1
|
Lee Y, Rhee H, Kim G, Cheong WH, Kim DH, Song H, Kay SN, Lee J, Kim KM. Flexible self-rectifying synapse array for energy-efficient edge multiplication in electrocardiogram diagnosis. Nat Commun 2025; 16:4312. [PMID: 40341085 DOI: 10.1038/s41467-025-59589-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 04/29/2025] [Indexed: 05/10/2025] Open
Abstract
Edge computing devices, which generate, collect, process, and analyze data near the source, enhance the data processing efficiency and improve the responsiveness in real-time applications or unstable network environments. To be utilized in wearable and skin-attached electronics, these edge devices must be compact, energy efficient for use in low-power environments, and fabricable on soft substrates. Here, we propose a flexible memristive dot product engine (f-MDPE) designed for edge use and demonstrate its feasibility in a real-time electrocardiogram (ECG) monitoring system. The f-MDPE comprises a 32 × 32 crossbar array embodying a low-temperature processed self-rectifying charge trap memristor on a flexible polyimide substrate and exhibits high uniformity and robust electrical and mechanical stability even under 5-mm bending conditions. Then, we design a neural network training algorithm through hardware-aware approaches and conduct real-time edge ECG diagnosis. This approach achieved an ECG classification accuracy of 93.5%, while consuming only 0.3% of the energy compared to digital approaches, highlighting the strong potential of this approach for emerging edge neuromorphic hardware.
Collapse
Affiliation(s)
- Younghyun Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hakseung Rhee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Geunyoung Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Woon Hyung Cheong
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Do Hoon Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hanchan Song
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sooyeon Narie Kay
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jongwon Lee
- Department of Semiconductor Convergence, Chungnam National University (CNU), 99 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Kyung Min Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
2
|
Islam S, Rjoub G, Elmekki H, Bentahar J, Pedrycz W, Cohen R. Machine learning innovations in CPR: a comprehensive survey on enhanced resuscitation techniques. Artif Intell Rev 2025; 58:233. [PMID: 40336660 PMCID: PMC12052767 DOI: 10.1007/s10462-025-11214-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2025] [Indexed: 05/09/2025]
Abstract
This survey paper explores the transformative role of Machine Learning (ML) and Artificial Intelligence (AI) in Cardiopulmonary Resuscitation (CPR), marking a paradigm shift from conventional, manually driven resuscitation practices to intelligent, data-driven interventions. It examines the evolution of CPR through the lens of predictive modeling, AI-enhanced devices, and real-time decision-making tools that collectively aim to improve resuscitation outcomes and survival rates. Unlike prior surveys that either focus solely on traditional CPR methods or offer general insights into ML applications in healthcare, this work provides a novel interdisciplinary synthesis tailored specifically to the domain of CPR. It presents a comprehensive taxonomy that classifies ML techniques into four key CPR-related tasks: rhythm analysis, outcome prediction, non-invasive blood pressure and chest compression modeling, and real-time detection of pulse and Return of Spontaneous Circulation (ROSC). The paper critically evaluates emerging ML approaches-including Reinforcement Learning (RL) and transformer-based models-while also addressing real-world implementation barriers such as model interpretability, data limitations, and deployment in high-stakes clinical settings. Furthermore, it highlights the role of eXplainable AI (XAI) in fostering clinical trust and adoption. By bridging the gap between resuscitation science and advanced ML techniques, this survey establishes a structured foundation for future research and practical innovation in ML-enhanced CPR. It offers clear insights, identifies unexplored opportunities, and sets a forward-looking research agenda identifying emerging trends and practical implementation challenges aiming to improve both the reliability and effectiveness of CPR in real-world emergencies.
Collapse
Affiliation(s)
- Saidul Islam
- Concordia Institute for Information Systems Engineering, Concordia University, Montreal, Canada
| | - Gaith Rjoub
- Concordia Institute for Information Systems Engineering, Concordia University, Montreal, Canada
- Faculty of Information Technology, Aqaba University of Technology, Aqaba, Jordan
| | - Hanae Elmekki
- Concordia Institute for Information Systems Engineering, Concordia University, Montreal, Canada
| | - Jamal Bentahar
- Department of Computer Science, 6 G Research Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Gina Cody School of Engineering and Computer Science, Concordia University, Montreal, Canada
| | - Witold Pedrycz
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
- Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland
- Research Center of Performance and Productivity Analysis, Istinye University, Sariyer/Istanbul, Turkey
| | - Robin Cohen
- David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada
| |
Collapse
|
3
|
Lee S, Jung S, Ahn S, Cho H, Moon S, Park JH. Comparison of Neural Network Structures for Identifying Shockable Rhythm During Cardiopulmonary Resuscitation. J Clin Med 2025; 14:738. [PMID: 39941409 PMCID: PMC11818625 DOI: 10.3390/jcm14030738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/30/2024] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: Minimizing interruptions in chest compressions is very important when resuscitating patients with cardiac arrest. Recently, research has analyzed electrocardiograms (ECGs) during chest compressions using convolutional neural networks (CNNs). This study aimed to compare the accuracy of deeper neural networks and more advanced structures. Methods: ECGs with chest compression artifacts were obtained from patients who visited the emergency department of Korea University Ansan Hospital from September 2019 to February 2024. We compared the accuracy of a deeper CNN, long short-term memory (LSTM), and a CNN with an attention mechanism and residual block against a reference model. The input of the model was 5 s ECG segments with compression artifacts, and the output was the probability that the ECG with the artifacts was a shockable rhythm. Results: A total of 1889 ECGs with compression artifacts from 172 patients were included in this study. There were 969 ECGs annotated as shockable and 920 as non-shockable. The area under the receiver operating characteristic curve (AUROC) of the reference model was 0.8672. The AUROCs of the deeper CNN for five and seven layers were 0.7374 and 0.6950, respectively. The AUROCs of LSTM and bidirectional LSTM were 0.7719 and 0.8287, respectively. The AUROC of the CNN with the attention mechanism and residual block was 0.7759. Conclusions: CNNs with deeper layers or those incorporating attention mechanisms, residual blocks, and LSTM architectures did not exhibit better accuracy. To improve the model accuracy, a larger dataset or advanced augmentation techniques may be required, rather than complicating the structure of the model.
