organ-scale modelling are unsuitable to capture the impact of local conduction heterogeneities; a novel approach is required to provide this multi-scale mechanistic insight. We present a fundamentally simple yet powerful approach to simulate electrical excitation in highly heterogeneous whole-heart models that exploits the underlying discreteness of the myocardium. Preliminary simulations demonstrate that this approach can capture lower conduction velocities and reproduce wave breakdown and the development of re-entry in a range of conditions.
Collapse
Affiliation(s)
- Michael A Colman
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, UK.
| | - Alan P Benson
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
6
|
Kalyanasundaram A, Li N, Augostini RS, Weiss R, Hummel JD, Fedorov VV. Three-dimensional functional anatomy of the human sinoatrial node for epicardial and endocardial mapping and ablation. Heart Rhythm 2023; 20:122-133. [PMID: 36113768 PMCID: PMC9897959 DOI: 10.1016/j.hrthm.2022.08.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 02/05/2023]
Abstract
The sinoatrial node (SAN) is the primary pacemaker of the human heart. It is a single, elongated, 3-dimensional (3D) intramural fibrotic structure located at the junction of the superior vena cava intercaval region bordering the crista terminalis (CT). SAN activation originates in the intranodal pacemakers and is conducted to the atria through 1 or more discrete sinoatrial conduction pathways. The complexity of the 3D SAN pacemaker structure and intramural conduction are underappreciated during clinical multielectrode mapping and ablation procedures of SAN and atrial arrhythmias. In fact, defining and targeting SAN is extremely challenging because, even during sinus rhythm, surface-only multielectrode mapping may not define the leading pacemaker sites in intramural SAN but instead misinterpret them as epicardial or endocardial exit sites through sinoatrial conduction pathways. These SAN exit sites may be distributed up to 50 mm along the CT beyond the ∼20-mm-long anatomic SAN structure. Moreover, because SAN reentrant tachycardia beats may exit through the same sinoatrial conduction pathway as during sinus rhythm, many SAN arrhythmias are underdiagnosed. Misinterpretation of arrhythmia sources and/or mechanisms (eg, enhanced automaticity, intranodal vs CT reentry) limits diagnosis and success of catheter ablation treatments for poorly understood SAN arrhythmias. The aim of this review is to provide a state-of-the-art overview of the 3D structure and function of the human SAN complex, mechanisms of SAN arrhythmias and available approaches for electrophysiological mapping, 3D structural imaging, pharmacologic interventions, and ablation to improve diagnosis and mechanistic treatment of SAN and atrial arrhythmias.
Collapse
Affiliation(s)
- Anuradha Kalyanasundaram
- Department of Physiology & Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio; Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Ning Li
- Department of Physiology & Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio; Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Ralph S Augostini
- Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, Ohio; Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Raul Weiss
- Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, Ohio; Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - John D Hummel
- Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, Ohio; Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Vadim V Fedorov
- Department of Physiology & Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio; Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| |
Collapse
|
7
|
Yamamoto C, Trayanova NA. Atrial fibrillation: Insights from animal models, computational modeling, and clinical studies. EBioMedicine 2022; 85:104310. [PMID: 36309006 PMCID: PMC9619190 DOI: 10.1016/j.ebiom.2022.104310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/25/2022] [Accepted: 10/04/2022] [Indexed: 11/11/2022] Open
Abstract
Atrial fibrillation (AF) is the most common human arrhythmia, affecting millions of patients worldwide. A combination of risk factors and comorbidities results in complex atrial remodeling, which increases AF vulnerability and persistence. Insights from animal models, clinical studies, and computational modeling have advanced the understanding of the mechanisms and pathophysiology of AF. Areas of heterogeneous pathological remodeling, as well as altered electrophysiological properties, serve as a substrate for AF drivers and spontaneous activations. The complex and individualized presentation of this arrhythmia suggests that mechanisms-based personalized approaches will likely be needed to overcome current challenges in AF management. In this paper, we review the insights on the mechanisms of AF obtained from animal models and clinical studies and how computational models integrate this knowledge to advance AF clinical management. We also assess the challenges that need to be overcome to implement these mechanistic models in clinical practice.
