1
|
Aboul-Nour H, Jumah A, Mohamed G, Albanna AJ, Alsrouji OK, Schultz L, Latack K, Miller J, Uddin K, Gunaga S, Muir J, Chebl A, Ramadan AR. Fibrinogen depletion and the risk of intracerebral hemorrhage following endovascular mechanical thrombectomy. Interv Neuroradiol 2025:15910199251336948. [PMID: 40296708 PMCID: PMC12040853 DOI: 10.1177/15910199251336948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025] Open
Abstract
BackgroundIntravenous thrombolysis (IVT) and mechanical thrombectomy (MT) are the standard of care for select stroke patients with acute large vessel occlusion (LVO). Fibrinogen levels may drop after IVT, and a significant decrease in fibrinogen is associated with an increased risk of intracranial hemorrhage (ICH). Our pilot study aimed to explore the relationship between fibrinogen levels and the development of ICH in MT-treated patients and whether bridging with IVT further increases that risk.MethodsThis is a prospective pilot study that enrolled adults presenting with a diagnosis of LVO stroke and eligible to receive MT with or without IVT between April 2020 and May 2023. Fibrinogen levels were drawn before treatment with IVT or MT and immediately following MT.ResultsForty-one patients were enrolled. Median age was 68 years [interquartile range 56-79], 58.5% were females and 56.1% were black. Nineteen patients (46.3%) were treated with MT + IVT, and 22 (53.6%) were treated with MT-only. There was no difference in baseline characteristics between the two groups. Baseline fibrinogen levels were similar between MT + IVT and MT-only groups [391 vs. 352 mg/dL, p = 0.4]. Post MT, the MT + IVT group had lower fibrinogen levels compared to the MT-only group [224 vs. 303 mg/dL, p < 0.001]. Similarly, there was a significant change between baseline and follow-up levels in the MT + IVT vs. MT-only group [106 vs. 39.5 mg/dL, p = 0.001]. Eight patients (19.5%) developed ICH; 5 (26.3%) in the MT + IVT group and 3 (13.6%) in the MT-only group. No significant differences were seen in baseline, follow-up, or change in fibrinogen levels between patients who developed ICH and those who did not. However, when stratified by treatment group, postintervention fibrinogen levels were significantly lower in patients who developed an ICH in the MT + IVT group compared to those without ICH in the MT group (200 vs. 301 mg/dL, p = 0.006). There was also a negative correlation between the change in fibrinogen levels and the rate of first-pass recanalization (Spearman CC -0.33, p = 0.03).ConclusionThis pilot study's preliminary data showed an association between fibrinogen depletion and hemorrhagic transformation in MT-treated patients. Since intracerebral hemorrhage is the most dire side effect in stroke treatment, fibrinogen monitoring in patients undergoing MT after IVT may help identify patients with an increased risk of ICH. Larger, prospective, and multicenter studies are needed to confirm these findings and if fibrinogen repletion should be considered for dysfibrinogenemia.
Collapse
Affiliation(s)
- Hassan Aboul-Nour
- Departments of Neurology and Neurosurgery, University of Kentucky College of Medicine, Lexington, KY, USA
- Department of Neurosurgery, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Ammar Jumah
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ghada Mohamed
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | | | | | - Lonni Schultz
- Department of Public Health Sciences, Henry Ford Health, Detroit, MI, USA
| | - Katie Latack
- Department of Public Health Sciences, Henry Ford Health, Detroit, MI, USA
| | - Joseph Miller
- Department of Emergency Medicine, Henry Ford Health, Detroit, MI, USA
| | - Khalid Uddin
- Department of Neurology, Charleston Area Medical Center, Charleston, WV, USA
| | - Satheesh Gunaga
- Department of Emergency Medicine, Henry Ford Wyandotte Hospital, Wyandotte, MI, USA
| | - Jason Muir
- Department of Emergency Medicine, Henry Ford Macomb Hospital, Clinton Township, MI, USA
| | - Alex Chebl
- Department of Neurology, Henry Ford Health, Detroit, MI, USA
| | | |
Collapse
|
2
|
Mehta SL, Arruri V, Vemuganti R. Role of transcription factors, noncoding RNAs, epitranscriptomics, and epigenetics in post-ischemic neuroinflammation. J Neurochem 2024; 168:3430-3448. [PMID: 38279529 PMCID: PMC11272908 DOI: 10.1111/jnc.16055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/28/2024]
Abstract
Post-stroke neuroinflammation is pivotal in brain repair, yet persistent inflammation can aggravate ischemic brain damage and hamper recovery. Following stroke, specific molecules released from brain cells attract and activate central and peripheral immune cells. These immune cells subsequently release diverse inflammatory molecules within the ischemic brain, initiating a sequence of events, including activation of transcription factors in different brain cell types that modulate gene expression and influence outcomes; the interactive action of various noncoding RNAs (ncRNAs) to regulate multiple biological processes including inflammation, epitranscriptomic RNA modification that controls RNA processing, stability, and translation; and epigenetic changes including DNA methylation, hydroxymethylation, and histone modifications crucial in managing the genic response to stroke. Interactions among these events further affect post-stroke inflammation and shape the depth of ischemic brain damage and functional outcomes. We highlighted these aspects of neuroinflammation in this review and postulate that deciphering these mechanisms is pivotal for identifying therapeutic targets to alleviate post-stroke dysfunction and enhance recovery.
Collapse
Affiliation(s)
- Suresh L. Mehta
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Vijay Arruri
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
- William S. Middleton Veterans Hospital, Madison, WI, USA
| |
Collapse
|
3
|
Primak AL, Skryabina MN, Dzhauari SS, Tkachuk VA, Karagyaur MN. [The secretome of mesenchymal stromal cells as a new hope in the treatment of acute brain tissue injuries]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:83-91. [PMID: 38512099 DOI: 10.17116/jnevro202412403283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Ischemic and hemorrhagic strokes, traumatic brain injury, bacterial and viral encephalitis, toxic and metabolic encephalopathies are very different pathologies. But, they have much more in common than it might seem at first glance. In this review, the authors propose to consider these brain pathologies from the point of view of the unity of their pathogenetic mechanisms and approaches to therapy. Particular attention is paid to promising therapeutic approaches, such as therapy using cells and their secretion products: an analysis of the accumulated experimental data, the advantages and limitations of these approaches in the treatment of brain damage was carried out. The review may be of interest both to specialists in the field of neurology, neurosurgery and neurorehabilitation, and to readers who want to learn more about the progress of regenerative biomedicine in the treatment of brain pathologies.
Collapse
Affiliation(s)
- A L Primak
- Lomonosov Moscow State University, Moscow, Russia
| | | | - S S Dzhauari
- Lomonosov Moscow State University, Moscow, Russia
| | - V A Tkachuk
- Lomonosov Moscow State University, Moscow, Russia
| | | |
Collapse
|
4
|
Marsh PL, Moore EE, Moore HB, Bunch CM, Aboukhaled M, Condon SM, Al-Fadhl MD, Thomas SJ, Larson JR, Bower CW, Miller CB, Pearson ML, Twilling CL, Reser DW, Kim GS, Troyer BM, Yeager D, Thomas SG, Srikureja DP, Patel SS, Añón SL, Thomas AV, Miller JB, Van Ryn DE, Pamulapati SV, Zimmerman D, Wells B, Martin PL, Seder CW, Aversa JG, Greene RB, March RJ, Kwaan HC, Fulkerson DH, Vande Lune SA, Mollnes TE, Nielsen EW, Storm BS, Walsh MM. Iatrogenic air embolism: pathoanatomy, thromboinflammation, endotheliopathy, and therapies. Front Immunol 2023; 14:1230049. [PMID: 37795086 PMCID: PMC10546929 DOI: 10.3389/fimmu.2023.1230049] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/12/2023] [Indexed: 10/06/2023] Open
Abstract
Iatrogenic vascular air embolism is a relatively infrequent event but is associated with significant morbidity and mortality. These emboli can arise in many clinical settings such as neurosurgery, cardiac surgery, and liver transplantation, but more recently, endoscopy, hemodialysis, thoracentesis, tissue biopsy, angiography, and central and peripheral venous access and removal have overtaken surgery and trauma as significant causes of vascular air embolism. The true incidence may be greater since many of these air emboli are asymptomatic and frequently go undiagnosed or unreported. Due to the rarity of vascular air embolism and because of the many manifestations, diagnoses can be difficult and require immediate therapeutic intervention. An iatrogenic air embolism can result in both venous and arterial emboli whose anatomic locations dictate the clinical course. Most clinically significant iatrogenic air emboli are caused by arterial obstruction of small vessels because the pulmonary gas exchange filters the more frequent, smaller volume bubbles that gain access to the venous circulation. However, there is a subset of patients with venous air emboli caused by larger volumes of air who present with more protean manifestations. There have been significant gains in the understanding of the interactions of fluid dynamics, hemostasis, and inflammation caused by air emboli due to in vitro and in vivo studies on flow dynamics of bubbles in small vessels. Intensive research regarding the thromboinflammatory changes at the level of the endothelium has been described recently. The obstruction of vessels by air emboli causes immediate pathoanatomic and immunologic and thromboinflammatory responses at the level of the endothelium. In this review, we describe those immunologic and thromboinflammatory responses at the level of the endothelium as well as evaluate traditional and novel forms of therapy for this rare and often unrecognized clinical condition.