Collapse
Affiliation(s)
- Sukyo Lee
- Department of Emergency Medicine, Korea University Ansan Hospital, Ansan-si 15355, Republic of Korea; (S.L.); (S.A.); (H.C.); (S.M.)
| | - Sumin Jung
- Core Research & Development Center, Korea University Ansan Hospital, Ansan-si 15355, Republic of Korea;
| | - Sejoong Ahn
- Department of Emergency Medicine, Korea University Ansan Hospital, Ansan-si 15355, Republic of Korea; (S.L.); (S.A.); (H.C.); (S.M.)
| | - Hanjin Cho
- Department of Emergency Medicine, Korea University Ansan Hospital, Ansan-si 15355, Republic of Korea; (S.L.); (S.A.); (H.C.); (S.M.)
| | - Sungwoo Moon
- Department of Emergency Medicine, Korea University Ansan Hospital, Ansan-si 15355, Republic of Korea; (S.L.); (S.A.); (H.C.); (S.M.)
| | - Jong-Hak Park
- Department of Emergency Medicine, Korea University Ansan Hospital, Ansan-si 15355, Republic of Korea; (S.L.); (S.A.); (H.C.); (S.M.)
| |
Collapse
|
4
|
Shao Y, Yang Z, Chen W, Zhang Y. Implementing an intelligent diagnosis and treatment system for in-hospital cardiac arrest in the Utstein style: a multi-center case study. J Transl Med 2024; 22:996. [PMID: 39497163 PMCID: PMC11536878 DOI: 10.1186/s12967-024-05792-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 10/21/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Cardiac arrest presents a variety of causes and complexities, making it challenging to develop targeted treatment plans. Often, the original data are either inadequate or lack essential patient information. In this study, we introduce an intelligent system for diagnosing and treating in-hospital cardiac arrest (IHCA), aimed at improving the success rate of cardiopulmonary resuscitation and restoring spontaneous circulation. METHODS To compensate for insufficient or incomplete data, a hybrid mega trend diffusion method was used to generate virtual samples, enhancing system performance. The core of the system is a modified episodic deep reinforcement learning module, which facilitates the diagnosis and treatment process while improving sample efficiency. Uncertainty analysis was performed using Monte Carlo simulations, and dependencies between different parameters were assessed using regular vine copula. The system's effectiveness was evaluated using ten years of data from Utstein-style IHCA registries across seven hospitals in China's Hebei Province. RESULTS The system demonstrated improved performance compared to other models, particularly in scenarios with inadequate data or missing patient information. The average reward scores in two key stages increased by 2.3-9 and 9.9-23, respectively. CONCLUSIONS The intelligent diagnosis and treatment effectively addresses IHCA, providing reliable diagnosis and treatment plans in IHCA scenarios. Moreover, it can effectively induce cardiopulmonary resuscitation and restoration of spontaneous circulation processes even when original data are insufficient or basic patient information is missing.
Collapse
Affiliation(s)
- Yan Shao
- Department of Emergency, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhou Yang
- System Integration Center, China Mobile Communication Group Hebei Co., LTD., Shijiazhuang, China
| | - Wei Chen
- System Integration Center, China Mobile Communication Group Hebei Co., LTD., Shijiazhuang, China
| | - Yingqi Zhang
- Department of Emergency, The First Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
5
|
Sridhar AR, Cheung JW, Lampert R, Silva JNA, Gopinathannair R, Sotomonte JC, Tarakji K, Fellman M, Chrispin J, Varma N, Kabra R, Mehta N, Al-Khatib SM, Mayfield JJ, Navara R, Rajagopalan B, Passman R, Fleureau Y, Shah MJ, Turakhia M, Lakkireddy D. State of the art of mobile health technologies use in clinical arrhythmia care. COMMUNICATIONS MEDICINE 2024; 4:218. [PMID: 39472742 PMCID: PMC11522556 DOI: 10.1038/s43856-024-00618-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 09/19/2024] [Indexed: 11/02/2024] Open
Abstract
The rapid growth in consumer-facing mobile and sensor technologies has created tremendous opportunities for patient-driven personalized health management. The diagnosis and management of cardiac arrhythmias are particularly well suited to benefit from these easily accessible consumer health technologies. In particular, smartphone-based and wrist-worn wearable electrocardiogram (ECG) and photoplethysmography (PPG) technology can facilitate relatively inexpensive, long-term rhythm monitoring. Here we review the practical utility of the currently available and emerging mobile health technologies relevant to cardiac arrhythmia care. We discuss the applications of these tools, which vary with respect to diagnostic performance, target populations, and indications. We also highlight that requirements for successful integration into clinical practice require adaptations to regulatory approval, data management, electronic medical record integration, quality oversight, and efforts to minimize the additional burden to health care professionals.
Collapse
Affiliation(s)
- Arun R Sridhar
- Cardiac Electrophysiology, Pulse Heart Institute, Multicare Health System, Tacoma, Washington, USA.
| | - Jim W Cheung
- Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Rachel Lampert
- Cardiovascular Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Jennifer N A Silva
- Washington University School of Medicine/St. Louis Children's Hospital, St. Louis, MO, USA
| | | | - Juan C Sotomonte
- Cardiovascular Center of Puerto Rico/University of Puerto Rico, San Juan, PR, USA
| | | | | | - Jonathan Chrispin
- Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Niraj Varma
- Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Rajesh Kabra
- Kansas City Heart Rhythm Institute, Overland Park, KS, USA
| | - Nishaki Mehta
- William Beaumont Oakland University School of Medicine, Rochester, MI, USA
| | - Sana M Al-Khatib
- Division of Cardiology, Duke University Medical Center, Durham, England
| | - Jacob J Mayfield
- Presbyterian Heart Group, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Rachita Navara
- Division of Cardiology, University of California at San Francisco, San Francisco, CA, USA
| | | | - Rod Passman
- Division of Cardiology, Northwestern University School of Medicine, Chicago, IL, USA
| | | | - Maully J Shah
- Division of Cardiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mintu Turakhia
- Center for Digital Health, Stanford University Stanford, Stanford, CA, USA
| | | |
Collapse
|
6
|
Ahn S, Jung S, Park JH, Cho H, Moon S, Lee S. Artificial intelligence for predicting shockable rhythm during cardiopulmonary resuscitation: In-hospital setting. Resuscitation 2024; 202:110325. [PMID: 39029581 DOI: 10.1016/j.resuscitation.2024.110325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
AIM OF THE STUDY This study aimed to develop an artificial intelligence (AI) model capable of predicting shockable rhythms from electrocardiograms (ECGs) with compression artifacts using real-world data from emergency department (ED) settings. Additionally, we aimed to explore the black box nature of AI models, providing explainability. METHODS This study is retrospective, observational study using a prospectively collected database. Adult patients who presented to the ED with cardiac arrest or experienced cardiac arrest in the ED between September 2021 and February 2024 were included. ECGs with a compression artifact of 5 s before every rhythm check were used for analysis. The AI model was designed based on convolutional neural networks. The ECG data were assigned into training, validation, and testing sets on a per-patient basis to ensure that ECGs from the same patient did not appear in multiple sets. Gradient-weighted class activation mapping was employed to demonstrate AI explainability. RESULTS A total of 1,889 ECGs with compression artifacts from 172 patients were used. The area under the receiver operating characteristic curve (AUROC) for shockable rhythm prediction was 0.8672 (95% confidence interval [CI]: 0.8161-0.9122). The AUROCs for manual and mechanical compression were 0.8771 (95% CI: 0.8054-0.9408) and 0.8466 (95% CI: 0.7630-0.9138), respectively. CONCLUSION This study was the first to accurately predict shockable rhythms during compression using an AI model trained with actual patient ECGs recorded during resuscitation. Furthermore, we demonstrated the explainability of the AI. This model can minimize interruption of cardiopulmonary resuscitation and potentially lead to improved outcomes.