Collapse
Affiliation(s)
- Carolyna Yamamoto
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Natalia A. Trayanova
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Alliance for Cardiovascular Diagnostic and Treatment Innovation (ADVANCE), Johns Hopkins University, Baltimore, MD, USA,Corresponding author. Johns Hopkins, Johns Hopkins University, United States.
| |
Collapse
|
8
|
Osorio-Jaramillo E, Cox JL, Klenk S, Kaider A, Angleitner P, Werner P, Strassl A, Mach M, Laufer G, Ehrlich MP, Ad N. Dynamic electrophysiological mechanism in patients with long-standing persistent atrial fibrillation. Front Cardiovasc Med 2022; 9:953622. [PMID: 36247427 PMCID: PMC9556291 DOI: 10.3389/fcvm.2022.953622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Background Improved understanding of the mechanisms that sustain persistent and long-standing persistent atrial fibrillation (LSpAF) is essential for providing better ablation solutions. The findings of traditional catheter-based electrophysiological studies can be impacted by the sedation required for these procedures. This is not required in non-invasive body-surface mapping (ECGI). ECGI allows for multiple mappings in the same patient at different times. This would expose potential electrophysiological changes over time, such as the location and stability of extra-pulmonary vein drivers and activation patterns in sustained AF. Materials and methods In this electrophysiological study, 10 open-heart surgery candidates with LSpAF, without previous ablation procedures (6 male, median age 73 years), were mapped on two occasions with a median interval of 11 days (IQR: 8–19) between mappings. Bi-atrial epicardial activation sequences were acquired using ECGI (CardioInsight™, Minneapolis, MN, United States). Results Bi-atrial electrophysiological abnormalities were documented in all 20 mappings. Interestingly, the anatomic location of focal and rotor activities changed between the mappings in all patients [100% showed changes, 95%CI (69.2–100%), p < 0.001]. Neither AF driver type nor their number varied significantly between the mappings in any patient (median total number of focal activities 8 (IQR: 1–16) versus 6 (IQR: 2–12), p = 0.68; median total number of rotor activities 48 (IQR: 44–67) versus 55 (IQR: 44–61), p = 0.30). However, individual zones showed a high number of quantitative changes (increase/decrease) of driver activity. Most changes of focal activity were found in the left atrial appendage, the region of the left lower pulmonary vein and the right atrial appendage. Most changes in rotor activity were found also at the left lower pulmonary vein region, the upper half of the right atrium and the right atrial appendage. Conclusion This clinical study documented that driver location and activation patterns in patients with LSpAF changes constantly. Furthermore, bi-atrial pathophysiology was demonstrated, which underscores the importance of treating both atria in LSpAF and the significant role that arrhythmogenic drivers outside the pulmonary veins seem to have in maintaining this complex arrhythmia.
Collapse
Affiliation(s)
- Emilio Osorio-Jaramillo
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
- *Correspondence: Emilio Osorio-Jaramillo,
| | - James L. Cox
- Division of Cardiac Surgery, Bluhm Cardiovascular Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Sarah Klenk
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
- Division of Cardiology, Clinic Favoriten, Vienna, Austria
| | - Alexandra Kaider
- Department of Cardiac Surgery, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Philipp Angleitner
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Paul Werner
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Andreas Strassl
- Division of Cardiovascular and Interventional Radiology, Medical University of Vienna, Vienna, Austria
| | - Markus Mach
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Guenther Laufer
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Marek P. Ehrlich
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Niv Ad
- Cardiothoracic Surgery, Adventist HealthCare White Oak Medical Center, Silver Spring, MD, United States
- Division of Cardiac Surgery, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
9
|
Falkenberg M, Coleman JA, Dobson S, Hickey DJ, Terrill L, Ciacci A, Thomas B, Sau A, Ng FS, Zhao J, Peters NS, Christensen K. Identifying locations susceptible to micro-anatomical reentry using a spatial network representation of atrial fibre maps. PLoS One 2022; 17:e0267166. [PMID: 35737662 PMCID: PMC9223322 DOI: 10.1371/journal.pone.0267166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/03/2022] [Indexed: 11/18/2022] Open
Abstract
Micro-anatomical reentry has been identified as a potential driver of atrial fibrillation (AF). In this paper, we introduce a novel computational method which aims to identify which atrial regions are most susceptible to micro-reentry. The approach, which considers the structural basis for micro-reentry only, is based on the premise that the accumulation of electrically insulating interstitial fibrosis can be modelled by simulating percolation-like phenomena on spatial networks. Our results suggest that at high coupling, where micro-reentry is rare, the micro-reentrant substrate is highly clustered in areas where the atrial walls are thin and have convex wall morphology, likely facilitating localised treatment via ablation. However, as transverse connections between fibres are removed, mimicking the accumulation of interstitial fibrosis, the substrate becomes less spatially clustered, and the bias to forming in thin, convex regions of the atria is reduced, possibly restricting the efficacy of localised ablation. Comparing our algorithm on image-based models with and without atrial fibre structure, we find that strong longitudinal fibre coupling can suppress the micro-reentrant substrate, whereas regions with disordered fibre orientations have an enhanced risk of micro-reentry. With further development, these methods may be useful for modelling the temporal development of the fibrotic substrate on an individualised basis.