Collapse
Affiliation(s)
- Phillip L. Marsh
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Ernest E. Moore
- Department of Surgery, Ernest E. Moore Shock Trauma Center at Denver Health and University of Colorado Health Sciences Center, Denver, CO, United States
| | - Hunter B. Moore
- University of Colorado Health Transplant Surgery - Anschutz Medical Campus, Aurora, CO, United States
| | - Connor M. Bunch
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - Michael Aboukhaled
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Shaun M. Condon
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States
| | | | - Samuel J. Thomas
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - John R. Larson
- Department of Emergency Medicine, Goshen Health, Goshen, IN, United States
| | - Charles W. Bower
- Department of Emergency Medicine, Goshen Health, Goshen, IN, United States
| | - Craig B. Miller
- Department of Family Medicine, Saint Joseph Health System, Mishawaka, IN, United States
| | - Michelle L. Pearson
- Department of Family Medicine, Saint Joseph Health System, Mishawaka, IN, United States
| | | | - David W. Reser
- Department of Emergency Medicine, Goshen Health, Goshen, IN, United States
| | - George S. Kim
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
- Department of Emergency Medicine, Goshen Health, Goshen, IN, United States
| | - Brittany M. Troyer
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
- Department of Emergency Medicine, Goshen Health, Goshen, IN, United States
| | - Doyle Yeager
- Department of Emergency Medicine, Goshen Health, Goshen, IN, United States
| | - Scott G. Thomas
- Department of Trauma & Surgical Research Services, South Bend, IN, United States
| | - Daniel P. Srikureja
- Department of Trauma & Surgical Research Services, South Bend, IN, United States
| | - Shivani S. Patel
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - Sofía L. Añón
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Anthony V. Thomas
- Indiana University School of Medicine, South Bend, IN, United States
| | - Joseph B. Miller
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - David E. Van Ryn
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
- Department of Emergency Medicine, Goshen Health, Goshen, IN, United States
- Department of Emergency Medicine, Beacon Health System, Elkhart, IN, United States
| | - Saagar V. Pamulapati
- Department of Internal Medicine, Mercy Health Internal Medicine Residency Program, Rockford, IL, United States
| | - Devin Zimmerman
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Byars Wells
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Peter L. Martin
- Department of Emergency Medicine, Goshen Health, Goshen, IN, United States
| | - Christopher W. Seder
- Department of Cardiovascular and Thoracic Surgery, RUSH Medical College, Chicago, IL, United States
| | - John G. Aversa
- Department of Cardiovascular and Thoracic Surgery, RUSH Medical College, Chicago, IL, United States
| | - Ryan B. Greene
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Robert J. March
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Hau C. Kwaan
- Division of Hematology and Oncology, Department of Medicine, Northwestern University, Chicago, IL, United States
| | - Daniel H. Fulkerson
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
- Department of Trauma & Surgical Research Services, South Bend, IN, United States
| | - Stefani A. Vande Lune
- Department of Emergency Medicine, Naval Medical Center Portsmouth, Portsmouth, VA, United States
| | - Tom E. Mollnes
- Research Laboratory, Nordland Hospital, Bodø, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Erik W. Nielsen
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Anesthesia and Intensive Care Medicine, Surgical Clinic, Nordland Hospital, Bodø, Norway
- Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway
- Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| | - Benjamin S. Storm
- Department of Anesthesia and Intensive Care Medicine, Surgical Clinic, Nordland Hospital, Bodø, Norway
- Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway
- Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| | - Mark M. Walsh
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
- Indiana University School of Medicine, South Bend, IN, United States
| |
Collapse
|
5
|
Halil E. CT perfusion - an up-to-date element of the contemporary multimodal diagnostic approach to acute ischemic stroke. Folia Med (Plovdiv) 2023; 65:531-538. [PMID: 37655371 DOI: 10.3897/folmed.65.e96954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/22/2023] [Indexed: 09/02/2023] Open
Abstract
Acute ischemic stroke is of great clinical and societal importance due to its high incidence and mortality rates, as well as the fact that those who are affected suffer from permanent acquired disability. Modern trends explicitly state that the disease's diagnostic plan should use a multidisciplinary approach. The therapeutic steps that ultimately determine the clinical outcome are defined by an accurate diagnosis of acute ischemic stroke. Highly specialized facilities for the diagnosis and treatment of acute ischemic stroke (Stroke Units) are in operation in countries that make significant investments in healthcare. Imaging the brain parenchyma at risk, or the so-called ischemic penumbra, in acute ischemic stroke is one of the main tasks of the multimodal computed tomography approach. The most rapid method for imaging the ischemic penumbra is computed tomography perfusion (CTP). This modality provides information about the anatomy and the physiologic state of the brain parenchyma.
Collapse
Affiliation(s)
- Eray Halil
- Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
6
|
Prothymosin α Plays Role as a Brain Guardian through Ecto-F 1 ATPase-P2Y 12 Complex and TLR4/MD2. Cells 2023; 12:cells12030496. [PMID: 36766838 PMCID: PMC9914670 DOI: 10.3390/cells12030496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Prothymosin alpha (ProTα) was discovered to be a necrosis inhibitor from the conditioned medium of a primary culture of rat cortical neurons under starved conditions. This protein carries out a neuronal cell-death-mode switch from necrosis to apoptosis, which is, in turn, suppressed by a variety of neurotrophic factors (NTFs). This type of NTF-assisted survival action of ProTα is reproduced in cerebral and retinal ischemia-reperfusion models. Further studies that used a retinal ischemia-reperfusion model revealed that ProTα protects retinal cells via ecto-F1 ATPase coupled with the Gi-coupled P2Y12 receptor and Toll-like receptor 4 (TLR4)/MD2 coupled with a Toll-IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF). In cerebral ischemia-reperfusion models, ProTα has additional survival mechanisms via an inhibition of matrix metalloproteases in microglia and vascular endothelial cells. Heterozygous or conditional ProTα knockout mice show phenotypes of anxiety, memory learning impairment, and a loss of neurogenesis. There are many reports that ProTα has multiple intracellular functions for cell survival and proliferation through a variety of protein-protein interactions. Overall, it is suggested that ProTα plays a key role as a brain guardian against ischemia stress through a cell-death-mode switch assisted by NTFs and a role of neurogenesis.
Collapse
|
7
|
Ueda H. Prothymosin α-derived hexapeptide prevents the brain damage and sequelae due to ischemia-hemorrhage. Peptides 2023; 160:170922. [PMID: 36496010 DOI: 10.1016/j.peptides.2022.170922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/12/2022]
Abstract
ProTα discovered as a necrosis-inhibitor from the conditioned medium of cortical culture also shows a potent survival action in brain and retinal ischemia/reperfusion models. The proposed mechanisms are the initial cell death mode switch from necrosis to apoptosis, which is subsequently inhibited by neurotrophic factors in vivo. It should be noted that ProTα and its derived hexapeptide P6Q completely suppress the cerebral hemorrhage induced by late tPA treatment (4.5 h) after the brain ischemia/reperfusion. Mechanisms underlying their beneficial actions may be related to the fact that ProTα inhibits the production of matrix metalloproteases (MMPs) in microglia and vascular endothelial cells. However, as P6Q inhibits MMPs in vascular endothelial cells, but not in microglia, the suppression of MMP production in endothelial cells seems to play major roles in the late tPA-induced hemorrhage. Although the tPA-treatments could enable the survival of patients with stroke, the post-stroke sequelae are the next clinical issues to be solved. The use of small peptide P6Q revealed the blockade of post-stroke pain, depression and memory-learning deficits in animal models. Furthermore, recent studies also showed that P6Q supplementation increased the viability of human induced pluripotent stem (iPS) cell-derived retinal pigment epithelium cell suspensions during the storage and P6Q attenuated the cisplatin-induced acute kidney injury.
Collapse
Affiliation(s)
- Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation of Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8521, Japan; Graduate Institute of Pharmacology, National Defense Medical Center, Neihu, 114201 Taipei, Taiwan
| |
Collapse
|
8
|
Patil S, Rossi R, Jabrah D, Doyle K. Detection, Diagnosis and Treatment of Acute Ischemic Stroke: Current and Future Perspectives. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:748949. [PMID: 35813155 PMCID: PMC9263220 DOI: 10.3389/fmedt.2022.748949] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 06/02/2022] [Indexed: 11/30/2022] Open
Abstract
Stroke is one of the leading causes of disability worldwide. Early diagnosis and treatment of stroke are important for better clinical outcome. Rapid and accurate diagnosis of stroke subtypes is critical. This review discusses the advantages and disadvantages of the current diagnostic and assessment techniques used in clinical practice, particularly for diagnosing acute ischemic stroke. Alternative techniques for rapid detection of stroke utilizing blood based biomarkers and novel portable devices employing imaging methods such as volumetric impedance phase-shift spectroscopy, microwave tomography and Doppler ultrasound are also discussed. Current therapeutic approaches for treating acute ischemic stroke using thrombolytic drugs and endovascular thrombectomy are discussed, with a focus on devices and approaches recently developed to treat large cranial vessel occlusions.
Collapse
Affiliation(s)
- Smita Patil
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
- Department of Physiology, National University of Ireland Galway, Galway, Ireland
| | - Rosanna Rossi
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
- Department of Physiology, National University of Ireland Galway, Galway, Ireland
| | - Duaa Jabrah
- Department of Physiology, National University of Ireland Galway, Galway, Ireland
| | - Karen Doyle
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
- Department of Physiology, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
9
|
Nance E, Pun SH, Saigal R, Sellers DL. Drug delivery to the central nervous system. NATURE REVIEWS. MATERIALS 2022; 7:314-331. [PMID: 38464996 PMCID: PMC10923597 DOI: 10.1038/s41578-021-00394-w] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 03/12/2024]
Abstract
Despite the rising global incidence of central nervous system (CNS) disorders, CNS drug development remains challenging, with high costs, long pathways to clinical use and high failure rates. The CNS is highly protected by physiological barriers, in particular, the blood-brain barrier and the blood-cerebrospinal fluid barrier, which limit access of most drugs. Biomaterials can be designed to bypass or traverse these barriers, enabling the controlled delivery of drugs into the CNS. In this Review, we first examine the effects of normal and diseased CNS physiology on drug delivery to the brain and spinal cord. We then discuss CNS drug delivery designs and materials that are administered systemically, directly to the CNS, intranasally or peripherally through intramuscular injections. Finally, we highlight important challenges and opportunities for materials design for drug delivery to the CNS and the anticipated clinical impact of CNS drug delivery.
