1
|
Raj Murthi S, Petry A, Shashikadze B, Stöckl JB, Schmid M, Santamaria G, Klingel K, Kračun D, Chen X, Bauer S, Schmitt JP, Flenkenthaler F, Gorham J, Toepfer CN, Potěšil D, Hruška P, Zdráhal Z, Mayer Z, Klop M, Lehmann L, Qin Y, Papanakli L, Spielmann N, Moretti A, Fröhlich T, Ewert P, Holdenrieder S, Seidman JG, Seidman CE, Görlach A, Wolf CM. Contribution of hypoxia-inducible factor 1alpha to pathogenesis of sarcomeric hypertrophic cardiomyopathy. Sci Rep 2025; 15:2132. [PMID: 39820339 PMCID: PMC11739497 DOI: 10.1038/s41598-025-85187-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 01/01/2025] [Indexed: 01/19/2025] Open
Abstract
Hypertrophic cardiomyopathy (HCM) caused by autosomal-dominant mutations in genes coding for structural sarcomeric proteins, is the most common inherited heart disease. HCM is associated with myocardial hypertrophy, fibrosis and ventricular dysfunction. Hypoxia-inducible transcription factor-1α (Hif-1α) is the central master regulators of cellular hypoxia response and associated with HCM. Yet its exact role remains to be elucidated. Therefore, the effect of a cardiomyocyte-specific Hif-1a knockout (cHif1aKO) was studied in an established α-MHC719/+ HCM mouse model that exhibits the classical features of human HCM. The results show that Hif-1α protein and HIF targets were upregulated in left ventricular tissue of α-MHC719/+ mice. Cardiomyocyte-specific abolishment of Hif-1a blunted the disease phenotype, as evidenced by decreased left ventricular wall thickness, reduced myocardial fibrosis, disordered SRX/DRX state and ROS production. cHif1aKO induced normalization of pro-hypertrophic and pro-fibrotic left ventricular remodeling signaling evidenced on whole transcriptome and proteomics analysis in α-MHC719/+ mice. Proteomics of serum samples from patients with early onset HCM revealed significant modulation of HIF. These results demonstrate that HIF signaling is involved in mouse and human HCM pathogenesis. Cardiomyocyte-specific knockout of Hif-1a attenuates disease phenotype in the mouse model. Targeting Hif-1α might serve as a therapeutic option to mitigate HCM disease progression.
Collapse
Affiliation(s)
- Sarala Raj Murthi
- Department of Congenital Heart Defects and Pediatric Cardiology, German Heart Center Munich, TUM University Hospital, School of Medicine & Health, Technical University of Munich, Munich, Germany
| | - Andreas Petry
- Experimental and Molecular Pediatric Cardiology, Department of Congenital Heart Defects and Pediatric Cardiology, German Heart Center Munich, TUM University Hospital, School of Medicine & Health, Technical University of Munich, Munich, Germany
| | - Bachuki Shashikadze
- Laboratory for Functional Genome Analysis LAFUGA Gene Center, LMU Munich, Munich, Germany
| | - Jan B Stöckl
- Laboratory for Functional Genome Analysis LAFUGA Gene Center, LMU Munich, Munich, Germany
| | - Manuel Schmid
- Department of Genetics, Harvard Medical School, Boston, USA
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Gianluca Santamaria
- First Department of Medicine and Regenerative Medicine in Cardiovascular Diseases, Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Munich, Germany
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital of Tübingen, Tübingen, Germany
| | - Damir Kračun
- Experimental and Molecular Pediatric Cardiology, Department of Congenital Heart Defects and Pediatric Cardiology, German Heart Center Munich, TUM University Hospital, School of Medicine & Health, Technical University of Munich, Munich, Germany
- University Hospital Balgrist, University of Zurich and Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Xinpei Chen
- Experimental and Molecular Pediatric Cardiology, Department of Congenital Heart Defects and Pediatric Cardiology, German Heart Center Munich, TUM University Hospital, School of Medicine & Health, Technical University of Munich, Munich, Germany
| | - Sabine Bauer
- Experimental Cardiology, Department of Cardiology, German Heart Center Munich, TUM University Hospital, School of Medicine & Health, Technical University of Munich, Munich, Germany
- School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Joachim P Schmitt
- Institute of Pharmacology, University Hospital Düsseldorf and Cardiovascular Research Institute Düsseldorf (CARID), Heinrich-Heine-University, Düsseldorf, Germany
| | - Florian Flenkenthaler
- Laboratory for Functional Genome Analysis LAFUGA Gene Center, LMU Munich, Munich, Germany
| | - Josh Gorham
- Department of Genetics, Harvard Medical School, Boston, USA
| | - Christopher N Toepfer
- Department of Genetics, Harvard Medical School, Boston, USA
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - David Potěšil