Collapse
Affiliation(s)
- Max Falkenberg
- Centre for Complexity Science, Imperial College London, London, United Kingdom
- Department of Physics, Imperial College London, London, United Kingdom
- ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - James A. Coleman
- Department of Physics, Imperial College London, London, United Kingdom
| | - Sam Dobson
- Department of Physics, Imperial College London, London, United Kingdom
| | - David J. Hickey
- Department of Physics, Imperial College London, London, United Kingdom
| | - Louie Terrill
- Department of Physics, Imperial College London, London, United Kingdom
| | - Alberto Ciacci
- Centre for Complexity Science, Imperial College London, London, United Kingdom
- Department of Physics, Imperial College London, London, United Kingdom
- ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Belvin Thomas
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Arunashis Sau
- ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Fu Siong Ng
- ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Jichao Zhao
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Nicholas S. Peters
- ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Kim Christensen
- Centre for Complexity Science, Imperial College London, London, United Kingdom
- Department of Physics, Imperial College London, London, United Kingdom
- ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
10
|
Young LJ, Antwi-Boasiako S, Ferrall J, Wold LE, Mohler PJ, El Refaey M. Genetic and non-genetic risk factors associated with atrial fibrillation. Life Sci 2022; 299:120529. [PMID: 35385795 PMCID: PMC9058231 DOI: 10.1016/j.lfs.2022.120529] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/08/2022] [Accepted: 03/31/2022] [Indexed: 12/15/2022]
Abstract
Atrial fibrillation (AF) is the most common arrhythmic disorder and its prevalence in the United States is projected to increase to more than twelve million cases in 2030. AF increases the risk of other forms of cardiovascular disease, including stroke. As the incidence of atrial fibrillation increases dramatically with age, it is paramount to elucidate risk factors underlying AF pathogenesis. Here, we review tissue and cellular pathways underlying AF, as well as critical components that impact AF susceptibility including genetic and environmental risk factors. Finally, we provide the latest information on potential links between SARS-CoV-2 and human AF. Improved understanding of mechanistic pathways holds promise in preventative care and early diagnostics, and also introduces novel targeted forms of therapy that might attenuate AF progression and maintenance.