Collapse
Affiliation(s)
- Sejoong Ahn
- Department of Emergency Medicine, Korea University Ansan Hospital, 15355 Ansan-si, Republic of Korea
| | - Sumin Jung
- Core Research & Development Center, Korea University Ansan Hospital, 15355 Ansan-si, Republic of Korea
| | - Jong-Hak Park
- Department of Emergency Medicine, Korea University Ansan Hospital, 15355 Ansan-si, Republic of Korea
| | - Hanjin Cho
- Department of Emergency Medicine, Korea University Ansan Hospital, 15355 Ansan-si, Republic of Korea
| | - Sungwoo Moon
- Department of Emergency Medicine, Korea University Ansan Hospital, 15355 Ansan-si, Republic of Korea
| | - Sukyo Lee
- Department of Emergency Medicine, Korea University Ansan Hospital, 15355 Ansan-si, Republic of Korea.
| |
Collapse
|
7
|
Didon JP, Jekova I, Frattini B, Ménétré S, Derkenne C, Ha VHT, Jost D, Krasteva V. Clinical performance of AED shock advisory system with integrated Analyze Whilst Compressing algorithm for analysis of the ECG rhythm during out-of-hospital cardiopulmonary resuscitation: A secondary analysis of the DEFI 2022 study. Resusc Plus 2024; 19:100740. [PMID: 39185280 PMCID: PMC11343048 DOI: 10.1016/j.resplu.2024.100740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
Objective This study involving automated external defibrillators (AEDs) in early treatment of refibrillation aims to evaluate the performance of a new shock advisory system (SAS) during chest compressions (CC) in out-of-hospital cardiac arrest (OHCA) patients. Methods This work focuses on AED SAS performance as a secondary outcome of DEFI 2022 clinical prospective study, which included first-analysis shockable OHCA patients. SAS employs the Analyze Whilst Compressing (AWC) algorithm to interact with both cardiopulmonary resuscitation (CPR) and shock advice by conditional operation of two-stage ECG analysis in presence or absence of chest compressions. AWC is triggered by the first-shock recommendation. Then, after 1 min of CPR, ECG analysis during CC decides between two treatment scenarios. For patients with refibrillation, CPR is paused for immediate confirmation analysis and shock advice. For patients with non-shockable rhythms, CPR is continued for 2 min until standard analysis. Results Clinical data from 285 OHCA patients with shock recommendation at the first-analysis by AEDs (DEFIGARD TOUCH7, Schiller Médical) consisted of 576 standard analyses, 2011 analyses during CC, 577 confirmation analyses in absence of CC. Global AED SAS performance meets the standard recommendations for arrhythmia analysis sensitivity (94.9%) and specificity (>99.3%). AWC provided innovative treatment of shockable rhythms by stopping CPR earlier than 2 min in most ventricular fibrillations (92.9%), while most non-shockable patients (86.5-95.2%) benefitted from continuous CPR for at least 2 min. Conclusion This study provides positive evidence for routine use of AEDs with AWC-integrated algorithm for ECG analysis during CPR by first-responders in early OHCA treatment.Clinical Trial Registration: Registration number: NCT04691089, trial register: ClinicalTrials.gov.
Collapse
Affiliation(s)
| | - Irena Jekova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl 105, 1113 Sofia, Bulgaria
| | - Benoît Frattini
- Paris Fire Brigade, 1 place Jules Renard, 75017 Paris, France
| | - Sarah Ménétré
- Schiller Médical SAS, 4 rue L. Pasteur, 67160 Wissembourg, France
| | | | | | - Daniel Jost
- Paris Fire Brigade, 1 place Jules Renard, 75017 Paris, France
| | - Vessela Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl 105, 1113 Sofia, Bulgaria
| |
Collapse
|
8
|
Nejad MPS, Kargin V, Hajeb-M S, Hicks D, Valentine M, Chon KH. Enhancing the accuracy of shock advisory algorithms in automated external defibrillators during ongoing cardiopulmonary resuscitation using a cascade of CNNEDs. Comput Biol Med 2024; 172:108180. [PMID: 38452474 DOI: 10.1016/j.compbiomed.2024.108180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/10/2024] [Accepted: 02/18/2024] [Indexed: 03/09/2024]
Abstract
Delivery of continuous cardiopulmonary resuscitation (CPR) plays an important role in the out-of-hospital cardiac arrest (OHCA) survival rate. However, to prevent CPR artifacts being superimposed on ECG morphology data, currently available automated external defibrillators (AEDs) require pauses in CPR for accurate analysis heart rhythms. In this study, we propose a novel Convolutional Neural Network-based Encoder-Decoder (CNNED) structure with a shock advisory algorithm to improve the accuracy and reliability of shock versus non-shock decision-making without CPR pause in OHCA scenarios. Our approach employs a cascade of CNNEDs in conjunction with an AED shock advisory algorithm to process the ECG data for shock decisions. Initially, a CNNED trained on an equal number of shockable and non-shockable rhythms is used to filter the CPR-contaminated data. The resulting filtered signal is then fed into a second CNNED, which is trained on imbalanced data more tilted toward the specific rhythm being analyzed. A reliable shock versus non-shock decision is made when both classifiers from the cascade structure agree, while segments with conflicting classifications are labeled as indeterminate, indicating the need for additional segments to analyze. To evaluate our approach, we generated CPR-contaminated ECG data by combining clean ECG data with 52 CPR samples. We used clean ECG data from the CUDB, AFDB, SDDB, and VFDB databases, to which 52 CPR artifact cases were added, while a separate test set provided by the AED manufacturer Defibtech LLC was used for performance evaluation. The test set comprised 20,384 non-shockable CPR-contaminated segments from 392 subjects, as well as 3744 shockable CPR-contaminated samples from 41 subjects with coarse ventricular fibrillation (VF) and 31 subjects with rapid ventricular tachycardia (rapid VT). We observed improvements in rhythm analysis using our proposed cascading CNNED structure when compared to using a single CNNED structure. Specifically, the specificity of the proposed cascade of CNNED structure increased from 99.14% to 99.35% for normal sinus rhythm and from 96.45% to 97.22% for other non-shockable rhythms. Moreover, the sensitivity for shockable rhythm detection increased from 90.90% to 95.41% for ventricular fibrillation and from 82.26% to 87.66% for rapid ventricular tachycardia. These results meet the performance thresholds set by the American Heart Association and demonstrate the reliable and accurate analysis of heart rhythms during CPR using only ECG data without the need for CPR interruptions or a reference signal.
Collapse
Affiliation(s)
| | | | - Shirin Hajeb-M
- Biomedical engineering department, University of Connecticut, Storrs, CT, 06269, USA; Philips Healthcare, Bothell, WA, 98021, USA.
| | | | | | - K H Chon
- Biomedical engineering department, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
9
|
Toy J, Bosson N, Schlesinger S, Gausche-Hill M, Stratton S. Artificial intelligence to support out-of-hospital cardiac arrest care: A scoping review. Resusc Plus 2023; 16:100491. [PMID: 37965243 PMCID: PMC10641545 DOI: 10.1016/j.resplu.2023.100491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/23/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
Background Artificial intelligence (AI) has demonstrated significant potential in supporting emergency medical services personnel during out-of-hospital cardiac arrest (OHCA) care; however, the extent of research evaluating this topic is unknown. This scoping review examines the breadth of literature on the application of AI in early OHCA care. Methods We conducted a search of PubMed®, Embase, and Web of Science in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews guidelines. Articles focused on non-traumatic OHCA and published prior to January 18th, 2023 were included. Studies were excluded if they did not use an AI intervention (including machine learning, deep learning, or natural language processing), or did not utilize data from the prehospital phase of care. Results Of 173 unique articles identified, 54 (31%) were included after screening. Of these studies, 15 (28%) were from the year 2022 and with an increasing trend annually starting in 2019. The majority were carried out by multinational collaborations (20/54, 38%) with additional studies from the United States (10/54, 19%), Korea (5/54, 10%), and Spain (3/54, 6%). Studies were classified into three major categories including ECG waveform classification and outcome prediction (24/54, 44%), early dispatch-level detection and outcome prediction (7/54, 13%), return of spontaneous circulation and survival outcome prediction (15/54, 20%), and other (9/54, 16%). All but one study had a retrospective design. Conclusions A small but growing body of literature exists describing the use of AI to augment early OHCA care.