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Pavel Hruška
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Zbyněk Zdráhal
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Zsuzsanna Mayer
- Institute for Laboratory Medicine, German Heart Center Munich, TUM University Hospital, School of Medicine & Health, Technical University of Munich, Munich, Germany
| | - Mathieu Klop
- Experimental and Molecular Pediatric Cardiology, Department of Congenital Heart Defects and Pediatric Cardiology, German Heart Center Munich, TUM University Hospital, School of Medicine & Health, Technical University of Munich, Munich, Germany
| | - Luisa Lehmann
- Experimental and Molecular Pediatric Cardiology, Department of Congenital Heart Defects and Pediatric Cardiology, German Heart Center Munich, TUM University Hospital, School of Medicine & Health, Technical University of Munich, Munich, Germany
| | - Yishi Qin
- Experimental and Molecular Pediatric Cardiology, Department of Congenital Heart Defects and Pediatric Cardiology, German Heart Center Munich, TUM University Hospital, School of Medicine & Health, Technical University of Munich, Munich, Germany
| | - Laura Papanakli
- Department of Congenital Heart Defects and Pediatric Cardiology, German Heart Center Munich, TUM University Hospital, School of Medicine & Health, Technical University of Munich, Munich, Germany
| | - Nadine Spielmann
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Alessandra Moretti
- First Department of Medicine and Regenerative Medicine in Cardiovascular Diseases, Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Munich, Germany
- School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis LAFUGA Gene Center, LMU Munich, Munich, Germany
| | - Peter Ewert
- Department of Congenital Heart Defects and Pediatric Cardiology, German Heart Center Munich, TUM University Hospital, School of Medicine & Health, Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Stefan Holdenrieder
- Institute for Laboratory Medicine, German Heart Center Munich, TUM University Hospital, School of Medicine & Health, Technical University of Munich, Munich, Germany
| | | | | | - Agnes Görlach
- Experimental and Molecular Pediatric Cardiology, Department of Congenital Heart Defects and Pediatric Cardiology, German Heart Center Munich, TUM University Hospital, School of Medicine & Health, Technical University of Munich, Munich, Germany
- School of Medicine and Health, Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Cordula M Wolf
- Department of Congenital Heart Defects and Pediatric Cardiology, German Heart Center Munich, TUM University Hospital, School of Medicine & Health, Technical University of Munich, Munich, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
2
|
Jucht AE, Scholz CC. PHD1-3 oxygen sensors in vivo-lessons learned from gene deletions. Pflugers Arch 2024; 476:1307-1337. [PMID: 38509356 PMCID: PMC11310289 DOI: 10.1007/s00424-024-02944-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/02/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Oxygen sensors enable cells to adapt to limited oxygen availability (hypoxia), affecting various cellular and tissue responses. Prolyl-4-hydroxylase domain 1-3 (PHD1-3; also called Egln1-3, HIF-P4H 1-3, HIF-PH 1-3) proteins belong to the Fe2+- and 2-oxoglutarate-dependent dioxygenase superfamily and utilise molecular oxygen (O2) alongside 2-oxoglutarate as co-substrate to hydroxylate two proline residues of α subunits of the dimeric hypoxia inducible factor (HIF) transcription factor. PHD1-3-mediated hydroxylation of HIF-α leads to its degradation and inactivation. Recently, various PHD inhibitors (PHI) have entered the clinics for treatment of renal anaemia. Pre-clinical analyses indicate that PHI treatment may also be beneficial in numerous other hypoxia-associated diseases. Nonetheless, the underlying molecular mechanisms of the observed protective effects of PHIs are only partly understood, currently hindering their translation into the clinics. Moreover, the PHI-mediated increase of Epo levels is not beneficial in all hypoxia-associated diseases and PHD-selective inhibition may be advantageous. Here, we summarise the current knowledge about the relevance and function of each of the three PHD isoforms in vivo, based on the deletion or RNA interference-mediated knockdown of each single corresponding gene in rodents. This information is crucial for our understanding of the physiological relevance and function of the PHDs as well as for elucidating their individual impact on hypoxia-associated diseases. Furthermore, this knowledge highlights which diseases may best be targeted by PHD isoform-selective inhibitors in case such pharmacologic substances become available.