Collapse
Affiliation(s)
- Lindsay J Young
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Steve Antwi-Boasiako
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Joel Ferrall
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Loren E Wold
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA; College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Peter J Mohler
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA; Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, USA
| | - Mona El Refaey
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; Department of Surgery, Division of Cardiac Surgery, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
11
|
Pope MTB, Kuklik P, Briosa E Gala A, Leo M, Mahmoudi M, Paisey J, Betts TR. Impact of Adenosine on Wavefront Propagation in Persistent Atrial Fibrillation: Insights From Global Noncontact Charge Density Mapping of the Left Atrium. J Am Heart Assoc 2022; 11:e021166. [PMID: 35621197 PMCID: PMC9238707 DOI: 10.1161/jaha.121.021166] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Adenosine shortens action potential duration and refractoriness and provokes atrial fibrillation. This study aimed to evaluate the effect of adenosine on mechanisms of wavefront propagation during atrial fibrillation. Methods and Results The study included 22 patients undergoing catheter ablation for persistent atrial fibrillation. Left atrial mapping was performed using the AcQMap charge density system before and after administration of intravenous adenosine at 1 or more of 3 time points during the procedure (before pulmonary vein isolation, after pulmonary vein isolation, and after nonpulmonary vein isolation ablation). Wave‐front propagation patterns were evaluated allowing identification and quantification of localized rotational activation (LRA), localized irregular activation, and focal firing. Additional signal processing was performed to identify phase singularities and calculate global atrial fibrillation cycle length and dominant frequency. A total of 35 paired maps were analyzed. Adenosine shortened mean atrial fibrillation cycle length from 181.7±14.3 to 165.1±16.3, (mean difference 16.6 ms; 95% CI, 11.3–21.9, P<0.0005) and increased dominant frequency from 6.0±0.7 Hz to 6.6±0.8 Hz (95% CI, 0.4–0.9, P<0.0005). This was associated with a 50% increase in the number of LRA occurrences (16.1±7.6–24.2±8.1; mean difference 8.1, 95% CI, 4.1–12, P<0.0005) as well as a 20% increase in the number of phase singularities detected (30.1±7.8–36.6±9.3; mean difference 6.5; 95% CI, 2.6–10.0, P=0.002). The percentage of left atrial surface area with LRA increased with adenosine and 42 of 70 zones (60%) with highest density of LRA coincided with high density LRA zones at baseline with only 28% stable across multiple maps. Conclusions Adenosine accelerates atrial fibrillation and promotes rotational activation patterns with no impact on focal activation. There is little evidence that rotational activation seen with adenosine represents promising targets for ablation aimed at sites of stable arrhythmogenic sources in the left atrium.
Collapse
Affiliation(s)
- Michael T B Pope
- Oxford University Hospitals NHS Foundation Trust Oxford United Kingdom.,University of Southampton United Kingdom
| | - Pawel Kuklik
- Department of Cardiology Asklepios Clinic St. Georg Hamburg Germany
| | | | - Milena Leo
- Oxford University Hospitals NHS Foundation Trust Oxford United Kingdom
| | - Michael Mahmoudi
- University of Southampton United Kingdom.,Southampton University Hospitals NHS Foundation Trust Southampton United Kingdom
| | - John Paisey
- University of Southampton United Kingdom.,Southampton University Hospitals NHS Foundation Trust Southampton United Kingdom
| | - Timothy R Betts
- Oxford University Hospitals NHS Foundation Trust Oxford United Kingdom.,University of Oxford Biomedical Research Centre Oxford United Kingdom
| |
Collapse
|
12
|
Zaman JAB, Grace AA, Narayan SM. Future Directions for Mapping Atrial Fibrillation. Arrhythm Electrophysiol Rev 2022; 11:e08. [PMID: 35734143 PMCID: PMC9194915 DOI: 10.15420/aer.2021.52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/08/2021] [Indexed: 01/14/2023] Open
Abstract
Mapping for AF focuses on the identification of regions of interest that may guide management and - in particular - ablation therapy. Mapping may point to specific mechanisms associated with localised scar or fibrosis, or electrical features, such as localised repetitive, rotational or focal activation. In patients in whom AF is caused by disorganised waves with no spatial predilection, as proposed in the multiwavelet theory for AF, mapping would be of less benefit. The role of AF mapping is controversial at the current time in view of the debate over the underlying mechanisms. However, recent clinical expansions of mapping technologies confirm the importance of understanding the state of the art, including limitations of current approaches and potential areas of future development.