Collapse
Affiliation(s)
- Jake Toy
- University of California Los Angeles, Fielding School of Public Health, 650 Charles E Young Drive South, Los Angeles, CA 90095, USA
- Harbor-UCLA Department of Emergency Medicine & The Lundquist Research Institute, 1000 W Carson Street, Torrance, CA 90502, USA
- Los Angeles County EMS Agency, 10100 Pioneer Blvd, Santa Fe Springs, CA 90670, USA
- David Geffen School of Medicine at UCLA, Department of Emergency Medicine, 10833 Le Conte Ave, Los Angeles, CA 90095, USA
| | - Nichole Bosson
- Harbor-UCLA Department of Emergency Medicine & The Lundquist Research Institute, 1000 W Carson Street, Torrance, CA 90502, USA
- Los Angeles County EMS Agency, 10100 Pioneer Blvd, Santa Fe Springs, CA 90670, USA
- David Geffen School of Medicine at UCLA, Department of Emergency Medicine, 10833 Le Conte Ave, Los Angeles, CA 90095, USA
| | - Shira Schlesinger
- Harbor-UCLA Department of Emergency Medicine & The Lundquist Research Institute, 1000 W Carson Street, Torrance, CA 90502, USA
- David Geffen School of Medicine at UCLA, Department of Emergency Medicine, 10833 Le Conte Ave, Los Angeles, CA 90095, USA
| | - Marianne Gausche-Hill
- Harbor-UCLA Department of Emergency Medicine & The Lundquist Research Institute, 1000 W Carson Street, Torrance, CA 90502, USA
- Los Angeles County EMS Agency, 10100 Pioneer Blvd, Santa Fe Springs, CA 90670, USA
- David Geffen School of Medicine at UCLA, Department of Emergency Medicine, 10833 Le Conte Ave, Los Angeles, CA 90095, USA
| | - Samuel Stratton
- University of California Los Angeles, Fielding School of Public Health, 650 Charles E Young Drive South, Los Angeles, CA 90095, USA
- Orange County California Emergency Medical Services Agency, 405 W. 5th Street, Santa Ana, CA 92705, USA
| |
Collapse
|
10
|
Okada Y, Mertens M, Liu N, Lam SSW, Ong MEH. AI and machine learning in resuscitation: Ongoing research, new concepts, and key challenges. Resusc Plus 2023; 15:100435. [PMID: 37547540 PMCID: PMC10400904 DOI: 10.1016/j.resplu.2023.100435] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023] Open
Abstract
Aim Artificial intelligence (AI) and machine learning (ML) are important areas of computer science that have recently attracted attention for their application to medicine. However, as techniques continue to advance and become more complex, it is increasingly challenging for clinicians to stay abreast of the latest research. This overview aims to translate research concepts and potential concerns to healthcare professionals interested in applying AI and ML to resuscitation research but who are not experts in the field. Main text We present various research including prediction models using structured and unstructured data, exploring treatment heterogeneity, reinforcement learning, language processing, and large-scale language models. These studies potentially offer valuable insights for optimizing treatment strategies and clinical workflows. However, implementing AI and ML in clinical settings presents its own set of challenges. The availability of high-quality and reliable data is crucial for developing accurate ML models. A rigorous validation process and the integration of ML into clinical practice is essential for practical implementation. We furthermore highlight the potential risks associated with self-fulfilling prophecies and feedback loops, emphasizing the importance of transparency, interpretability, and trustworthiness in AI and ML models. These issues need to be addressed in order to establish reliable and trustworthy AI and ML models. Conclusion In this article, we overview concepts and examples of AI and ML research in the resuscitation field. Moving forward, appropriate understanding of ML and collaboration with relevant experts will be essential for researchers and clinicians to overcome the challenges and harness the full potential of AI and ML in resuscitation.
Collapse
Affiliation(s)
- Yohei Okada
- Duke-NUS Medical School, National University of Singapore, Singapore
- Preventive Services, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mayli Mertens
- Antwerp Center for Responsible AI, Antwerp University, Belgium
- Centre for Ethics, Department of Philosophy, Antwerp University, Belgium
| | - Nan Liu
- Duke-NUS Medical School, National University of Singapore, Singapore
| | - Sean Shao Wei Lam
- Duke-NUS Medical School, National University of Singapore, Singapore
| | - Marcus Eng Hock Ong
- Duke-NUS Medical School, National University of Singapore, Singapore
- Department of Emergency Medicine, Singapore General Hospital
| |
Collapse
|
11
|
Chee ML, Chee ML, Huang H, Mazzochi K, Taylor K, Wang H, Feng M, Ho AFW, Siddiqui FJ, Ong MEH, Liu N. Artificial intelligence and machine learning in prehospital emergency care: A scoping review. iScience 2023; 26:107407. [PMID: 37609632 PMCID: PMC10440716 DOI: 10.1016/j.isci.2023.107407] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023] Open
Abstract
Our scoping review provides a comprehensive analysis of the landscape of artificial intelligence (AI) applications in prehospital emergency care (PEC). It contributes to the field by highlighting the most studied AI applications and identifying the most common methodological approaches across 106 included studies. The findings indicate a promising future for AI in PEC, with many unique use cases, such as prognostication, demand prediction, resource optimization, and the Internet of Things continuous monitoring systems. Comparisons with other approaches showed AI outperforming clinicians and non-AI algorithms in most cases. However, most studies were internally validated and retrospective, highlighting the need for rigorous prospective validation of AI applications before implementation in clinical settings. We identified knowledge and methodological gaps using an evidence map, offering a roadmap for future investigators. We also discussed the significance of explainable AI for establishing trust in AI systems among clinicians and facilitating real-world validation of AI models.