Collapse
Affiliation(s)
- Agnieszka E Jucht
- Institute of Physiology, University of Zurich, Zurich, 8057, Switzerland
| | - Carsten C Scholz
- Institute of Physiology, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15a, 17475, Greifswald, Germany.
| |
Collapse
|
3
|
Pan L, He X, Xu R, Bhattarai U, Niu Z, do Carmo J, Sun Y, Zeng H, Clemmer JS, Chen JX, Chen Y. Endothelial specific prolyl hydroxylase domain-containing protein 2 deficiency attenuates aging-related obesity and exercise intolerance. GeroScience 2024; 46:3945-3956. [PMID: 38462569 PMCID: PMC11226575 DOI: 10.1007/s11357-024-01108-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 02/20/2024] [Indexed: 03/12/2024] Open
Abstract
Obesity and exercise intolerance greatly reduce the life quality of older people. Prolyl hydroxylase domain-containing protein 2 (PHD2) is an important enzyme in modulating hypoxia-inducible factor-alpha (HIF) protein. Using vascular endothelial cell-specific PHD2 gene knockout (PHD2 ECKO) mice, we investigated the role of endothelial PHD2 in aging-related obesity and exercise capacity. Briefly, PHD2 ECKO mice were obtained by crossing PHD2-floxed mice with VE-Cadherin (Cdh5)-Cre transgenic mice. The effect of PHD2 ECKO on obesity and exercise capacity in PHD2 ECKO mice and control PHD2f/f mice were determined in young mice (6 to 7 months) and aged mice (16-18 months). We found that aged PHD2 ECKO mice, but not young mice, exhibited a lean phenotype, characterized by lower fat mass, and its ratio to lean weight, body weight, or tibial length, while their food uptake was not reduced compared with controls. Moreover, as compared with aged control mice, aged PHD2 ECKO mice exhibited increased oxygen consumption at rest and during exercise, and the maximum rate of oxygen consumption (VO2 max) during exercise. Furthermore, as compared with corresponding control mice, both young and aged PHD2 ECKO mice demonstrated improved glucose tolerance and lower insulin resistance. Together, these data demonstrate that inhibition of vascular endothelial PHD2 signaling significantly attenuates aging-related obesity, exercise intolerance, and glucose intolerance.
Collapse
Affiliation(s)
- Lihong Pan
- Department of Physiology and Biophysics, University of Mississippi Medical Center, School of Medicine, 2500 North State Street, Jackson, MS, 39216, USA
| | - Xiaochen He
- Department of Physiology and Biophysics, University of Mississippi Medical Center, School of Medicine, 2500 North State Street, Jackson, MS, 39216, USA
| | - Rui Xu
- Department of Physiology and Biophysics, University of Mississippi Medical Center, School of Medicine, 2500 North State Street, Jackson, MS, 39216, USA
| | - Umesh Bhattarai
- Department of Physiology and Biophysics, University of Mississippi Medical Center, School of Medicine, 2500 North State Street, Jackson, MS, 39216, USA
| | - Ziru Niu
- Department of Physiology and Biophysics, University of Mississippi Medical Center, School of Medicine, 2500 North State Street, Jackson, MS, 39216, USA
| | - Jussara do Carmo
- Department of Physiology and Biophysics, University of Mississippi Medical Center, School of Medicine, 2500 North State Street, Jackson, MS, 39216, USA
| | - Yuxiang Sun
- Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Heng Zeng
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| | - John S Clemmer
- Department of Physiology and Biophysics, University of Mississippi Medical Center, School of Medicine, 2500 North State Street, Jackson, MS, 39216, USA
| | - Jian-Xiong Chen
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| | - Yingjie Chen
- Department of Physiology and Biophysics, University of Mississippi Medical Center, School of Medicine, 2500 North State Street, Jackson, MS, 39216, USA.