Collapse
Affiliation(s)
- Junaid AB Zaman
- Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Andrew A Grace
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Sanjiv M Narayan
- Cardiovascular Institute and Department of Medicine, Stanford University, CA, US
| |
Collapse
|
13
|
Bai J, Lu Y, Zhu Y, Wang H, Yin D, Zhang H, Franco D, Zhao J. Understanding PITX2-Dependent Atrial Fibrillation Mechanisms through Computational Models. Int J Mol Sci 2021; 22:7681. [PMID: 34299303 PMCID: PMC8307824 DOI: 10.3390/ijms22147681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 01/11/2023] Open
Abstract
Atrial fibrillation (AF) is a common arrhythmia. Better prevention and treatment of AF are needed to reduce AF-associated morbidity and mortality. Several major mechanisms cause AF in patients, including genetic predispositions to AF development. Genome-wide association studies have identified a number of genetic variants in association with AF populations, with the strongest hits clustering on chromosome 4q25, close to the gene for the homeobox transcription PITX2. Because of the inherent complexity of the human heart, experimental and basic research is insufficient for understanding the functional impacts of PITX2 variants on AF. Linking PITX2 properties to ion channels, cells, tissues, atriums and the whole heart, computational models provide a supplementary tool for achieving a quantitative understanding of the functional role of PITX2 in remodelling atrial structure and function to predispose to AF. It is hoped that computational approaches incorporating all we know about PITX2-related structural and electrical remodelling would provide better understanding into its proarrhythmic effects leading to development of improved anti-AF therapies. In the present review, we discuss advances in atrial modelling and focus on the mechanistic links between PITX2 and AF. Challenges in applying models for improving patient health are described, as well as a summary of future perspectives.
Collapse
Affiliation(s)
- Jieyun Bai
- College of Information Science and Technology, Jinan University, Guangzhou 510632, China; (Y.L.); (Y.Z.)
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
| | - Yaosheng Lu
- College of Information Science and Technology, Jinan University, Guangzhou 510632, China; (Y.L.); (Y.Z.)
| | - Yijie Zhu
- College of Information Science and Technology, Jinan University, Guangzhou 510632, China; (Y.L.); (Y.Z.)
| | - Huijin Wang
- College of Information Science and Technology, Jinan University, Guangzhou 510632, China; (Y.L.); (Y.Z.)
| | - Dechun Yin
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin 150000, China;
| | - Henggui Zhang
- Biological Physics Group, School of Physics & Astronomy, The University of Manchester, Manchester M13 9PL, UK;
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain;
| | - Jichao Zhao
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
14
|
Quintanilla JG, Shpun S, Jalife J, Filgueiras-Rama D. Novel approaches to mechanism-based atrial fibrillation ablation. Cardiovasc Res 2021; 117:1662-1681. [PMID: 33744913 PMCID: PMC8208747 DOI: 10.1093/cvr/cvab108] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/12/2021] [Accepted: 03/18/2021] [Indexed: 01/23/2023] Open
Abstract
Modern cardiac electrophysiology has reported significant advances in the understanding of mechanisms underlying complex wave propagation patterns during atrial fibrillation (AF), although disagreements remain. One school of thought adheres to the long-held postulate that AF is the result of randomly propagating wavelets that wonder throughout the atria. Another school supports the notion that AF is deterministic in that it depends on a small number of high-frequency rotors generating three-dimensional scroll waves that propagate throughout the atria. The spiralling waves are thought to interact with anatomic and functional obstacles, leading to fragmentation and new wavelet formation associated with the irregular activation patterns documented on AF tracings. The deterministic hypothesis is consistent with demonstrable hierarchical gradients of activation frequency and AF termination on ablation at specific (non-random) atrial regions. During the last decade, data from realistic animal models and pilot clinical series have triggered a new era of novel methodologies to identify and ablate AF drivers outside the pulmonary veins. New generation electroanatomical mapping systems and multielectrode mapping catheters, complimented by powerful mathematical analyses, have generated the necessary platforms and tools for moving these approaches into clinical procedures. Recent clinical data using such platforms have provided encouraging evidence supporting the feasibility of targeting and effectively ablating driver regions in addition to pulmonary vein isolation in persistent AF. Here, we review state-of-the-art technologies and provide a comprehensive historical perspective, characterization, classification, and expected outcomes of current mechanism-based methods for AF ablation. We discuss also the challenges and expected future directions that scientists and clinicians will face in their efforts to understand AF dynamics and successfully implement any novel method into regular clinical practice.