Collapse
Affiliation(s)
- Elizabeth Nance
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
- These authors contributed equally: Elizabeth Nance, Suzie H. Pun, Rajiv Saigal, Drew L. Sellers
| | - Suzie H. Pun
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- These authors contributed equally: Elizabeth Nance, Suzie H. Pun, Rajiv Saigal, Drew L. Sellers
| | - Rajiv Saigal
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
- These authors contributed equally: Elizabeth Nance, Suzie H. Pun, Rajiv Saigal, Drew L. Sellers
| | - Drew L. Sellers
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- These authors contributed equally: Elizabeth Nance, Suzie H. Pun, Rajiv Saigal, Drew L. Sellers
| |
Collapse
|
10
|
Acquah I, Hagan K, Valero-Elizondo J, Javed Z, Butt SA, Mahajan S, Taha MB, Hyder AA, Mossialos E, Cainzos-Achirica M, Nasir K. Delayed medical care due to transportation barriers among adults with atherosclerotic cardiovascular disease. Am Heart J 2022; 245:60-69. [PMID: 34902312 DOI: 10.1016/j.ahj.2021.11.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/06/2021] [Accepted: 11/19/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND In patients with atherosclerotic cardiovascular disease (ASCVD), barriers related to transportation may impair access to care, with potential implications for prognosis. Although few studies have explored transportation barriers among patients with ASCVD, the correlates of delayed care due to transportation barriers have not been examined in this population. We aimed to examine this in U.S. patients with ASCVD using nationally representative data. METHODS Using data from the 2009-2018 National Health Interview Survey, we estimated the self-reported prevalence of delayed medical care due to transportation barriers among adults with ASCVD, overall and by sociodemographic characteristics. Logistic regression was used to examine the association between various sociodemographic characteristics and delayed care due to transportation barriers. RESULTS Among adults with ASCVD, 4.5% (95% CI; 4.2, 4.8) or ∼876,000 annually reported delayed care due to transportation barriers. Income (low-income: odds ratio [OR] 4.43, 95% CI [3.04, 6.46]; lowest-income: OR 6.35, 95% CI [4.36, 9.23]) and Medicaid insurance (OR 4.53; 95% CI [3.27, 6.29]) were strongly associated with delayed care due to transportation barriers. Additionally, younger individuals, women, non-Hispanic Black adults, and those from the U.S. South or Midwest, had higher odds of reporting delayed care due to transportation barriers. CONCLUSIONS Approximately 5% of adults with ASCVD experience delayed care due to transportation barriers. Vulnerable groups include young adults, women, low-income people, and those with public/no insurance. Future studies should analyze the feasibility and potential benefits of interventions such as use of telehealth, mobile clinics, and provision of transportation among patients with ASCVD in the U.S.
Collapse
Affiliation(s)
- Isaac Acquah
- Center for Outcomes Research, Houston Methodist, Houston, TX
| | - Kobina Hagan
- Center for Outcomes Research, Houston Methodist, Houston, TX
| | - Javier Valero-Elizondo
- Center for Outcomes Research, Houston Methodist, Houston, TX; Division for Cardiovascular Prevention and Wellness, Department of Cardiology, Houston Methodist DeBakey Heart and Vascular Center, Houston, TX
| | | | - Sara Ayaz Butt
- Center for Outcomes Research, Houston Methodist, Houston, TX
| | - Shiwani Mahajan
- The Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, New Haven, CT; Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Mohamad Badie Taha
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL
| | - Adnan A Hyder
- Center on Commercial Determinants of Health, Milken Institute School of Public Health, The George Washington University, Washington, DC
| | - Elias Mossialos
- Department of Health Policy, London School of Economics and Political Science, London, UK
| | - Miguel Cainzos-Achirica
- Center for Outcomes Research, Houston Methodist, Houston, TX; Division for Cardiovascular Prevention and Wellness, Department of Cardiology, Houston Methodist DeBakey Heart and Vascular Center, Houston, TX
| | - Khurram Nasir
- Center for Outcomes Research, Houston Methodist, Houston, TX; Division for Cardiovascular Prevention and Wellness, Department of Cardiology, Houston Methodist DeBakey Heart and Vascular Center, Houston, TX.
| |
Collapse
|
11
|
Saad MAE, Fahmy MIM, Sayed RH, El-Yamany MF, El-Naggar R, Hegazy AAE, Al-Shorbagy M. Eprosartan: A closer insight into its neuroprotective activity in rats with focal cerebral ischemia-reperfusion injury. J Biochem Mol Toxicol 2021; 35:e22796. [PMID: 33942446 DOI: 10.1002/jbt.22796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022]
Abstract
Eprosartan (EPRO), an angiotensin receptor type-1 (AT-1) blocker, exhibited neuroprotective activities in ischemic stroke resulting from focal cerebral ischemia in rats. The current study aimed to clarify the neuroprotective role of EPRO in middle carotid artery occlusion (MCAO)-induced ischemic stroke in rats. Fifty-six male Wistar rats were divided into four groups (n = 14 per group): sham-operated group, sham receiving EPRO (60 mg/kg/day, po) group, ischemia-reperfusion (IR) group, and IR receiving EPRO (60 mg/kg/day, po) group. MCAO led to a remarkable impairment in motor function together with stimulation of inflammatory and apoptotic pathways in the hippocampus of rats. After MCAO, the AT1 receptor in the brain was stimulated, resulting in activation of Janus kinase 2/signal transducers and activators of transcription 3 signaling generating more neuroinflammatory milieu and destructive actions on the hippocampus. Augmentation of caspase-3 level by MCAO enhanced neuronal apoptosis synchronized with neurodegenerative effects of oxidative stress biomarkers. Pretreatment with EPRO opposed motor impairment and decreased oxidative and apoptotic mediators in the hippocampus of rats. The anti-inflammatory activity of EPRO was revealed by downregulation of nuclear factor-kappa B and tumor necrosis factor-β levels and (C-X-C motif) ligand 1 messenger RNA (mRNA) expression. Moreover, the study confirmed the role of EPRO against a unique pathway of hypoxia-inducible factor-1α and its subsequent inflammatory mediators. Furthermore, upregulation of caveolin-1 mRNA level was also observed along with decreased oxidative stress marker levels and brain edema. Therefore, EPRO showed neuroprotective effects in MCAO-induced cerebral ischemia in rats via attenuation of oxidative, apoptotic, and inflammatory pathways.
Collapse
Affiliation(s)
- Muhammad A E Saad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt.,School of Pharmacy, New Giza University, Giza, Egypt
| | - Mohamed I M Fahmy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Muhammad F El-Yamany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Reham El-Naggar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr University for Science and Technology (MUST), Giza, Egypt
| | - Ahmed A E Hegazy
- Department of Neurosurgery, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Muhammad Al-Shorbagy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt.,School of Pharmacy, New Giza University, Giza, Egypt
| |
Collapse
|
12
|
Maeda M, Fukuda H, Matsuo R, Kiyuna F, Ago T, Kitazono T, Kamouchi M. Nationwide temporal trend analysis of reperfusion therapy utilization and mortality in acute ischemic stroke patients in Japan. Medicine (Baltimore) 2021; 100:e24145. [PMID: 33429791 PMCID: PMC7793441 DOI: 10.1097/md.0000000000024145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/07/2020] [Indexed: 01/05/2023] Open
Abstract
This study aimed to elucidate nationwide trends in reperfusion therapy utilization and subsequent 30-day mortality in acute ischemic stroke patients in Japan. The analysis focused on intravenous recombinant tissue plasminogen activator (IV rt-PA) and endovascular thrombectomy (EVT). Using health insurance claims data, we calculated the age- and sex-adjusted monthly number of acute ischemic stroke patients who received IV rt-PA and/or EVT in Japan from April 2010 to March 2016, and investigated the 30-day all-cause mortality rates after undergoing these therapies. Through an interrupted time-series analysis, we examined the: (1).. trends prior to extension of the IV rt-PA therapeutic time window from 3 hours to 4.5 hours in September 2012, (2).. changes that occurred immediately after the extension, and (3).. differences in trends between the pre- and post-extension periods. During the study period, 69,920 patients with acute ischemic stroke (mean age ± standard deviation: 74.9 ± 12.0 years; 41.4% women) received IV rt-PA and/or EVT. The age- and sex-adjusted number of patients receiving IV rt-PA monotherapy increased immediately after the time window extension (<rk-italic > P < .001), but did not change during the pre- (P = .90) and post-extension (P = .58) periods. In contrast, the number of patients receiving EVT with or without IV rt-PA continuously increased during the pre-extension period (P < .001), and further increased during the post-extension period (P <.001); however, this number decreased immediately after the extension (P < .001). There were no significant changes in 30-day all-cause mortality during the pre- (P = .40) and post-extension (P = .64) periods, as well as immediately after the extension (P = .53). The extension of the IV rt-PA therapeutic time window and progressively widespread use of EVT in Japan have increased the number of acute ischemic stroke patients eligible for reperfusion therapy. These trends were not accompanied by a higher risk of post-reperfusion mortality.