| |
Collapse
|
4
|
Debashish Biswal, Songbiao Li. Transcription Factors in Cardiac Remodeling: Latest Advances. CYTOL GENET+ 2024; 58:234-245. [DOI: 10.3103/s0095452724030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 01/25/2024] [Accepted: 05/18/2024] [Indexed: 01/03/2025]
|
5
|
Dou X, Chen Z, Liu Y, Li Y, Ye J, Lu L. Zebrafish mutants in egln1 display a hypoxic response and develop polycythemia. Life Sci 2024; 344:122564. [PMID: 38492922 DOI: 10.1016/j.lfs.2024.122564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/10/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
AIMS Prolyl hydroxylase domain 2 (PHD2), encoded by the Egln1 gene, serves as a pivotal regulator of the hypoxia-inducible factor (HIF) pathway and acts as a cellular oxygen sensor. Somatic inactivation of Phd2 in mice results in polycythemia and congestive heart failure. However, due to the embryonic lethality of Phd2 deficiency, its role in development remains elusive. Here, we investigated the function of two egln1 paralogous genes, egln1a and egln1b, in zebrafish. MAIN METHODS The egln1 null zebrafish were generated using the CRISPR/Cas9 system. Quantitative real-time PCR assays and Western blot analysis were employed to detect the effect of egln1 deficiency on the hypoxia signaling pathway. The hypoxia response of egln1 mutant zebrafish were assessed by analyzing heart rate, gill agitation frequency, and blood flow velocity. Subsequently, o-dianisidine staining and in situ hybridization were used to investigate the role of egln1 in zebrafish hematopoietic function. KEY FINDINGS Our data show that the loss of egln1a or egln1b individually has no visible effects on growth rate. However, the egln1a; egln1b double mutant displayed significant growth retardation and elevated mortality at around 2.5 months old. Both egln1a-null and egln1b-null zebrafish embryo exhibited enhanced tolerance to hypoxia, systemic hypoxic response that include hif pathway activation, increased cardiac activity, and polycythemia. SIGNIFICANCE Our research introduces zebrafish egln1 mutants as the first congenital embryonic viable systemic vertebrate animal model for PHD2, providing novel insights into hypoxic signaling and the progression of PHD2- associated disease.
Collapse
Affiliation(s)
- Xuehan Dou
- Laboratory for Marine Drugs and Bioproducts of Laoshan Laboratory, Qingdao, China; Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Zhongyuan Chen
- Laboratory for Marine Drugs and Bioproducts of Laoshan Laboratory, Qingdao, China; Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yunzhang Liu
- Laboratory for Marine Drugs and Bioproducts of Laoshan Laboratory, Qingdao, China; Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yun Li
- Laboratory for Marine Drugs and Bioproducts of Laoshan Laboratory, Qingdao, China; Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Junli Ye
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ling Lu
- Laboratory for Marine Drugs and Bioproducts of Laoshan Laboratory, Qingdao, China; Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.
| |
Collapse
|
6
|
Li Z, Hu O, Xu S, Lin C, Yu W, Ma D, Lu J, Liu P. The SIRT3-ATAD3A axis regulates MAM dynamics and mitochondrial calcium homeostasis in cardiac hypertrophy. Int J Biol Sci 2024; 20:831-847. [PMID: 38250153 PMCID: PMC10797690 DOI: 10.7150/ijbs.89253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/18/2023] [Indexed: 01/23/2024] Open
Abstract
Mitochondria are energy-producing organelles that are mobile and harbor dynamic network structures. Although mitochondria and endoplasmic reticulum (ER) play distinct cellular roles, they are physically connected to maintain functional homeostasis. Abnormal changes in this interaction have been linked to pathological states, including cardiac hypertrophy. However, the exact regulatory molecules and mechanisms are yet to be elucidated. Here, we report that ATPase family AAA-domain containing protein 3A (ATAD3A) is an essential regulator of ER-mitochondria interplay within the mitochondria-associated membrane (MAM). ATAD3A prevents isoproterenol (ISO)-induced mitochondrial calcium accumulation, improving mitochondrial dysfunction and ER stress, which preserves cardiac function and attenuates cardiac hypertrophy. We also find that ATAD3A is a new substrate of NAD+-dependent deacetylase Sirtuin 3 (SIRT3). Notably, the heart mitochondria of SIRT3 knockout mice exhibited excessive formation of MAMs. Mechanistically, ATAD3A specifically undergoes acetylation, which reduces self-oligomerization and promotes cardiac hypertrophy. ATAD3A oligomerization is disrupted by acetylation at K134 site, and ATAD3A monomer closely interacts with the IP3R1-GRP75-VDAC1 complex, which leads to mitochondrial calcium overload and dysfunction. In summary, ATAD3A localizes to the MAMs, where it protects the homeostasis of ER-mitochondria contacts, quenching mitochondrial calcium overload and keeping mitochondrial bioenergetics unresponsive to ER stress. The SIRT3-ATAD3A axis represents a potential therapeutic target for cardiac hypertrophy.