Collapse
Affiliation(s)
- Marcel Lucas Chee
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Mark Leonard Chee
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Haotian Huang
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Katelyn Mazzochi
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Kieran Taylor
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Han Wang
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Mengling Feng
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Andrew Fu Wah Ho
- Department of Emergency Medicine, Singapore General Hospital, Singapore, Singapore
- Pre-Hospital and Emergency Research Centre, Duke-NUS Medical School, Singapore, Singapore
| | - Fahad Javaid Siddiqui
- Pre-Hospital and Emergency Research Centre, Duke-NUS Medical School, Singapore, Singapore
| | - Marcus Eng Hock Ong
- Department of Emergency Medicine, Singapore General Hospital, Singapore, Singapore
- Pre-Hospital and Emergency Research Centre, Duke-NUS Medical School, Singapore, Singapore
| | - Nan Liu
- Pre-Hospital and Emergency Research Centre, Duke-NUS Medical School, Singapore, Singapore
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore, Singapore
- Institute of Data Science, National University of Singapore, Singapore, Singapore
| |
Collapse
|
12
|
Pan X, Wang C, Yu Y, Reljin N, McManus DD, Darling CE, Chon KH, Mendelson Y, Lee K. Deep cross-modal feature learning applied to predict acutely decompensated heart failure using in-home collected electrocardiography and transthoracic bioimpedance. Artif Intell Med 2023; 140:102548. [PMID: 37210152 PMCID: PMC10201018 DOI: 10.1016/j.artmed.2023.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Deep learning has been successfully applied to ECG data to aid in the accurate and more rapid diagnosis of acutely decompensated heart failure (ADHF). Previous applications focused primarily on classifying known ECG patterns in well-controlled clinical settings. However, this approach does not fully capitalize on the potential of deep learning, which directly learns important features without relying on a priori knowledge. In addition, deep learning applications to ECG data obtained from wearable devices have not been well studied, especially in the field of ADHF prediction. METHODS We used ECG and transthoracic bioimpedance data from the SENTINEL-HF study, which enrolled patients (≥21 years) who were hospitalized with a primary diagnosis of heart failure or with ADHF symptoms. To build an ECG-based prediction model of ADHF, we developed a deep cross-modal feature learning pipeline, termed ECGX-Net, that utilizes raw ECG time series and transthoracic bioimpedance data from wearable devices. To extract rich features from ECG time series data, we first adopted a transfer learning approach in which ECG time series were transformed into 2D images, followed by feature extraction using ImageNet-pretrained DenseNet121/VGG19 models. After data filtering, we applied cross-modal feature learning in which a regressor was trained with ECG and transthoracic bioimpedance. Then, we concatenated the DenseNet121/VGG19 features with the regression features and used them to train a support vector machine (SVM) without bioimpedance information. RESULTS The high-precision classifier using ECGX-Net predicted ADHF with a precision of 94 %, a recall of 79 %, and an F1-score of 0.85. The high-recall classifier with only DenseNet121 had a precision of 80 %, a recall of 98 %, and an F1-score of 0.88. We found that ECGX-Net was effective for high-precision classification, while DenseNet121 was effective for high-recall classification. CONCLUSION We show the potential for predicting ADHF from single-channel ECG recordings obtained from outpatients, enabling timely warning signs of heart failure. Our cross-modal feature learning pipeline is expected to improve ECG-based heart failure prediction by handling the unique requirements of medical scenarios and resource limitations.
Collapse
Affiliation(s)
- Xiang Pan
- Department of Biomedical Engineering, Worcester Polytechnic Institute, MA 01609, USA; Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Chuangqi Wang
- Department of Biomedical Engineering, Worcester Polytechnic Institute, MA 01609, USA
| | - Yudong Yu
- Robotics Engineering Program, Worcester Polytechnic Institute, MA 01609, USA
| | - Natasa Reljin
- Department of Biomedical Engineering, University of Connecticut, CT 06269, USA
| | - David D McManus
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Chad E Darling
- Department of Emergency Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Ki H Chon
- Department of Biomedical Engineering, University of Connecticut, CT 06269, USA.
| | - Yitzhak Mendelson
- Department of Biomedical Engineering, Worcester Polytechnic Institute, MA 01609, USA; Department of Electrical and Computer Engineering, Worcester Polytechnic Institute, MA 01609, USA.
| | - Kwonmoo Lee
- Department of Biomedical Engineering, Worcester Polytechnic Institute, MA 01609, USA; Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Surgery, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Krasteva V, Didon JP, Ménétré S, Jekova I. Deep Learning Strategy for Sliding ECG Analysis during Cardiopulmonary Resuscitation: Influence of the Hands-Off Time on Accuracy. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094500. [PMID: 37177703 PMCID: PMC10181605 DOI: 10.3390/s23094500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/29/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
This study aims to present a novel deep learning algorithm for a sliding shock advisory decision during cardiopulmonary resuscitation (CPR) and its performance evaluation as a function of the cumulative hands-off time. We retrospectively used 13,570 CPR episodes from out-of-hospital cardiac arrest (OHCA) interventions reviewed in a period of interest from 30 s before to 10 s after regular analysis of automated external defibrillators (AEDs). Three convolutional neural networks (CNNs) with raw ECG input (duration of 5, 10, and 15 s) were applied for the shock advisory decision during CPR in 26 sequential analyses shifted by 1 s. The start and stop of chest compressions (CC) can occur at arbitrary times in sequential slides; therefore, the sliding hands-off time (sHOT) quantifies the cumulative CC-free portion of the analyzed ECG. An independent test with CPR episodes in 393 ventricular fibrillations (VF), 177 normal sinus rhythms (NSR), 1848 other non-shockable rhythms (ONR), and 3979 asystoles (ASYS) showed a substantial improvement of VF sensitivity when increasing the analysis duration from 5 s to 10 s. Specificity was not dependent on the ECG analysis duration. The 10 s CNN model presented the best performance: 92-94.4% (VF), 92.2-94% (ASYS), 96-97% (ONR), and 98.2-99.5% (NSR) for sliding decision times during CPR; 98-99% (VF), 98.2-99.8% (ASYS), 98.8-99.1 (ONR), and 100% (NSR) for sliding decision times after end of CPR. We identified the importance of sHOT as a reliable predictor of performance, accounting for the minimal sHOT interval of 2-3 s that provides a reliable rhythm detection satisfying the American Heart Association (AHA) standards for AED rhythm analysis. The presented technology for sliding shock advisory decision during CPR achieved substantial performance improvement in short hands-off periods (>2 s), such as insufflations or pre-shock pauses. The performance was competitive despite 1-2.8% point lower ASYS detection during CPR than the standard requirement (95%) for non-noisy ECG signals. The presented deep learning strategy is a basis for improved CPR practices involving both continuous CC and CC with insufflations, associated with minimal CC interruptions for reconfirmation of non-shockable rhythms (minimum hands-off time) and early treatment of VF (minimal pre-shock pauses).
Collapse
Affiliation(s)
- Vessela Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl 105, 1113 Sofia, Bulgaria
| | | | - Sarah Ménétré
- Schiller Médical, 4 Rue Louis Pasteur, 67160 Wissembourg, France
| | - Irena Jekova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl 105, 1113 Sofia, Bulgaria
| |
Collapse
|
14
|
Martínez-Sellés M, Marina-Breysse M. Current and Future Use of Artificial Intelligence in Electrocardiography. J Cardiovasc Dev Dis 2023; 10:jcdd10040175. [PMID: 37103054 PMCID: PMC10145690 DOI: 10.3390/jcdd10040175] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/28/2023] Open
Abstract
Artificial intelligence (AI) is increasingly used in electrocardiography (ECG) to assist in diagnosis, stratification, and management. AI algorithms can help clinicians in the following areas: (1) interpretation and detection of arrhythmias, ST-segment changes, QT prolongation, and other ECG abnormalities; (2) risk prediction integrated with or without clinical variables (to predict arrhythmias, sudden cardiac death, stroke, and other cardiovascular events); (3) monitoring ECG signals from cardiac implantable electronic devices and wearable devices in real time and alerting clinicians or patients when significant changes occur according to timing, duration, and situation; (4) signal processing, improving ECG quality and accuracy by removing noise/artifacts/interference, and extracting features not visible to the human eye (heart rate variability, beat-to-beat intervals, wavelet transforms, sample-level resolution, etc.); (5) therapy guidance, assisting in patient selection, optimizing treatments, improving symptom-to-treatment times, and cost effectiveness (earlier activation of code infarction in patients with ST-segment elevation, predicting the response to antiarrhythmic drugs or cardiac implantable devices therapies, reducing the risk of cardiac toxicity, etc.); (6) facilitating the integration of ECG data with other modalities (imaging, genomics, proteomics, biomarkers, etc.). In the future, AI is expected to play an increasingly important role in ECG diagnosis and management, as more data become available and more sophisticated algorithms are developed.