Collapse
Affiliation(s)
- Megumi Maeda
- Department of Health Care Administration and Management
| | - Haruhisa Fukuda
- Department of Health Care Administration and Management
- Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University
| | - Ryu Matsuo
- Department of Health Care Administration and Management
- Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University
| | - Fumi Kiyuna
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University
| | - Tetsuro Ago
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University
| | - Takanari Kitazono
- Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University
| | - Masahiro Kamouchi
- Department of Health Care Administration and Management
- Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University
| |
Collapse
|
13
|
Metabolomic profiling of fatty acid biomarkers for intracerebral hemorrhage stroke. Talanta 2021; 222:121679. [DOI: 10.1016/j.talanta.2020.121679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 01/24/2023]
|
14
|
Jiang Z, Alamuri TT, Muir ER, Choi DW, Duong TQ. Longitudinal multiparametric MRI study of hydrogen-enriched water with minocycline combination therapy in experimental ischemic stroke in rats. Brain Res 2020; 1748:147122. [DOI: 10.1016/j.brainres.2020.147122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022]
|
15
|
Zhang S, Cho J, Nguyen TD, Spincemaille P, Gupta A, Zhu W, Wang Y. Initial Experience of Challenge-Free MRI-Based Oxygen Extraction Fraction Mapping of Ischemic Stroke at Various Stages: Comparison With Perfusion and Diffusion Mapping. Front Neurosci 2020; 14:535441. [PMID: 33041755 PMCID: PMC7525031 DOI: 10.3389/fnins.2020.535441] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 08/18/2020] [Indexed: 01/01/2023] Open
Abstract
MRI-based oxygen extraction fraction imaging has a great potential benefit in the selection of clinical strategies for ischemic stroke patients. This study aimed to evaluate the performance of a challenge-free oxygen extraction fraction (OEF) mapping in a cohort of acute and subacute ischemic stroke patients. Consecutive ischemic stroke patients (a total of 30 with 5 in the acute stage, 19 in the early subacute stage, and 6 in the late subacute stage) were recruited. All subjects underwent MRI including multi-echo gradient echo (mGRE), diffusion weighted imaging (DWI), and 3D-arterial spin labeling (ASL). OEF maps were generated from mGRE phase + magnitude data, which were processed using quantitative susceptibility mapping (QSM) + quantitative blood oxygen level-dependent (qBOLD) imaging with cluster analysis of time evolution. Cerebral blood flow (CBF) and apparent diffusion coefficient (ADC) maps were reconstructed from 3D-ASL and DWI, respectively. Further, cerebral metabolic rate of oxygen (CMRO2) was calculated as the product of CBF and OEF. OEF, CMRO2, CBF, and ADC values in the ischemic cores (absolute values) and their contrasts to the contralateral regions (relative values) were evaluated. One-way analysis of variance (ANOVA) was used to compare OEF, CMRO2, CBF, and ADC values and their relative values among different stroke stages. The OEF value of infarct core showed a trend of decrease from acute, to early subacute, and to late subacute stages of ischemic stroke. Significant differences among the three stroke stages were only observed in the absolute OEF (F = 6.046, p = 0.005) and relative OEF (F = 5.699, p = 0.009) values of the ischemic core, but not in other measurements (absolute and relative CMRO2, CBF, ADC values, all values of p > 0.05). In conclusion, the challenge-free QSM + qBOLD-generated OEF mapping can be performed on stroke patients. It can provide more information on tissue viability that was not available with CBF and ADC and, thus, may help to better manage ischemic stroke patients.
Collapse
Affiliation(s)
- Shun Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junghun Cho
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Thanh D. Nguyen
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Pascal Spincemaille
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Ajay Gupta
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| |
Collapse
|
16
|
Halder SK, Matsunaga H, Ueda H. Prothymosin alpha and its mimetic hexapeptide improve delayed tissue plasminogen activator-induced brain damage following cerebral ischemia. J Neurochem 2019; 153:772-789. [PMID: 31454420 DOI: 10.1111/jnc.14858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 04/13/2019] [Accepted: 08/22/2019] [Indexed: 12/14/2022]
Abstract
Tissue plasminogen activator (tPA) administration beyond 4.5 h of stroke symptoms is beneficial for patients but has an increased risk of cerebral hemorrhage. Thus, increasing the therapeutic window of tPA is important for stroke recovery. We previously showed that prothymosin alpha (ProTα) or its mimetic hexapeptide (P6Q) has anti-ischemic activity. Here, we examined the beneficial effects of ProTα or P6Q against delayed tPA-induced brain damage following middle cerebral artery occlusion (MCAO) or photochemically induced thrombosis in mice. Brain hemorrhage was observed by tPA administration during reperfusion at 4.5 and 6 h after MCAO. Co-administration of ProTα with tPA at 4.5 h inhibited hemorrhage and motor dysfunction 2-4 days, but not 7 days after MCAO. ProTα administration at 2 and 4.5 h after MCAO significantly inhibited tPA (4.5 h)-induced motor dysfunction and death more than 7 days. Administration of tPA caused the loss of tight junction proteins, zona occulden-1 and occludin, and up-regulation of matrix metalloproteinase-2/9, in a ProTα-reversible manner. P6Q administration abolished tPA (4.5 h)-induced hemorrhage and reversed tPA (6 h)-induced vascular damage and matrix metalloproteinase-2 and 9 up-regulation. Twice administrations of P6Q at 2 h alone and 6 h with tPA significantly improved motor dysfunction more than 7 days. In photochemically induced thrombosis ischemia, similar vascular leakage and neuronal damage (infarction and motor dysfunction) by late tPA (4.5 or 6 h) were also inhibited by P6Q. Thus, these studies suggest that co-administration with ProTα or P6Q would be beneficial to inhibit delayed tPA-induced hemorrhagic mechanisms in acute ischemic stroke.
Collapse
Affiliation(s)
- Sebok Kumar Halder
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hayato Matsunaga
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
17
|
Kanazawa T, Kurano T, Ibaraki H, Takashima Y, Suzuki T, Seta Y. Therapeutic Effects in a Transient Middle Cerebral Artery Occlusion Rat Model by Nose-To-Brain Delivery of Anti-TNF-Alpha siRNA with Cell-Penetrating Peptide-Modified Polymer Micelles. Pharmaceutics 2019; 11:pharmaceutics11090478. [PMID: 31540164 PMCID: PMC6781507 DOI: 10.3390/pharmaceutics11090478] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/15/2022] Open
Abstract
We previously reported that siRNA delivery to the brain is improved by the nose-to-brain delivery route and by conjugation with polyethylene glycol-polycaprolactone (PEG-PCL) polymer micelles and the cell-penetrating peptide, Tat (PEG-PCL-Tat). In this study, we evaluated the nose-to-brain delivery of siRNA targeting TNF-α (siTNF-α) conjugated with PEG-PCL-Tat to investigate its therapeutic effects on a transient middle cerebral artery occlusion (t-MCAO) rat model of cerebral ischemia-reperfusion injury. Intranasal treatment was provided 30 min after infarction induced via suturing. Two hours after infarction induction, the suture was removed, and blood flow was released. At 22 h post-reperfusion, we assessed the infarcted area, TNF-α production, and neurological score to determine the therapeutic effects. The infarcted area was observed over a wide range in the untreated group, whereas shrinkage of the infarcted area was observed in rats subjected to intranasal administration of siTNF-α with PEG-PCL-Tat micelles. Moreover, TNF-α production and neurological score in rats treated by intranasal administration of siTNF-α with PEG-PCL-Tat micelles were significantly lower than those in untreated and naked siTNF-α-treated rats. These results indicate that nose-to-brain delivery of siTNF-α conjugated with PEG-PCL-Tat micelles alleviated the symptoms of cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Takanori Kanazawa
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan; (T.K.); (H.I.); (Y.T.); (Y.S.)
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan;
- Correspondence: ; Tel./Fax: +81-47-465-6587
| | - Takumi Kurano
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan; (T.K.); (H.I.); (Y.T.); (Y.S.)
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan;
| | - Hisako Ibaraki
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan; (T.K.); (H.I.); (Y.T.); (Y.S.)
| | - Yuuki Takashima
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan; (T.K.); (H.I.); (Y.T.); (Y.S.)
| | - Toyofumi Suzuki
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan;
| | - Yasuo Seta
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan; (T.K.); (H.I.); (Y.T.); (Y.S.)
| |
Collapse
|
18
|
Yeo HG, Hong JJ, Lee Y, Yi KS, Jeon CY, Park J, Won J, Seo J, Ahn YJ, Kim K, Baek SH, Hwang EH, Kim G, Jin YB, Jeong KJ, Koo BS, Kang P, Lim KS, Kim SU, Huh JW, Kim YH, Son Y, Kim JS, Choi CH, Cha SH, Lee SR. Increased CD68/TGFβ Co-expressing Microglia/ Macrophages after Transient Middle Cerebral Artery Occlusion in Rhesus Monkeys. Exp Neurobiol 2019; 28:458-473. [PMID: 31495075 PMCID: PMC6751863 DOI: 10.5607/en.2019.28.4.458] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/10/2019] [Accepted: 07/08/2019] [Indexed: 12/13/2022] Open
Abstract
The function of microglia/macrophages after ischemic stroke is poorly understood. This study examines the role of microglia/macrophages in the focal infarct area after transient middle cerebral artery occlusion (MCAO) in rhesus monkeys. We measured infarct volume and neurological function by magnetic resonance imaging (MRI) and non-human primate stroke scale (NHPSS), respectively, to assess temporal changes following MCAO. Activated phagocytic microglia/macrophages were examined by immunohistochemistry in post-mortem brains (n=6 MCAO, n=2 controls) at 3 and 24 hours (acute stage), 2 and 4 weeks (subacute stage), and 4, and 20 months (chronic stage) following MCAO. We found that the infarct volume progressively decreased between 1 and 4 weeks following MCAO, in parallel with the neurological recovery. Greater presence of cluster of differentiation 68 (CD68)-expressing microglia/macrophages was detected in the infarct lesion in the subacute and chronic stage, compared to the acute stage. Surprisingly, 98~99% of transforming growth factor beta (TGFβ) was found colocalized with CD68-expressing cells. CD68-expressing microglia/macrophages, rather than CD206+ cells, may exert anti-inflammatory effects by secreting TGFβ after the subacute stage of ischemic stroke. CD68+ microglia/macrophages can therefore be used as a potential therapeutic target.