Collapse
Affiliation(s)
- Zeyu Li
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ou Hu
- Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230001, China
| | - Chenjia Lin
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenjing Yu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Dinghu Ma
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jing Lu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Peiqing Liu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
7
|
Abstract
It is well established that humans and other mammals are minimally regenerative compared with organisms such as zebrafish, salamander or amphibians. In recent years, however, the identification of regenerative potential in neonatal mouse tissues that normally heal poorly in adults has transformed our understanding of regenerative capacity in mammals. In this Review, we survey the mammalian tissues for which regenerative or improved neonatal healing has been established, including the heart, cochlear hair cells, the brain and spinal cord, and dense connective tissues. We also highlight common and/or tissue-specific mechanisms of neonatal regeneration, which involve cells, signaling pathways, extracellular matrix, immune cells and other factors. The identification of such common features across neonatal tissues may direct therapeutic strategies that will be broadly applicable to multiple adult tissues.
Collapse
Affiliation(s)
| | - Alice H. Huang
- Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA
| |
Collapse
|
8
|
Liu B, Yi D, Pan J, Dai J, Zhu MM, Zhao Y, Oh SP, Fallon MB, Dai Z. Suppression of BMP signaling by PHD2 deficiency in Pulmonary Arterial hypertension. Pulm Circ 2022; 12:e12056. [PMID: 35506101 PMCID: PMC9052986 DOI: 10.1002/pul2.12056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 11/11/2022] Open
Abstract
BMP signaling deficiency is evident in the lungs of patients with pulmonary arterial hypertension. We demonstrated that PHD2 deficiency suppresses BMP signaling in the lung endothelial cells, suggesting the novel mechanisms of dysregulated BMP signaling in the development of pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Bin Liu
- Division of Pulmonary, Critical Care and Sleep, Department of Internal Medicine, College of Medicine‐PhoenixUniversity of ArizonaPhoenixArizonaUSA
- Department of Internal Medicine, College of Medicine‐PhoenixUniversity of ArizonaPhoenixArizonaUSA
- Translational Cardiovascular Research Center, College of Medicine‐PhoenixUniversity of ArizonaPhoenixArizonaUSA
| | - Dan Yi
- Division of Pulmonary, Critical Care and Sleep, Department of Internal Medicine, College of Medicine‐PhoenixUniversity of ArizonaPhoenixArizonaUSA
- Department of Internal Medicine, College of Medicine‐PhoenixUniversity of ArizonaPhoenixArizonaUSA
- Translational Cardiovascular Research Center, College of Medicine‐PhoenixUniversity of ArizonaPhoenixArizonaUSA
| | - Jiakai Pan
- Division of Pulmonary, Critical Care and Sleep, Department of Internal Medicine, College of Medicine‐PhoenixUniversity of ArizonaPhoenixArizonaUSA
- Department of Internal Medicine, College of Medicine‐PhoenixUniversity of ArizonaPhoenixArizonaUSA
| | - Jingbo Dai
- Program for Lung and Vascular Biology and Regeneration Research, Stanley Manne Children's Research InstituteAnn & Robert H. Lurie Children's Hospital of ChicagoChicagoIllinoisUSA
- Section for Injury Repair and Regeneration Research, Stanley Manne Children's Research InstituteAnn & Robert H. Lurie Children's Hospital of ChicagoChicagoIllinoisUSA
- Department of Pediatrics, Division of Critical CareNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Maggie M. Zhu
- Program for Lung and Vascular Biology and Regeneration Research, Stanley Manne Children's Research InstituteAnn & Robert H. Lurie Children's Hospital of ChicagoChicagoIllinoisUSA
- Section for Injury Repair and Regeneration Research, Stanley Manne Children's Research InstituteAnn & Robert H. Lurie Children's Hospital of ChicagoChicagoIllinoisUSA
- Department of Pediatrics, Division of Critical CareNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - You‐Yang Zhao
- Program for Lung and Vascular Biology and Regeneration Research, Stanley Manne Children's Research InstituteAnn & Robert H. Lurie Children's Hospital of ChicagoChicagoIllinoisUSA
- Section for Injury Repair and Regeneration Research, Stanley Manne Children's Research InstituteAnn & Robert H. Lurie Children's Hospital of ChicagoChicagoIllinoisUSA