Collapse
Affiliation(s)
- Jorge G Quintanilla
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Cardiovascular Institute, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | - José Jalife
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Department of Internal Medicine, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - David Filgueiras-Rama
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Cardiovascular Institute, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
15
|
Heijman J, Sutanto H, Crijns HJGM, Nattel S, Trayanova NA. Computational models of atrial fibrillation: achievements, challenges, and perspectives for improving clinical care. Cardiovasc Res 2021; 117:1682-1699. [PMID: 33890620 PMCID: PMC8208751 DOI: 10.1093/cvr/cvab138] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Indexed: 12/11/2022] Open
Abstract
Despite significant advances in its detection, understanding and management, atrial fibrillation (AF) remains a highly prevalent cardiac arrhythmia with a major impact on morbidity and mortality of millions of patients. AF results from complex, dynamic interactions between risk factors and comorbidities that induce diverse atrial remodelling processes. Atrial remodelling increases AF vulnerability and persistence, while promoting disease progression. The variability in presentation and wide range of mechanisms involved in initiation, maintenance and progression of AF, as well as its associated adverse outcomes, make the early identification of causal factors modifiable with therapeutic interventions challenging, likely contributing to suboptimal efficacy of current AF management. Computational modelling facilitates the multilevel integration of multiple datasets and offers new opportunities for mechanistic understanding, risk prediction and personalized therapy. Mathematical simulations of cardiac electrophysiology have been around for 60 years and are being increasingly used to improve our understanding of AF mechanisms and guide AF therapy. This narrative review focuses on the emerging and future applications of computational modelling in AF management. We summarize clinical challenges that may benefit from computational modelling, provide an overview of the different in silico approaches that are available together with their notable achievements, and discuss the major limitations that hinder the routine clinical application of these approaches. Finally, future perspectives are addressed. With the rapid progress in electronic technologies including computing, clinical applications of computational modelling are advancing rapidly. We expect that their application will progressively increase in prominence, especially if their added value can be demonstrated in clinical trials.
Collapse
Affiliation(s)
- Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Henry Sutanto
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Harry J G M Crijns
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Stanley Nattel
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montreal, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Duisburg, Germany
- IHU Liryc and Fondation Bordeaux Université, Bordeaux, France
| | - Natalia A Trayanova
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
16
|
Mikhailov AV, Kalyanasundaram A, Li N, Scott SS, Artiga EJ, Subr MM, Zhao J, Hansen BJ, Hummel JD, Fedorov VV. Comprehensive evaluation of electrophysiological and 3D structural features of human atrial myocardium with insights on atrial fibrillation maintenance mechanisms. J Mol Cell Cardiol 2020; 151:56-71. [PMID: 33130148 DOI: 10.1016/j.yjmcc.2020.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022]
Abstract
Atrial fibrillation (AF) occurrence and maintenance is associated with progressive remodeling of electrophysiological (repolarization and conduction) and 3D structural (fibrosis, fiber orientations, and wall thickness) features of the human atria. Significant diversity in AF etiology leads to heterogeneous arrhythmogenic electrophysiological and structural substrates within the 3D structure of the human atria. Since current clinical methods have yet to fully resolve the patient-specific arrhythmogenic substrates, mechanism-based AF treatments remain underdeveloped. Here, we review current knowledge from in-vivo, ex-vivo, and in-vitro human heart studies, and discuss how these studies may provide new insights on the synergy of atrial electrophysiological and 3D structural features in AF maintenance. In-vitro studies on surgically acquired human atrial samples provide a great opportunity to study a wide spectrum of AF pathology, including functional changes in single-cell action potentials, ion channels, and gene/protein expression. However, limited size of the samples prevents evaluation of heterogeneous AF substrates and reentrant mechanisms. In contrast, coronary-perfused ex-vivo human hearts can be studied with state-of-the-art functional and structural technologies, such as high-resolution near-infrared optical mapping and contrast-enhanced MRI. These imaging modalities can resolve atrial arrhythmogenic substrates and their role in reentrant mechanisms maintaining AF and validate clinical approaches. Nonetheless, longitudinal studies are not feasible in explanted human hearts. As no approach is perfect, we suggest that combining the strengths of direct human atrial studies with high fidelity approaches available in the laboratory and in realistic patient-specific computer models would elucidate deeper knowledge of AF mechanisms. We propose that a comprehensive translational pipeline from ex-vivo human heart studies to longitudinal clinically relevant AF animal studies and finally to clinical trials is necessary to identify patient-specific arrhythmogenic substrates and develop novel AF treatments.