Collapse
Affiliation(s)
- Manuel Martínez-Sellés
- Cardiology Department, Hospital General Universitario Gregorio Marañón, Calle Doctor Esquerdo, 46, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red-Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Facultad de Ciencias de la Salud, Universidad Europea, Villaviciosa de Odón, 28670 Madrid, Spain
- Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain
| | - Manuel Marina-Breysse
- Centro de Investigación Biomédica en Red-Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- IDOVEN Research, 28013 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Myocardial Pathophysiology Area, 28029 Madrid, Spain
| |
Collapse
|
15
|
Sem M, Mastrangelo E, Lightfoot D, Aves T, Lin S, Mohindra R. The ability of machine learning algorithms to predict defibrillation success during cardiac arrest: A systematic review. Resuscitation 2023; 185:109755. [PMID: 36842672 DOI: 10.1016/j.resuscitation.2023.109755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/28/2023]
Abstract
OBJECTIVE To evaluate the existing knowledge on the effectiveness of machine learning (ML) algorithms inpredicting defibrillation success during in- and out-of-hospital cardiac arrest. METHODS MEDLINE, Embase, CINAHL and Scopus were searched from inception to August 30, 2022. Studies were included that utilized ML algorithms for prediction of successful defibrillation, observed as return of spontaneous circulation (ROSC), survival to hospital or discharge, or neurological status at discharge.Studies were excluded if involving a trauma, an unknown underlying rhythm, an implanted cardiac defibrillator or if focused on the prediction or onset of cardiac arrest. Risk of bias was assessed using the PROBAST tool. RESULTS There were 2399 studies identified, of which 107 full text articles were reviewed and 15 observational studies (n = 5680) were included for final analysis. 29 ECG waveform features were fed into 15 different ML combinations. The best performing ML model had an accuracy of 98.6 (98.5 - 98.7)%, with 4 second ECG intervals. An algorithm incorporating end-tidal CO2 reported an accuracy of 83.3% (no CI reported). Meta-analysis was not performed due to heterogeneity in study design, ROSC definitions, and characteristics. CONCLUSION Machine learning algorithms, specifically Neural Networks, have been shown to have potential to predict defibrillation success for cardiac arrest with high sensitivity and specificity.Due to heterogeneity, inconsistent reporting, and high risk of bias, it is difficult to conclude which, if any, algorithm is optimal. Further clinical studies with standardized reporting of patient characteristics, outcomes, and appropriate algorithm validation are still required to elucidate this. PROSPERO 2020 CRD42020148912.
Collapse
Affiliation(s)
- Matthew Sem
- Department of Family and Community Medicine, University of Toronto, 4001 Leslie Street, Toronto, ON M2K 1E1, Canada.
| | - Emanuel Mastrangelo
- Department of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - David Lightfoot
- Health Sciences Library, Unity Health Toronto, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
| | - Theresa Aves
- Li Ka Shing Institute, St. Michael's Hospital, 36 Queen Street East, Toronto, ON M5B 1W8, Canada
| | - Steve Lin
- Department of Emergency Medicine, St. Michael's Hospital, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
| | - Rohit Mohindra
- Department of Emergency Medicine, North York General Hospital, 4001 Leslie Street, Toronto, ON M2K 1E1, Canada
| |
Collapse
|
16
|
Zuo F, Dai C, Wei L, Gong Y, Yin C, Li Y. Real-time amplitude spectrum area estimation during chest compression from the ECG waveform using a 1D convolutional neural network. Front Physiol 2023; 14:1113524. [PMID: 37153217 PMCID: PMC10157479 DOI: 10.3389/fphys.2023.1113524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction: Amplitude spectrum area (AMSA) is a well-established measure than can predict defibrillation outcome and guiding individualized resuscitation of ventricular fibrillation (VF) patients. However, accurate AMSA can only be calculated during cardiopulmonary resuscitation (CPR) pause due to artifacts produced by chest compression (CC). In this study, we developed a real-time AMSA estimation algorithm using a convolutional neural network (CNN). Methods: Data were collected from 698 patients, and the AMSA calculated from the uncorrupted signals served as the true value for both uncorrupted and the adjacent corrupted signals. An architecture consisting of a 6-layer 1D CNN and 3 fully connected layers was developed for AMSA estimation. A 5-fold cross-validation procedure was used to train, validate and optimize the algorithm. An independent testing set comprised of simulated data, real-life CC corrupted data, and preshock data was used to evaluate the performance. Results: The mean absolute error, root mean square error, percentage root mean square difference and correlation coefficient were 2.182/1.951 mVHz, 2.957/2.574 mVHz, 22.887/28.649% and 0.804/0.888 for simulated and real-life testing data, respectively. The area under the receiver operating characteristic curve regarding predicting defibrillation success was 0.835, which was comparable to that of 0.849 using the true value of the AMSA. Conclusions: AMSA can be accurately estimated during uninterrupted CPR using the proposed method.
Collapse
Affiliation(s)
- Feng Zuo
- Department of Biomedical Engineering and Imaging Medicine, Army Medical University, Chongqing, China
| | - Chenxi Dai
- Department of Biomedical Engineering and Imaging Medicine, Army Medical University, Chongqing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Liang Wei
- Department of Biomedical Engineering and Imaging Medicine, Army Medical University, Chongqing, China
| | - Yushun Gong
- Department of Biomedical Engineering and Imaging Medicine, Army Medical University, Chongqing, China
| | - Changlin Yin
- Department of Intensive Care, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yongqin Li
- Department of Biomedical Engineering and Imaging Medicine, Army Medical University, Chongqing, China
- *Correspondence: Yongqin Li,
| |
Collapse
|
17
|
Gong Y, Wei L, Yan S, Zuo F, Zhang H, Li Y. Transfer learning based deep network for signal restoration and rhythm analysis during cardiopulmonary resuscitation using only the ECG waveform. Inf Sci (N Y) 2023. [DOI: 10.1016/j.ins.2023.01.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
18
|
Brown G, Conway S, Ahmad M, Adegbie D, Patel N, Myneni V, Alradhawi M, Kumar N, Obaid DR, Pimenta D, Bray JJH. Role of artificial intelligence in defibrillators: a narrative review. Open Heart 2022; 9:openhrt-2022-001976. [PMID: 35790317 PMCID: PMC9258481 DOI: 10.1136/openhrt-2022-001976] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
Automated external defibrillators (AEDs) and implantable cardioverter defibrillators (ICDs) are used to treat life-threatening arrhythmias. AEDs and ICDs use shock advice algorithms to classify ECG tracings as shockable or non-shockable rhythms in clinical practice. Machine learning algorithms have recently been assessed for shock decision classification with increasing accuracy. Outside of rhythm classification alone, they have been evaluated in diagnosis of causes of cardiac arrest, prediction of success of defibrillation and rhythm classification without the need to interrupt cardiopulmonary resuscitation. This review explores the many applications of machine learning in AEDs and ICDs. While these technologies are exciting areas of research, there remain limitations to their widespread use including high processing power, cost and the ‘black-box’ phenomenon.