Collapse
Affiliation(s)
- Hyeon-Gu Yeo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Jung Joo Hong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Youngjeon Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Kyung Sik Yi
- Department of Radiology, Chungbuk National University Hospital, Cheongju 28644, Korea
| | - Chang-Yeop Jeon
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Junghyung Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Jinyoung Won
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Jincheol Seo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.,School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Yu-Jin Ahn
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Keonwoo Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.,Department of Physical Therapy, Graduate School of Inje University, Gimhae 50834, Korea
| | - Seung Ho Baek
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Eun-Ha Hwang
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.,Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Korea
| | - Green Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.,Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Korea
| | - Yeung Bae Jin
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Kang-Jin Jeong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Bon-Sang Koo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Philyong Kang
- Futuristic Animal Resource & Research Center, KRIBB, Cheongju 28116, Korea
| | - Kyung Seob Lim
- Futuristic Animal Resource & Research Center, KRIBB, Cheongju 28116, Korea
| | - Sun-Uk Kim
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea.,Futuristic Animal Resource & Research Center, KRIBB, Cheongju 28116, Korea
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Young-Hyun Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Yeonghoon Son
- Primate Resource Center, KRIBB, Jeongeup 56216, Korea
| | - Ji-Su Kim
- Primate Resource Center, KRIBB, Jeongeup 56216, Korea
| | - Chi-Hoon Choi
- Department of Radiology, Chungbuk National University Hospital, Cheongju 28644, Korea
| | - Sang-Hoon Cha
- Department of Radiology, Chungbuk National University Hospital, Cheongju 28644, Korea
| | - Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| |
Collapse
|
19
|
So PW, Ekonomou A, Galley K, Brody L, Sahuri-Arisoylu M, Rattray I, Cash D, Bell JD. Intraperitoneal delivery of acetate-encapsulated liposomal nanoparticles for neuroprotection of the penumbra in a rat model of ischemic stroke. Int J Nanomedicine 2019; 14:1979-1991. [PMID: 30936698 PMCID: PMC6430000 DOI: 10.2147/ijn.s193965] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background Ischemic stroke is a devastating condition, with metabolic derangement and persistent inflammation enhancing the initial insult of ischaemia. Recombinant tissue plasminogen remains the only effective treatment but limited as therapy must commence soon after the onset of symptoms. Purpose We investigated whether acetate, which modulates many pathways including inflammation, may attenuate brain injury in stroke. As acetate has a short blood half-life and high amounts irritate the gastrointestinal tract, acetate was administered encapsulated in a liposomal nanoparticle (liposomal-encapsulated acetate, LITA). Methods Transient ischemia was induced by 90 mins middle-cerebral artery occlusion (MCAO) in Sprague-Dawley rats, and LITA or control liposomes given intraperitoneally at occlusion and daily for up to two weeks post-MCAO. Magnetic resonance imaging (MRI) was used to estimate lesion volume at 24 h, 1 and 2 weeks post-MCAO and anterior lateral ventricular volume (ALVv) at 2 weeks post-MCAO. Locomotive behaviour was tested prior to the final MRI scan. After the final scan, brains were collected, and immunohistochemistry was performed. Results Lesion volumes were decreased by ~80% from 24 h to one-week post-MCAO, in both control and LITA groups (P⩽0.05). However, the lesion was increased by ~50% over the subsequent 1 to 2 weeks after MCAO in the control group (from 24.1±10.0 to 58.7±28.6 mm3; P⩽0.05) but remained unchanged in the LITA group. ALVv were also attenuated by LITA treatment at 2 weeks post-MCAO (177.2±11.9% and 135.3±10.9% of contralateral ALVv for control and LITA groups, respectively; P⩽0.05). LITA-treated animals also appeared to have improved motor activity, moving with greater average velocity than control animals. Microglial immunoreactivity was ~40% lower in the LITA group compared to the control group (P⩽0.05), but LITA did not modulate neurogenesis, apoptosis, histone acetylation and lipid peroxidation. Conclusion LITA appears to attenuate the harmful chronic neuroinflammation observed during brain remodeling after a focal ischemic insult.
Collapse
Affiliation(s)
- Po-Wah So
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Neuroimaging, London, UK,
| | - Antigoni Ekonomou
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Neuroimaging, London, UK,
| | - Kim Galley
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Neuroimaging, London, UK,
| | - Leigh Brody
- University of Westminster, Research Centre for Optimal Health, London, UK
| | | | - Ivan Rattray
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, London, UK
| | - Diana Cash
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Neuroimaging, London, UK,
| | - Jimmy D Bell
- University of Westminster, Research Centre for Optimal Health, London, UK
| |
Collapse
|
20
|
Huang Y, Ohta Y, Shang J, Morihara R, Nakano Y, Fukui Y, Liu X, Shi X, Feng T, Yamashita T, Sato K, Takemoto M, Hishikawa N, Suzuki E, Hasumi K, Abe K. Antineuroinflammatory Effect of SMTP-7 in Ischemic Mice. J Stroke Cerebrovasc Dis 2018; 27:3084-3094. [PMID: 30078758 DOI: 10.1016/j.jstrokecerebrovasdis.2018.06.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/20/2018] [Accepted: 06/30/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Stachybotrys microspora triprenyl phenol-7 (SMTP-7) has both potentials of thrombolytic and neuroprotective effects, but its detailed neuroprotective mechanisms in ischemic stroke are still unclear. Here, we assessed the neuroprotective effects of SMTP-7 for anti-inflammatory and antiapoptosis mechanisms after 60 minutes of transient middle cerebral artery occlusion (tMCAO) in mice. METHODS After 60minutes of tMCAO, 0.9% NaCl, tissue-type plasminogen activator (tPA), SMTP-7 or tPA+SMTP-7 was intravenously administrated through subclavian vein just before the reperfusion, and these mice were examined at 24hours after reperfusion. We histologically assessed the antineuroinflammatory effect of SMTP-7 on the expressive changes of inflammatory markers in ischemic mouse brains. RESULTS Compared with the vehicle and tPA groups, SMTP-7 treatment significantly improved clinical scores and decreased the infarct volume and the numbers of TNF-α, nuclear factor-κB (NF-κB), nucleotide oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3), and cleaved caspase-3-positive cells in the brain of mice at 24hours after tMCAO but not p62-positive cells. However, tPA+SMTP-7 treatment did not show such effects. CONCLUSIONS The present study suggested that SMTP-7 provides a therapeutic benefit for ischemic stroke mice through anti-inflammatory and antiapoptotic effects but not antiautophagic effect.
Collapse
Affiliation(s)
- Yong Huang
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| | - Yasuyuki Ohta
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| | - Jingwei Shang
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| | - Ryuta Morihara
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| | - Yumiko Nakano
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| | - Yusuke Fukui
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| | - Xia Liu
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| | - Xiaowen Shi
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| | - Tian Feng
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| | - Toru Yamashita
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| | - Kota Sato
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| | - Mami Takemoto
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| | - Nozomi Hishikawa
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| | - Eriko Suzuki
- Department of Applied Biological Science, Tokyo Noko University, Fuchu, Tokyo, Japan
| | - Keiji Hasumi
- Department of Applied Biological Science, Tokyo Noko University, Fuchu, Tokyo, Japan
| | - Koji Abe
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan.
| |
Collapse
|
21
|
Neuroprotection via AT2 receptor agonists in ischemic stroke. Clin Sci (Lond) 2018; 132:1055-1067. [DOI: 10.1042/cs20171549] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 12/12/2022]
Abstract
Stroke is a devastating disease that afflicts millions of people each year worldwide. Ischemic stroke, which accounts for ~88% of cases, occurs when blood supply to the brain is decreased, often because of thromboembolism or atherosclerotic occlusion. This deprives the brain of oxygen and nutrients, causing immediate, irreversible necrosis within the core of the ischemic area, but more delayed and potentially reversible neuronal damage in the surrounding brain tissue, the penumbra. The only currently approved therapies for ischemic stroke, the thrombolytic agent recombinant tissue plasminogen activator (rtPA) and the endovascular clot retrieval/destruction processes, are aimed at restoring blood flow to the infarcted area, but are only available for a minority of patients and are not able in most cases to completely restore neurological deficits. Consequently, there remains a need for agents that will protect neurones against death following ischemic stroke. Here, we evaluate angiotensin II (Ang II) type 2 (AT2) receptor agonists as a possible therapeutic target for this disease. We first provide an overview of stroke epidemiology, pathophysiology, and currently approved therapies. We next review the large amount of preclinical evidence, accumulated over the past decade and a half, which indicates that AT2 receptor agonists exert significant neuroprotective effects in various animal models, and discuss the potential mechanisms involved. Finally, after discussing the challenges of delivering blood–brain barrier (BBB) impermeable AT2 receptor agonists to the infarcted areas of the brain, we summarize the evidence for and against the development of these agents as a promising therapeutic strategy for ischemic stroke.
Collapse
|
22
|
Protective effects of the angiotensin II AT 2 receptor agonist compound 21 in ischemic stroke: a nose-to-brain delivery approach. Clin Sci (Lond) 2018; 132:581-593. [PMID: 29500223 DOI: 10.1042/cs20180100] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 02/07/2023]
Abstract
Significant neuroprotective effects of angiotensin II type 2 (AT2) receptor (AT2 receptor) agonists in ischemic stroke have been previously demonstrated in multiple studies. However, the routes of agonist application used in these pre-clinical studies, direct intracerebroventricular (ICV) and systemic administration, are unsuitable for translation into humans; in the latter case because AT2 receptor agonists are blood-brain barrier (BBB) impermeable. To circumvent this problem, in the current study we utilized the nose-to-brain (N2B) route of administration to bypass the BBB and deliver the selective AT2 receptor agonist Compound 21 (C21) to naïve rats or rats that had undergone endothelin 1 (ET-1)-induced ischemic stroke. The results obtained from the present study indicated that C21 applied N2B entered the cerebral cortex and striatum within 30 min in amounts that are therapeutically relevant (8.4-9 nM), regardless of whether BBB was intact or disintegrated. C21 was first applied N2B at 1.5 h after stroke indeed provided neuroprotection, as evidenced by a highly significant, 57% reduction in cerebral infarct size and significant improvements in Bederson and Garcia neurological scores. N2B-administered C21 did not affect blood pressure or heart rate. Thus, these data provide proof-of-principle for the idea that N2B application of an AT2 receptor agonist can exert neuroprotective actions when administered following ischemic stroke. Since N2B delivery of other agents has been shown to be effective in certain human central nervous system diseases, the N2B application of AT2 receptor agonists may become a viable mode of delivering these neuroprotective agents for human ischemic stroke patients.