Collapse
Affiliation(s)
- Aleksei V Mikhailov
- Department of Physiology & Cell Biology, Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Arrhythmology Research Department, Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - Anuradha Kalyanasundaram
- Department of Physiology & Cell Biology, Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ning Li
- Department of Physiology & Cell Biology, Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Shane S Scott
- Department of Physiology & Cell Biology, Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Esthela J Artiga
- Department of Physiology & Cell Biology, Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Megan M Subr
- Department of Physiology & Cell Biology, Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jichao Zhao
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Brian J Hansen
- Department of Physiology & Cell Biology, Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - John D Hummel
- Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Vadim V Fedorov
- Department of Physiology & Cell Biology, Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
17
|
Hansen BJ, Zhao J, Helfrich KM, Li N, Iancau A, Zolotarev AM, Zakharkin SO, Kalyanasundaram A, Subr M, Dastagir N, Sharma R, Artiga EJ, Salgia N, Houmsse MM, Kahaly O, Janssen PML, Mohler PJ, Mokadam NA, Whitson BA, Afzal MR, Simonetti OP, Hummel JD, Fedorov VV. Unmasking Arrhythmogenic Hubs of Reentry Driving Persistent Atrial Fibrillation for Patient-Specific Treatment. J Am Heart Assoc 2020; 9:e017789. [PMID: 33006292 PMCID: PMC7792422 DOI: 10.1161/jaha.120.017789] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background Atrial fibrillation (AF) driver mechanisms are obscured to clinical multielectrode mapping approaches that provide partial, surface‐only visualization of unstable 3‐dimensional atrial conduction. We hypothesized that transient modulation of refractoriness by pharmacologic challenge during multielectrode mapping improves visualization of hidden paths of reentrant AF drivers for targeted ablation. Methods and Results Pharmacologic challenge with adenosine was tested in ex vivo human hearts with a history of AF and cardiac diseases by multielectrode and high‐resolution subsurface near‐infrared optical mapping, integrated with 3‐dimensional structural imaging and heart‐specific computational simulations. Adenosine challenge was also studied on acutely terminated AF drivers in 10 patients with persistent AF. Ex vivo, adenosine stabilized reentrant driver paths within arrhythmogenic fibrotic hubs and improved visualization of reentrant paths, previously seen as focal or unstable breakthrough activation pattern, for targeted AF ablation. Computational simulations suggested that shortening of atrial refractoriness by adenosine may (1) improve driver stability by annihilating spatially unstable functional blocks and tightening reentrant circuits around fibrotic substrates, thus unmasking the common reentrant path; and (2) destabilize already stable reentrant drivers along fibrotic substrates by accelerating competing fibrillatory wavelets or secondary drivers. In patients with persistent AF, adenosine challenge unmasked hidden common reentry paths (9/15 AF drivers, 41±26% to 68±25% visualization), but worsened visualization of previously visible reentry paths (6/15, 74±14% to 34±12%). AF driver ablation led to acute termination of AF. Conclusions Our ex vivo to in vivo human translational study suggests that transiently altering atrial refractoriness can stabilize reentrant paths and unmask arrhythmogenic hubs to guide targeted AF driver ablation treatment.