- Department of Pediatrics, Division of Critical CareNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Department of PharmacologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Department of MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Feinberg Cardiovascular and Renal Research InstituteNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - S. Paul Oh
- Department of Neurobiology, Barrow Aneurysm and AVM Research CenterBarrow Neurological InstitutePhoenixArizonaUSA
| | - Michael B. Fallon
- Department of Internal Medicine, College of Medicine‐PhoenixUniversity of ArizonaPhoenixArizonaUSA
| | - Zhiyu Dai
- Division of Pulmonary, Critical Care and Sleep, Department of Internal Medicine, College of Medicine‐PhoenixUniversity of ArizonaPhoenixArizonaUSA
- Department of Internal Medicine, College of Medicine‐PhoenixUniversity of ArizonaPhoenixArizonaUSA
- Translational Cardiovascular Research Center, College of Medicine‐PhoenixUniversity of ArizonaPhoenixArizonaUSA
| |
Collapse
|
9
|
Röning T, Magga J, Laitakari A, Halmetoja R, Tapio J, Dimova EY, Szabo Z, Rahtu-Korpela L, Kemppi A, Walkinshaw G, Myllyharju J, Kerkelä R, Koivunen P, Serpi R. Activation of the hypoxia response pathway protects against age-induced cardiac hypertrophy. J Mol Cell Cardiol 2021; 164:148-155. [PMID: 34919895 DOI: 10.1016/j.yjmcc.2021.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 11/15/2021] [Accepted: 12/09/2021] [Indexed: 12/17/2022]
Abstract
AIMS We have previously demonstrated protection against obesity, metabolic dysfunction, atherosclerosis and cardiac ischemia in a hypoxia-inducible factor (HIF) prolyl 4-hydroxylase-2 (Hif-p4h-2) deficient mouse line, attributing these protective effects to activation of the hypoxia response pathway in a normoxic environment. We intended here to find out whether the Hif-p4h-2 deficiency affects the cardiac health of these mice upon aging. METHODS AND RESULTS When the Hif-p4h-2 deficient mice and their wild-type littermates were monitored during normal aging, the Hif-p4h-2 deficient mice had better preserved diastolic function than the wild type at one year of age and less cardiomyocyte hypertrophy at two years. On the mRNA level, downregulation of hypertrophy-associated genes was detected and shown to be associated with upregulation of Notch signaling, and especially of the Notch target gene and transcriptional repressor Hairy and enhancer-of-split-related basic helix-loop-helix (Hey2). Blocking of Notch signaling in cardiomyocytes isolated from Hif-p4h-2 deficient mice with a gamma-secretase inhibitor led to upregulation of the hypertrophy-associated genes. Also, targeting Hey2 in isolated wild-type rat neonatal cardiomyocytes with siRNA led to upregulation of hypertrophic genes and increased leucine incorporation indicative of increased protein synthesis and hypertrophy. Finally, oral treatment of wild-type mice with a small molecule inhibitor of HIF-P4Hs phenocopied the effects of Hif-p4h-2 deficiency with less cardiomyocyte hypertrophy, upregulation of Hey2 and downregulation of the hypertrophy-associated genes. CONCLUSIONS These results indicate that activation of the hypoxia response pathway upregulates Notch signaling and its target Hey2 resulting in transcriptional repression of hypertrophy-associated genes and less cardiomyocyte hypertrophy. This is eventually associated with better preserved cardiac function upon aging. Activation of the hypoxia response pathway thus has therapeutic potential for combating age-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Tapio Röning
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Johanna Magga
- Biocenter Oulu and Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Finland
| | - Anna Laitakari
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Riikka Halmetoja
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Joona Tapio
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Elitsa Y Dimova
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Zoltan Szabo
- Biocenter Oulu and Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Finland
| | - Lea Rahtu-Korpela
- Biocenter Oulu and Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Finland
| | - Anna Kemppi
- Biocenter Oulu and Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Finland
| | | | - Johanna Myllyharju
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Risto Kerkelä
- Biocenter Oulu and Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Finland
| | - Peppi Koivunen
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland.
| | - Raisa Serpi
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland; Faculty of Medicine, University of Oulu, Oulu, Finland; Biobank Borealis of Northern Finland, Oulu University Hospital, Finland
| |
Collapse
|