Collapse
|
23
|
Hu W, Chen Z. The roles of histamine and its receptor ligands in central nervous system disorders: An update. Pharmacol Ther 2017; 175:116-132. [DOI: 10.1016/j.pharmthera.2017.02.039] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Stroke and Helicopter Emergency Medical Service Transports: An Analysis of 25,332 Patients. Air Med J 2016; 34:348-56. [PMID: 26611222 DOI: 10.1016/j.amj.2015.06.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/11/2015] [Accepted: 06/22/2015] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Helicopter emergency medical services (HEMS) are effective in time-sensitive illnesses, including stroke. Intravenous tissue plasminogen activator is beneficial for ischemic stroke within 4.5 hours of onset. This study analyzed the largest repository of US HEMS electronic medical record data characterizing demographic and logistical trends during stroke center accreditation. This study developed a methodology to aggregate, analyze, and report data from multiple providers. METHODS This is a descriptive study of aggregate, deidentified data from 67 US providers from 2004 to 2011. Retrospective data including age, ethnicity, total transport time, mission type, and locality were analyzed. The effect of primary stroke center (PSC) designation was assessed for 2011. RESULTS A total of 25,332 patients were transported for "stroke." Stroke increased from 1.4% to 3.9% during the study. Ninety-six percent of transports arrived at definitive care within 2 hours. Seventy-two percent of transports were "interfacility," and 58% were from "rural" or "super-rural" localities. Seventy-nine percent of 2011 transports were to PSCs. Ethnicity and age were significant barriers to transport to PSCs (P < .001). CONCLUSIONS HEMS has increased access to stroke care for super-rural, rural, and urban communities offering timely transport within the treatment window if symptoms are recognized within 2.5 hours of onset. This study created a methodology for future multicenter aggregate data studies.
Collapse
|
25
|
Time to Computerized Tomography Scan, Age, and Mortality in Acute Stroke. J Stroke Cerebrovasc Dis 2016; 25:3005-3012. [DOI: 10.1016/j.jstrokecerebrovasdis.2016.08.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 08/07/2016] [Accepted: 08/12/2016] [Indexed: 12/16/2022] Open
|
26
|
Zhen X, Ng ESK, Lam FFY. Suppression of ischaemia-induced injuries in rat brain by protease-activated receptor-1 (PAR-1) activating peptide. Eur J Pharmacol 2016; 786:36-46. [DOI: 10.1016/j.ejphar.2016.05.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 10/21/2022]
|
27
|
Neuroprotective potential of cerium oxide nanoparticles for focal cerebral ischemic stroke. ACTA ACUST UNITED AC 2016; 36:480-486. [PMID: 27465320 DOI: 10.1007/s11596-016-1612-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 06/15/2016] [Indexed: 10/21/2022]
Abstract
During the previous years, with the emerging of nanotechnology, the enormous capabilities of nanoparticles have drawn great attention from researchers in terms of their potentials in various aspects of pharmacology. Cerium oxide nanoparticles (nanoceria), considered as one of the most widely used nanomaterials, due to its tempting catalytic antioxidant properties, show a promising potential in diverse disorders, such as cerebral ischemic stroke (CIS), cancer, neurodegenerative and inflammatory diseases. Overwhelming generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) during cerebral ischemia and reperfusion periods is known to aggravate brain damage via sophisticated cellular and molecular mechanisms, and therefore exploration of the antioxidant capacities of nanoceria becomes a new approach in reducing cerebral ischemic injury. Furthermore, utilizing nanoceria as a drug carrier might display the propensity to overcome limitations or inefficacy of other conceivable neuroprotectants and exhibit synergistic effects. In this review, we emphasize on the principle features of nanoceria and current researches concerning nanoceria as a potential therapeutic agent or carrier in improving the prognosis of CIS.
Collapse
|
28
|
Ren X, Simpkins JW. Deciphering the Blood-Brain Barrier Damage in Stroke: Mitochondrial Mechanism. JOURNAL OF NEUROINFECTIOUS DISEASES 2016; 6. [PMID: 27213159 PMCID: PMC4873162 DOI: 10.4172/2314-7326.s2-e002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Xuefang Ren
- Department of Physiology and Pharmacology, Experimental Stroke Core, Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, West Virginia, USA
| | - James W Simpkins
- Department of Physiology and Pharmacology, Experimental Stroke Core, Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
29
|
Cheng MY, Aswendt M, Steinberg GK. Optogenetic Approaches to Target Specific Neural Circuits in Post-stroke Recovery. Neurotherapeutics 2016; 13:325-40. [PMID: 26701667 PMCID: PMC4824024 DOI: 10.1007/s13311-015-0411-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Stroke is a leading cause of death and disability in the USA, yet treatment options are very limited. Functional recovery can occur after stroke and is attributed, in part, to rewiring of neural connections in areas adjacent to or remotely connected to the infarct. A better understanding of neural circuit rewiring is thus an important step toward developing future therapeutic strategies for stroke recovery. Because stroke disrupts functional connections in peri-infarct and remotely connected regions, it is important to investigate brain-wide network dynamics during post-stroke recovery. Optogenetics is a revolutionary neuroscience tool that uses bioengineered light-sensitive proteins to selectively activate or inhibit specific cell types and neural circuits within milliseconds, allowing greater specificity and temporal precision for dissecting neural circuit mechanisms in diseases. In this review, we discuss the current view of post-stroke remapping and recovery, including recent studies that use optogenetics to investigate neural circuit remapping after stroke, as well as optogenetic stimulation to enhance stroke recovery. Multimodal approaches employing optogenetics in conjunction with other readouts (e.g., in vivo neuroimaging techniques, behavior assays, and next-generation sequencing) will advance our understanding of neural circuit reorganization during post-stroke recovery, as well as provide important insights into which brain circuits to target when designing brain stimulation strategies for future clinical studies.
Collapse
Affiliation(s)
- Michelle Y Cheng
- Department of Neurosurgery, R281, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305-5327, USA.
| | - Markus Aswendt
- Department of Neurosurgery, R281, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305-5327, USA
| | - Gary K Steinberg
- Department of Neurosurgery, R281, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305-5327, USA.
| |
Collapse
|
30
|
Abstract
Stroke is a leading cause of death and long-term disability. Methylene blue, a drug grandfathered by the Food and Drug Administration with a long history of safe usage in humans for treating methemoglobinemia and cyanide poisoning, has recently been shown to be neuroprotective in neurodegenerative diseases and brain injuries. The goal of this paper is to review studies on methylene blue in experimental stroke models.
Collapse
Affiliation(s)
- Zhao Jiang
- Research Imaging Institute, Radiology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Timothy Q Duong
- Department of Ophthalmology, Radiology and Physiology, University of Texas Health Science Center, San Antonio, Texas, USA
| |
Collapse
|
31
|
Robinson JD, Turner JW, Wood KS. Patient Perceptions of Acute Care Telemedicine: A Pilot Investigation. HEALTH COMMUNICATION 2015; 30:1269-1276. [PMID: 25668582 DOI: 10.1080/10410236.2014.936335] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This investigation focuses on the patient perceptions of the interaction that occurs during acute telemedical care in an emergency department and the effectiveness of this technology. Data indicate 95% of the patients were seen by a specialist within 15 minutes of arriving at the emergency room and fewer than 12% reported experiencing a technical problem (n = 150). Further, 80% of the patients indicated that they were satisfied with level of concern communicated to them by the specialist and 80% were satisfied with the explanation of their medical condition. Finally, 80% of the patients believed the use of telemedicine was a positive factor in the diagnostic process and 80% were reported being satisfied with their overall treatment.
Collapse
Affiliation(s)
| | | | - Kelly S Wood
- c Department of Communication , Missouri State University
| |
Collapse
|
32
|
Abstract
BACKGROUND Most strokes are due to blockage of an artery in the brain by a blood clot. Prompt treatment with thrombolytic drugs can restore blood flow before major brain damage has occurred and improve recovery after stroke in some people. Thrombolytic drugs, however, can also cause serious bleeding in the brain, which can be fatal. One drug, recombinant tissue plasminogen activator (rt-PA), is licensed for use in selected patients within 4.5 hours of stroke in Europe and within three hours in the USA. There is an upper age limit of 80 years in some countries, and a limitation to mainly non-severe stroke in others. Forty per cent more data are available since this review was last updated in 2009. OBJECTIVES To determine whether, and in what circumstances, thrombolytic therapy might be an effective and safe treatment for acute ischaemic stroke. SEARCH METHODS We searched the Cochrane Stroke Group Trials Register (last searched November 2013), MEDLINE (1966 to November 2013) and EMBASE (1980 to November 2013). We also handsearched conference proceedings and journals, searched reference lists and contacted pharmaceutical companies and trialists. SELECTION CRITERIA Randomised trials of any thrombolytic agent compared with control in people with definite ischaemic stroke. DATA COLLECTION AND ANALYSIS Two review authors applied the inclusion criteria, extracted data and assessed trial quality. We verified the extracted data with investigators of all major trials, obtaining additional unpublished data if available. MAIN RESULTS We included 27 trials, involving 10,187 participants, testing urokinase, streptokinase, rt-PA, recombinant pro-urokinase or desmoteplase. Four trials used intra-arterial administration, while the rest used the intravenous route. Most data come from trials that started treatment up to six hours after stroke. About 44% of the trials (about 70% of the participants) were testing intravenous rt-PA. In earlier studies very few of the participants (0.5%) were aged over 80 years; in this update, 16% of participants are over 80 years of age due to the inclusion of IST-3 (53% of participants in this trial were aged over 80 years). Trials published more recently utilised computerised randomisation, so there are less likely to be baseline imbalances than in previous versions of the review. More than 50% of trials fulfilled criteria for high-grade concealment; there were few losses to follow-up for the main outcomes.Thrombolytic therapy, mostly administered up to six hours after ischaemic stroke, significantly reduced the proportion of participants who were dead or dependent (modified Rankin 3 to 6) at three to six months after stroke (odds ratio (OR) 0.85, 95% confidence interval (CI) 0.78 to 0.93). Thrombolytic therapy increased the risk of symptomatic intracranial haemorrhage (OR 3.75, 95% CI 3.11 to 4.51), early death (OR 1.69, 95% CI 1.44 to 1.98; 13 trials, 7458 participants) and death by three to six months after stroke (OR 1.18, 95% CI 1.06 to 1.30). Early death after thrombolysis was mostly attributable to intracranial haemorrhage. Treatment within three hours of stroke was more effective in reducing death or dependency (OR 0.66, 95% CI 0.56 to 0.79) without any increase in death (OR 0.99, 95% CI 0.82 to 1.21; 11 trials, 2187 participants). There was heterogeneity between the trials. Contemporaneous antithrombotic drugs increased the risk of death. Trials testing rt-PA showed a significant reduction in death or dependency with treatment up to six hours (OR 0.84, 95% CI 0.77 to 0.93, P = 0.0006; 8 trials, 6729 participants) with significant heterogeneity; treatment within three hours was more beneficial (OR 0.65, 95% CI 0.54 to 0.80, P < 0.0001; 6 trials, 1779 participants) without heterogeneity. Participants aged over 80 years benefited equally to those aged under 80 years, particularly if treated within three hours of stroke. AUTHORS' CONCLUSIONS Thrombolytic therapy given up to six hours after stroke reduces the proportion of dead or dependent people. Those treated within the first three hours derive substantially more benefit than with later treatment. This overall benefit was apparent despite an increase in symptomatic intracranial haemorrhage, deaths at seven to 10 days, and deaths at final follow-up (except for trials testing rt-PA, which had no effect on death at final follow-up). Further trials are needed to identify the latest time window, whether people with mild stroke benefit from thrombolysis, to find ways of reducing symptomatic intracranial haemorrhage and deaths, and to identify the environment in which thrombolysis may best be given in routine practice.