Collapse
Affiliation(s)
- Brian J Hansen
- Department of Physiology & Cell Biology and Frick Center for Heart Failure and Arrhythmia The Ohio State University Wexner Medical Center Columbus OH.,Davis Heart & Lung Research InstituteThe Ohio State University Wexner Medical Center Columbus OH
| | | | - Katelynn M Helfrich
- Department of Physiology & Cell Biology and Frick Center for Heart Failure and Arrhythmia The Ohio State University Wexner Medical Center Columbus OH.,Davis Heart & Lung Research InstituteThe Ohio State University Wexner Medical Center Columbus OH
| | - Ning Li
- Department of Physiology & Cell Biology and Frick Center for Heart Failure and Arrhythmia The Ohio State University Wexner Medical Center Columbus OH.,Davis Heart & Lung Research InstituteThe Ohio State University Wexner Medical Center Columbus OH
| | - Alexander Iancau
- Department of Physiology & Cell Biology and Frick Center for Heart Failure and Arrhythmia The Ohio State University Wexner Medical Center Columbus OH
| | - Alexander M Zolotarev
- Department of Physiology & Cell Biology and Frick Center for Heart Failure and Arrhythmia The Ohio State University Wexner Medical Center Columbus OH.,Skolkovo Institute of Science and Technology Moscow Russia
| | - Stanislav O Zakharkin
- Department of Physiology & Cell Biology and Frick Center for Heart Failure and Arrhythmia The Ohio State University Wexner Medical Center Columbus OH
| | - Anuradha Kalyanasundaram
- Department of Physiology & Cell Biology and Frick Center for Heart Failure and Arrhythmia The Ohio State University Wexner Medical Center Columbus OH.,Davis Heart & Lung Research InstituteThe Ohio State University Wexner Medical Center Columbus OH
| | - Megan Subr
- Department of Physiology & Cell Biology and Frick Center for Heart Failure and Arrhythmia The Ohio State University Wexner Medical Center Columbus OH
| | | | | | - Esthela J Artiga
- Department of Physiology & Cell Biology and Frick Center for Heart Failure and Arrhythmia The Ohio State University Wexner Medical Center Columbus OH.,Davis Heart & Lung Research InstituteThe Ohio State University Wexner Medical Center Columbus OH
| | - Nicholas Salgia
- Department of Physiology & Cell Biology and Frick Center for Heart Failure and Arrhythmia The Ohio State University Wexner Medical Center Columbus OH
| | - Mustafa M Houmsse
- Department of Physiology & Cell Biology and Frick Center for Heart Failure and Arrhythmia The Ohio State University Wexner Medical Center Columbus OH
| | - Omar Kahaly
- Davis Heart & Lung Research InstituteThe Ohio State University Wexner Medical Center Columbus OH.,Department of Internal Medicine The Ohio State University Wexner Medical Center Columbus OH
| | - Paul M L Janssen
- Department of Physiology & Cell Biology and Frick Center for Heart Failure and Arrhythmia The Ohio State University Wexner Medical Center Columbus OH.,Davis Heart & Lung Research InstituteThe Ohio State University Wexner Medical Center Columbus OH
| | - Peter J Mohler
- Department of Physiology & Cell Biology and Frick Center for Heart Failure and Arrhythmia The Ohio State University Wexner Medical Center Columbus OH.,Davis Heart & Lung Research InstituteThe Ohio State University Wexner Medical Center Columbus OH
| | - Nahush A Mokadam
- Davis Heart & Lung Research InstituteThe Ohio State University Wexner Medical Center Columbus OH.,Division of Cardiac Surgery The Ohio State University Wexner Medical Center Columbus OH
| | - Bryan A Whitson
- Davis Heart & Lung Research InstituteThe Ohio State University Wexner Medical Center Columbus OH.,Division of Cardiac Surgery The Ohio State University Wexner Medical Center Columbus OH
| | - Muhammad R Afzal
- Davis Heart & Lung Research InstituteThe Ohio State University Wexner Medical Center Columbus OH.,Department of Internal Medicine The Ohio State University Wexner Medical Center Columbus OH
| | - Orlando P Simonetti
- Davis Heart & Lung Research InstituteThe Ohio State University Wexner Medical Center Columbus OH.,Department of Biomedical Engineering The Ohio State University Wexner Medical Center Columbus OH
| | - John D Hummel
- Davis Heart & Lung Research InstituteThe Ohio State University Wexner Medical Center Columbus OH.,Department of Internal Medicine The Ohio State University Wexner Medical Center Columbus OH
| | - Vadim V Fedorov
- Department of Physiology & Cell Biology and Frick Center for Heart Failure and Arrhythmia The Ohio State University Wexner Medical Center Columbus OH.,Davis Heart & Lung Research InstituteThe Ohio State University Wexner Medical Center Columbus OH
| |
Collapse
|