Collapse
Affiliation(s)
- Grace Brown
- Cardiology Department, Royal Free Hospital, London, UK
| | - Samuel Conway
- Cardiology Department, Royal Free Hospital, London, UK
| | - Mahmood Ahmad
- Medical Sciences, University College London, London, UK
| | - Divine Adegbie
- Cardiology Department, East and North Hertfordshire NHS Trust, Stevenage, Hertfordshire, UK
| | - Nishil Patel
- Cardiology Department, North Middlesex University Hospital, London, UK
| | | | | | - Niraj Kumar
- Institute of Cardiovascular Science, University College London, London, UK.,Cardiology Department, Barts Health NHS Trust, London, UK
| | - Daniel R Obaid
- Institute of Life Sciences, Swansea University, Swansea, UK
| | - Dominic Pimenta
- Cardiology Department, Richmond Research Institute, London, UK
| | - Jonathan J H Bray
- Cardiff University College of Biomedical and Life Sciences, Cardiff, UK
| |
Collapse
|
19
|
Hajeb-Mohammadalipour S, Hossain MB, Chon KH. Improving the Accuracy of R-Peak Detection in a Wearable Armband Device for Daily Life Electrocardiogram Monitoring Using a Deep Convolutional Denoising Encoder-Decoder Network. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:4291-4294. [PMID: 36085851 DOI: 10.1109/embc48229.2022.9871609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Continuous long-term heart rate (HR) monitoring using wearable devices is desirable to aid in the diagnosis of many health-related conditions. Recently, we have developed an armband device that does not use obstructive leads, has dry electrodes which are convenient for long-term electrocardiogram (ECG) recording, and has been shown to be an effective alternate approach for continuous ECG monitoring. However, motion artifacts (MA) due to electromyogram (EMG) contractions are acknowledged as the major challenge of an armband. In this study, we used a deep convolutional neural network denoising encoder-decoder (CNNDED) to enhance the accuracy of R-peak detection in MA-corrupted ECG recordings obtained by an armband device. We collected simultaneous 24-hour ECG recordings using both the armband device and a Holter monitor on 10 subjects. Each 10-sec ECG segment was converted to a time-frequency representation and subsequently used as the input to CNNDED. During the training process, the model learned to accentuate the location of R peaks by amplifying their values in each ECG beat and suppressing the remaining waveforms. For the training output, the model used the R-peak location information from the simultaneously collected Holter ECG data, which were considered as the reference. The performance of CNNDED was evaluated on an independent test data set using the standard performance metrics. The mean relative error of the estimated HR with respect to the Holter data was 17.5 and 7.3 beats/min, pre- and post-CNNDED, respectively. The mean relative difference of the root mean square of successive difference values were 0.23 and 0.06 before and after applying CNNDED, respectively. Although further study is needed, the current preliminary results suggest that CNNDED can improve detection of R peaks even when they are completely buried in the presence of EMG artifacts.
Collapse
|
20
|
Petmezas G, Stefanopoulos L, Kilintzis V, Tzavelis A, Rogers JA, Katsaggelos AK, Maglaveras N. State-of-the-art Deep Learning Methods on Electrocardiogram Data: A Systematic Review (Preprint). JMIR Med Inform 2022; 10:e38454. [PMID: 35969441 PMCID: PMC9425174 DOI: 10.2196/38454] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/03/2022] [Accepted: 07/03/2022] [Indexed: 11/13/2022] Open
Abstract
Background Electrocardiogram (ECG) is one of the most common noninvasive diagnostic tools that can provide useful information regarding a patient’s health status. Deep learning (DL) is an area of intense exploration that leads the way in most attempts to create powerful diagnostic models based on physiological signals. Objective This study aimed to provide a systematic review of DL methods applied to ECG data for various clinical applications. Methods The PubMed search engine was systematically searched by combining “deep learning” and keywords such as “ecg,” “ekg,” “electrocardiogram,” “electrocardiography,” and “electrocardiology.” Irrelevant articles were excluded from the study after screening titles and abstracts, and the remaining articles were further reviewed. The reasons for article exclusion were manuscripts written in any language other than English, absence of ECG data or DL methods involved in the study, and absence of a quantitative evaluation of the proposed approaches. Results We identified 230 relevant articles published between January 2020 and December 2021 and grouped them into 6 distinct medical applications, namely, blood pressure estimation, cardiovascular disease diagnosis, ECG analysis, biometric recognition, sleep analysis, and other clinical analyses. We provide a complete account of the state-of-the-art DL strategies per the field of application, as well as major ECG data sources. We also present open research problems, such as the lack of attempts to address the issue of blood pressure variability in training data sets, and point out potential gaps in the design and implementation of DL models. Conclusions We expect that this review will provide insights into state-of-the-art DL methods applied to ECG data and point to future directions for research on DL to create robust models that can assist medical experts in clinical decision-making.
Collapse
Affiliation(s)
- Georgios Petmezas
- Lab of Computing, Medical Informatics and Biomedical-Imaging Technologies, The Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Leandros Stefanopoulos
- Lab of Computing, Medical Informatics and Biomedical-Imaging Technologies, The Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vassilis Kilintzis
- Lab of Computing, Medical Informatics and Biomedical-Imaging Technologies, The Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andreas Tzavelis
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| | - John A Rogers
- Department of Material Science, Northwestern University, Evanston, IL, United States
| | - Aggelos K Katsaggelos
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, United States
| | - Nicos Maglaveras
- Lab of Computing, Medical Informatics and Biomedical-Imaging Technologies, The Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
21
|
Nasimi F, Yazdchi M. LDIAED: A lightweight deep learning algorithm implementable on automated external defibrillators. PLoS One 2022; 17:e0264405. [PMID: 35213628 PMCID: PMC8880955 DOI: 10.1371/journal.pone.0264405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/06/2022] [Indexed: 11/28/2022] Open
Abstract
Differentiating between shockable and non-shockable Electrocardiogram (ECG) signals would increase the success of resuscitation by the Automated External Defibrillators (AED). In this study, a Deep Neural Network (DNN) algorithm is used to distinguish 1.4-second segment shockable signals from non-shockable signals promptly. The proposed technique is frequency-independent and is trained with signals from diverse patients extracted from MIT-BIH, MIT-BIH Malignant Ventricular Ectopy Database (VFDB), and a database for ventricular tachyarrhythmia signals from Creighton University (CUDB) resulting, in an accuracy of 99.1%. Finally, the raspberry pi minicomputer is used to load the optimized version of the model on it. Testing the implemented model on the processor by unseen ECG signals resulted in an average latency of 0.845 seconds meeting the IEC 60601-2-4 requirements. According to the evaluated results, the proposed technique could be used by AED’s.