Collapse
Affiliation(s)
- Joanna M Wardlaw
- University of EdinburghCentre for Clinical Brain SciencesThe Chancellor's Building49 Little France CrescentEdinburghUKEH16 4SB
| | - Veronica Murray
- Danderyd HospitalDepartment of Clinical Sciences, Karolinska InstitutetStockholmSwedenSE‐182 88
| | - Eivind Berge
- Oslo University HospitalDepartment of Internal MedicineOsloNorwayNO‐0407
| | - Gregory J del Zoppo
- University of WashingtonDepartment of Medicine (Division of Hematology), Department of Neurology325 Ninth AvenueBox 359756SeattleWashingtonUSA98104
| | | |
Collapse
|
33
|
Arien-Zakay H, Gincberg G, Nagler A, Cohen G, Liraz-Zaltsman S, Trembovler V, Alexandrovich AG, Matok I, Galski H, Elchalal U, Lelkes PI, Lazarovici P, Shohami E. Neurotherapeutic effect of cord blood derived CD45+ hematopoietic cells in mice after traumatic brain injury. J Neurotrauma 2014; 31:1405-16. [PMID: 24640955 DOI: 10.1089/neu.2013.3270] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Treatment of traumatic brain injury (TBI) is still an unmet need. Cell therapy by human umbilical cord blood (HUCB) has shown promising results in animal models of TBI and is under evaluation in clinical trials. HUCB contains different cell populations but to date, only mesenchymal stem cells have been evaluated for therapy of TBI. Here we present the neurotherapeutic effect, as evaluated by neurological score, using a single dose of HUCB-derived mononuclear cells (MNCs) upon intravenous (IV) administration one day post-trauma in a mouse model of closed head injury (CHI). Delayed (eight days post-trauma) intracerebroventricular administration of MNCs showed improved neurobehavioral deficits thereby extending the therapeutic window for treating TBI. Further, we demonstrated for the first time that HUCB-derived pan-hematopoietic CD45 positive (CD45(+)) cells, isolated by magnetic sorting and characterized by expression of CD45 and CD11b markers (96-99%), improved the neurobehavioral deficits upon IV administration, which persisted for 35 days. The therapeutic effect was in a direct correlation to a reduction in the lesion volume and decreased by pre-treatment of the cells with anti-human-CD45 antibody. At the site of brain injury, 1.5-2 h after transplantation, HUCB-derived cells were identified by near infrared scanning and immunohistochemistry using anti-human-CD45 and anti-human-nuclei antibodies. Nerve growth factor and vascular endothelial growth factor levels were differentially expressed in both ipsilateral and contralateral brain hemispheres, thirty-five days after CHI, measured by enzyme-linked immunosorbent assay. These findings indicate the neurotherapeutic potential of HUCB-derived CD45(+) cell population in a mouse model of TBI and propose their use in the clinical setting of human TBI.
Collapse
Affiliation(s)
- Hadar Arien-Zakay
- 1 School of Pharmacy Institute for Drug Research, The Hebrew University of Jerusalem , Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lindsey BD, Nicoletto HA, Bennett ER, Laskowitz DT, Smith SW. 3-D transcranial ultrasound imaging with bilateral phase aberration correction of multiple isoplanatic patches: a pilot human study with microbubble contrast enhancement. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:90-101. [PMID: 24239360 PMCID: PMC3849324 DOI: 10.1016/j.ultrasmedbio.2013.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/20/2013] [Accepted: 09/01/2013] [Indexed: 05/03/2023]
Abstract
With stroke currently the second-leading cause of death globally, and 87% of all strokes classified as ischemic, the development of a fast, accessible, cost-effective approach for imaging occlusive stroke could have a significant impact on health care outcomes and costs. Although clinical examination and standard computed tomography alone do not provide adequate information for understanding the complex temporal events that occur during an ischemic stroke, ultrasound imaging is well suited to the task of examining blood flow dynamics in real time and may allow for localization of a clot. A prototype bilateral 3-D ultrasound imaging system using two matrix array probes on either side of the head allows for correction of skull-induced aberration throughout two entire phased array imaging volumes. We investigated the feasibility of applying this custom correction technique in five healthy volunteers with Definity microbubble contrast enhancement. Subjects were scanned simultaneously via both temporal acoustic windows in 3-D color flow mode. The number of color flow voxels above a common threshold increased as a result of aberration correction in five of five subjects, with a mean increase of 33.9%. The percentage of large arteries visualized by 3-D color Doppler imaging increased from 46% without aberration correction to 60% with aberration correction.
Collapse
Affiliation(s)
- Brooks D Lindsey
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA; Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, North Carolina, USA.
| | | | | | | | | |
Collapse
|
35
|
Abstract
Cerebral angiogenesis is an important process for physiological events such as brain development, but it also occurs in pathological conditions such as stroke. Defined as the generation of new blood vessels from preexisting vasculature, angiogenesis after ischemic stroke is important to limit the subsequent neuronal injury and death, as well as contribute to neurorepair. However, current therapies for ischemic stroke are largely focused on reestablishing uninterrupted blood flow, an important but inherently risky proposition. Furthermore, these therapies can have limited efficacy due to narrow therapeutic windows, and in the case of mechanical clot removal, are invasive procedures. Therefore, better stroke therapies are needed. Since the brain possesses mechanisms, including angiogenesis, to attempt self-repair after injury, it may prove beneficial to look at how such mechanisms are regulated to identify potential targets for new and improved stroke therapies. Perlecan domain V (DV), an endogenous extracellular matrix protein fragment, may represent one such therapeutic target. Key to its appeal is that perlecan DV is endogenously and persistently generated in the brain after stroke and has significant angio-modulatory properties. These, and other properties, have been therapeutically manipulated to improve experimental stroke outcomes, suggesting that DV could represent a promising new stroke therapy. Here we discuss a novel approach to studying DV-mediated angiogenesis in vitro using a coculture model.
Collapse
|
36
|
Iskander A, Knight RA, Zhang ZG, Ewing JR, Shankar A, Varma NRS, Bagher-Ebadian H, Ali MM, Arbab AS, Janic B. Intravenous administration of human umbilical cord blood-derived AC133+ endothelial progenitor cells in rat stroke model reduces infarct volume: magnetic resonance imaging and histological findings. Stem Cells Transl Med 2013; 2:703-14. [PMID: 23934909 DOI: 10.5966/sctm.2013-0066] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Endothelial progenitor cells (EPCs) hold enormous therapeutic potential for ischemic vascular diseases. Previous studies have indicated that stem/progenitor cells derived from human umbilical cord blood (hUCB) improve functional recovery in stroke models. Here, we examined the effect of hUCB AC133+ EPCs on stroke development and resolution in a middle cerebral artery occlusion (MCAo) rat model. Since the success of cell therapies strongly depends on the ability to monitor in vivo the migration of transplanted cells, we also assessed the capacity of magnetic resonance imaging (MRI) to track in vivo the magnetically labeled cells that were administered. Animals were subjected to transient MCAo and 24 hours later injected intravenously with 10(7) hUCB AC133+ EPCs. MRI performed at days 1, 7, and 14 after the insult showed accumulation of transplanted cells in stroke-affected hemispheres and revealed that stroke volume decreased at a significantly higher rate in cell-treated animals. Immunohistochemistry analysis of brain tissues localized the administered cells in the stroke-affected hemispheres only and indicated that these cells may have significantly affected the magnitude of endogenous proliferation, angiogenesis, and neurogenesis. We conclude that transplanted cells selectively migrated to the ischemic brain parenchyma, where they exerted a therapeutic effect on the extent of tissue damage, regeneration, and time course of stroke resolution.
Collapse
Affiliation(s)
- Asm Iskander
- Department of Radiology, Henry Ford Hospital, Detroit, MI, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Stroke neuroprotection: targeting mitochondria. Brain Sci 2013; 3:540-60. [PMID: 24961414 PMCID: PMC4061853 DOI: 10.3390/brainsci3020540] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 04/08/2013] [Accepted: 04/09/2013] [Indexed: 11/17/2022] Open
Abstract
Stroke is the fourth leading cause of death and the leading cause of long-term disability in the United States. Blood flow deficit results in an expanding infarct core with a time-sensitive peri-infarct penumbra that is considered salvageable and is the primary target for treatment strategies. The only current FDA-approved drug for treating ischemic stroke is recombinant tissue plasminogen activator (rt-PA). However, this treatment is limited to within 4.5 h of stroke onset in a small subset of patients. The goal of this review is to focus on mitochondrial-dependent therapeutic agents that could provide neuroprotection following stroke. Dysfunctional mitochondria are linked to neurodegeneration in many disease processes including stroke. The mechanisms reviewed include: (1) increasing ATP production by purinergic receptor stimulation, (2) decreasing the production of ROS by superoxide dismutase, or (3) increasing antioxidant defenses by methylene blue, and their benefits in providing neuroprotection following a stroke.