Collapse
Affiliation(s)
- Fahimeh Nasimi
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Mohammadreza Yazdchi
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
- * E-mail:
| |
Collapse
|
22
|
Hajeb-Mohammadalipour S, Cascella A, Valentine M, Chon KH. Automated Condition-Based Suppression of the CPR Artifact in ECG Data to Make a Reliable Shock Decision for AEDs during CPR. SENSORS (BASEL, SWITZERLAND) 2021; 21:8210. [PMID: 34960308 PMCID: PMC8708115 DOI: 10.3390/s21248210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022]
Abstract
Cardiopulmonary resuscitation (CPR) corrupts the morphology of the electrocardiogram (ECG) signal, resulting in an inaccurate automated external defibrillator (AED) rhythm analysis. Consequently, most current AEDs prohibit CPR during the rhythm analysis period, thereby decreasing the survival rate. To overcome this limitation, we designed a condition-based filtering algorithm that consists of three stop-band filters which are turned either 'on' or 'off' depending on the ECG's spectral characteristics. Typically, removing the artifact's higher frequency peaks in addition to the highest frequency peak eliminates most of the ECG's morphological disturbance on the non-shockable rhythms. However, the shockable rhythms usually have dynamics in the frequency range of (3-6) Hz, which in certain cases coincide with CPR compression's harmonic frequencies, hence, removing them may lead to destruction of the shockable signal's dynamics. The proposed algorithm achieves CPR artifact removal without compromising the integrity of the shockable rhythm by considering three different spectral factors. The dataset from the PhysioNet archive was used to develop this condition-based approach. To quantify the performance of the approach on a separate dataset, three performance metrics were computed: the correlation coefficient, signal-to-noise ratio (SNR), and accuracy of Defibtech's shock decision algorithm. This dataset, containing 14 s ECG segments of different types of rhythms from 458 subjects, belongs to Defibtech commercial AED's validation set. The CPR artifact data from 52 different resuscitators were added to artifact-free ECG data to create 23,816 CPR-contaminated data segments. From this, 82% of the filtered shockable and 70% of the filtered non-shockable ECG data were highly correlated (>0.7) with the artifact-free ECG; this value was only 13 and 12% for CPR-contaminated shockable and non-shockable, respectively, without our filtering approach. The SNR improvement was 4.5 ± 2.5 dB, averaging over the entire dataset. Defibtech's rhythm analysis algorithm was applied to the filtered data. We found a sensitivity improvement from 67.7 to 91.3% and 62.7 to 78% for VF and rapid VT, respectively, and specificity improved from 96.2 to 96.5% and 91.5 to 92.7% for normal sinus rhythm (NSR) and other non-shockables, respectively.
Collapse
Affiliation(s)
| | | | | | - Ki H. Chon
- Biomedical Engineering Department, University of Connecticut, Storrs, CT 06269, USA;
| |
Collapse
|
23
|
Optimization of End-to-End Convolutional Neural Networks for Analysis of Out-of-Hospital Cardiac Arrest Rhythms during Cardiopulmonary Resuscitation. SENSORS 2021; 21:s21124105. [PMID: 34203701 PMCID: PMC8232133 DOI: 10.3390/s21124105] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023]
Abstract
High performance of the shock advisory analysis of the electrocardiogram (ECG) during cardiopulmonary resuscitation (CPR) in out-of-hospital cardiac arrest (OHCA) is important for better management of the resuscitation protocol. It should provide fewer interruptions of chest compressions (CC) for non-shockable organized rhythms (OR) and Asystole, or prompt CC stopping for early treatment of shockable ventricular fibrillation (VF). Major disturbing factors are strong CC artifacts corrupting raw ECG, which we aimed to analyze with optimized end-to-end convolutional neural network (CNN) without pre-filtering or additional sensors. The hyperparameter random search of 1500 CNN models with 2-7 convolutional layers, 5-50 filters and 5-100 kernel sizes was done on large databases from independent OHCA interventions for training (3001 samples) and validation (2528 samples). The best model, named CNN3-CC-ECG network with three convolutional layers (filters@kernels: 5@5,25@20,50@20) presented Sensitivity Se(VF) = 89%(268/301), Specificity Sp(OR) = 91.7%(1504/1640), Sp(Asystole) = 91.1%(3325/3650) on an independent test OHCA database. CNN3-CC-ECG's ability to effectively extract features from raw ECG signals during CPR was comprehensively demonstrated, and the dependency on the CPR corruption level in ECG was tested. We denoted a significant drop of Se(VF) = 74.2% and Sp(OR) = 84.6% in very strong CPR artifacts with a signal-to-noise ratio of SNR < -9 dB, p < 0.05. Otherwise, for strong, moderate and weak CC artifacts (SNR > -9 dB, -6 dB, -3 dB), we observed insignificant performance differences: Se(VF) = 92.5-96.3%, Sp(OR) = 93.4-95.5%, Sp(Asystole) = 92.6-94.0%, p > 0.05. Performance stability with respect to CC rate was validated. Generalizable application of the optimized computationally efficient CNN model was justified by an independent OHCA database, which to our knowledge is the largest test dataset with real-life cardiac arrest rhythms during CPR.
Collapse
|
24
|
Hajeb-M S, Cascella A, Valentine M, Chon KH. Deep Neural Network Approach for Continuous ECG-Based Automated External Defibrillator Shock Advisory System During Cardiopulmonary Resuscitation. J Am Heart Assoc 2021; 10:e019065. [PMID: 33663222 PMCID: PMC8174215 DOI: 10.1161/jaha.120.019065] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Because chest compressions induce artifacts in the ECG, current automated external defibrillators instruct the user to stop cardiopulmonary resuscitation (CPR) while an automated rhythm analysis is performed. It has been shown that minimizing interruptions in CPR increases the chance of survival. Methods and Results The objective of this study was to apply a deep-learning algorithm using convolutional layers, residual networks, and bidirectional long short-term memory method to classify shockable versus nonshockable rhythms in the presence and absence of CPR artifact. Forty subjects' data from Physionet with 1131 shockable and 2741 nonshockable samples contaminated with 43 different CPR artifacts that were acquired from a commercial automated external defibrillator during asystole were used. We had separate data as train and test sets. Using our deep neural network model, the sensitivity and specificity of the shock versus no-shock decision for the entire data set over the 4-fold cross-validation sets were 95.21% and 86.03%, respectively. This result was based on the training and testing of the model using ECG data in both the presence and the absence of CPR artifact. For ECG without CPR artifact, the sensitivity was 99.04% and the specificity was 95.2%. A sensitivity of 94.21% and a specificity of 86.14% were obtained for ECG with CPR artifact. In addition to 4-fold cross-validation sets, we also examined leave-one-subject-out validation. The sensitivity and specificity for the case of leave-one-subject-out validation were 92.71% and 97.6%, respectively. Conclusions The proposed trained model can make shock versus nonshock decision in automated external defibrillators, regardless of CPR status. The results meet the American Heart Association's sensitivity requirement (>90%).
Collapse
Affiliation(s)
- Shirin Hajeb-M
- Biomedical Engineering Department University of Connecticut Storrs CT
| | | | | | - K H Chon
- Biomedical Engineering Department University of Connecticut Storrs CT
| |
Collapse
|