Collapse
|
38
|
Duong TQ. Magnetic resonance imaging of perfusion-diffusion mismatch in rodent and non-human primate stroke models. Neurol Res 2013; 35:465-9. [PMID: 23594679 DOI: 10.1179/1743132813y.0000000211] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Stroke is a leading cause of death and long-term disability. Non-invasive magnetic resonance imaging (MRI) has been widely used for the early detection of ischemic stroke and the longitudinal monitoring of novel treatment strategies. Recent advances in MRI techniques have enabled improved sensitivity and specificity to detecting ischemic brain injury and monitoring functional recovery. This review describes recent progresses in the development and application of multimodal MRI and image analysis techniques to study experimental stroke in rats and non-human primates.
Collapse
Affiliation(s)
- Timothy Q Duong
- South Texas Veterans Health Care System, Department of Veterans Affairs, San Antonio, TX, USA.
| |
Collapse
|
39
|
Lindsey BD, Nicoletto HA, Bennett ER, Laskowitz DT, Smith SW. Simultaneous bilateral real-time 3-d transcranial ultrasound imaging at 1 MHz through poor acoustic windows. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:721-34. [PMID: 23415287 PMCID: PMC3764922 DOI: 10.1016/j.ultrasmedbio.2012.11.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 11/19/2012] [Accepted: 11/20/2012] [Indexed: 05/19/2023]
Abstract
Ultrasound imaging has been proposed as a rapid, portable alternative imaging modality to examine stroke patients in pre-hospital or emergency room settings. However, in performing transcranial ultrasound examinations, 8%-29% of patients in a general population may present with window failure, in which case it is not possible to acquire clinically useful sonographic information through the temporal bone acoustic window. In this work, we describe the technical considerations, design and fabrication of low-frequency (1.2 MHz), large aperture (25.3 mm) sparse matrix array transducers for 3-D imaging in the event of window failure. These transducers are integrated into a system for real-time 3-D bilateral transcranial imaging-the ultrasound brain helmet-and color flow imaging capabilities at 1.2 MHz are directly compared with arrays operating at 1.8 MHz in a flow phantom with attenuation comparable to the in vivo case. Contrast-enhanced imaging allowed visualization of arteries of the Circle of Willis in 5 of 5 subjects and 8 of 10 sides of the head despite probe placement outside of the acoustic window. Results suggest that this type of transducer may allow acquisition of useful images either in individuals with poor windows or outside of the temporal acoustic window in the field.
Collapse
Affiliation(s)
- Brooks D Lindsey
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| | | | | | | | | |
Collapse
|
40
|
Allen LM, Hasso AN, Handwerker J, Farid H. Sequence-specific MR imaging findings that are useful in dating ischemic stroke. Radiographics 2013; 32:1285-97; discussion 1297-9. [PMID: 22977018 DOI: 10.1148/rg.325115760] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Patients may present to the hospital at various times after an ischemic stroke. Many present weeks after a neurologic deficit has occurred, as is often the case with elderly patients and those in a nursing home. The ability to determine the age of an ischemic stroke provides useful clinical information for the patient, his or her family, and the medical team. Many times, perfusion imaging is not performed, and pulse sequence-specific magnetic resonance (MR) imaging findings may help determine the age of the infarct. The findings seen at apparent diffusion coefficient mapping and diffusion-weighted, fluid-attenuated inversion recovery (FLAIR) and unenhanced and contrast material-enhanced T1- and T2-weighted gradient-echo and susceptibility-weighted MR imaging may help determine the relative age of a cerebral infarct. Strokes may be classified and dated as early hyperacute, late hyperacute, acute, subacute, or chronic. Recent data indicate that in many patients with restricted diffusion and no change on FLAIR images, it is more likely than was initially thought that the stroke is less than 6 hours old. The time window to administer intravenous tissue plasminogen activator is currently 4.5 hours from the time when the patient was last seen to be normal, and for anterior circulation strokes, the time window for administering intraarterial tissue plasminogen activator is 6 hours from when the patient was last seen to be normal. For this reason, accurate dating is important in patients with ischemic stroke.
Collapse
Affiliation(s)
- Laura M Allen
- Department of Radiological Sciences, University of California-Irvine Medical Center, Orange, CA 92826, USA.
| | | | | | | |
Collapse
|
41
|
Lindsey BD, Smith SW. Pitch-catch phase aberration correction of multiple isoplanatic patches for 3-D transcranial ultrasound imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2013; 60:463-80. [PMID: 23475914 PMCID: PMC3843527 DOI: 10.1109/tuffc.2013.2590] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Having previously presented the ultrasound brain helmet, a system for simultaneous 3-D ultrasound imaging via both temporal bone acoustic windows, the scanning geometry of this system is utilized to allow each matrix array to serve as a correction source for the opposing array. Aberration is estimated using cross-correlation of RF channel signals, followed by least mean squares solution of the resulting overdetermined system. Delay maps are updated and real-time 3-D scanning resumes. A first attempt is made at using multiple arrival time maps to correct multiple unique aberrators within a single transcranial imaging volume, i.e., several isoplanatic patches. This adaptive imaging technique, which uses steered unfocused waves transmitted by the opposing, or beacon, array, updates the transmit and receive delays of 5 isoplanatic patches within a 64° x 64° volume. In phantom experiments, color flow voxels above a common threshold have also increased by an average of 92%, whereas color flow variance decreased by an average of 10%. This approach has been applied to both temporal acoustic windows of two human subjects, yielding increases in echo brightness in 5 isoplanatic patches with a mean value of 24.3 ± 9.1%, suggesting that such a technique may be beneficial in the future for performing noninvasive 3-D color flow imaging of cerebrovascular disease, including stroke.
Collapse
Affiliation(s)
- Brooks D Lindsey
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| | | |
Collapse
|
42
|
Bae ON, Serfozo K, Baek SH, Lee KY, Dorrance A, Rumbeiha W, Fitzgerald SD, Farooq MU, Naravelta B, Bhatt A, Majid A. Safety and efficacy evaluation of carnosine, an endogenous neuroprotective agent for ischemic stroke. Stroke 2012; 44:205-12. [PMID: 23250994 DOI: 10.1161/strokeaha.112.673954] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND PURPOSE An urgent need exists to develop therapies for stroke that have high efficacy, long therapeutic time windows, and acceptable toxicity. We undertook preclinical investigations of a novel therapeutic approach involving supplementation with carnosine, an endogenous pleiotropic dipeptide. METHODS Efficacy and safety of carnosine treatment was evaluated in rat models of permanent or transient middle cerebral artery occlusion. Mechanistic studies used primary neuronal/astrocytic cultures and ex vivo brain homogenates. RESULTS Intravenous treatment with carnosine exhibited robust cerebroprotection in a dose-dependent manner, with long clinically relevant therapeutic time windows of 6 hours and 9 hours in transient and permanent models, respectively. Histological outcomes and functional improvements including motor and sensory deficits were sustained on 14th day poststroke onset. In safety and tolerability assessments, carnosine did not exhibit any evidence of adverse effects or toxicity. Moreover, histological evaluation of organs, complete blood count, coagulation tests, and the serum chemistry did not reveal any abnormalities. In primary neuronal cell cultures and ex vivo brain homogenates, carnosine exhibited robust antiexcitotoxic, antioxidant, and mitochondria protecting activity. CONCLUSIONS In both permanent and transient ischemic models, carnosine treatment exhibited significant cerebroprotection against histological and functional damage, with wide therapeutic and clinically relevant time windows. Carnosine was well tolerated and exhibited no toxicity. Mechanistic data show that it influences multiple deleterious processes. Taken together, our data suggest that this endogenous pleiotropic dipeptide is a strong candidate for further development as a stroke treatment.
Collapse
Affiliation(s)
- Ok-Nam Bae
- Department of Neurology, Salford Royal Hospital, Stott Lane, Salford, England
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Nature has provided a vast array of bioactive compounds that have been exploited for either diagnostic or therapeutic use. The field of thrombosis and haemostasis in particular has enjoyed much benefit from compounds derived from nature, notably from snakes and blood-feeding animals. Indeed, the likelihood that blood-feeding animals would harbour reagents with relevant pharmacology and with potential pharmaceutical benefit in haemostasis was not too far-fetched. Blood-feeding animals including leeches and ticks have evolved a means to keep blood from clotting or to at least maintain the liquid state, and some of these have been the subject of clinical development. A more recent example of this has been the saliva of the common vampire bat Desmodus rotundus, which has proven to harbour a veritable treasure trove of novel regulatory molecules. Among the bioactive compounds present is a fibrinolytic compound that was shown over 40 years ago to be a potent plasminogen activator. Studies of this vampire bat-derived plasminogen activator, more recently referred to as desmoteplase, revealed that this protease shared a number of structural and functional similarities to the human fibrinolytic protease, tissue-type plasminogen activator (t-PA) yet harboured critically important differences that have rendered this molecule attractive for clinical development for patients with ischaemic stroke.
Collapse
Affiliation(s)
- Robert L Medcalf
- Australian Centre for Blood Diseases, Monash University, 89 Commercial Road, Melbourne, Victoria, Australia.
| |
Collapse
|
44
|
Hu WW, Chen Z. Role of histamine and its receptors in cerebral ischemia. ACS Chem Neurosci 2012; 3:238-47. [PMID: 22860191 DOI: 10.1021/cn200126p] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 02/10/2012] [Indexed: 12/25/2022] Open
Abstract
Histamine is recognized as a neurotransmitter or neuromodulator in the brain, and it plays a major role in the pathogenic progression after cerebral ischemia. Extracellular histamine increases gradually after ischemia, and this may come from histaminergic neurons or mast cells. Histamine alleviates neuronal damage and infarct volume, and it promotes recovery of neurological function after ischemia; the H1, H2, and H3 receptors are all involved. Further studies suggest that histamine alleviates excitotoxicity, suppresses the release of glutamate and dopamine, and inhibits inflammation and glial scar formation. Histamine may also affect cerebral blood flow by targeting to vascular smooth muscle cells, and promote neurogenesis. Moreover, endogenous histamine is an essential mediator in the cerebral ischemic tolerance. Due to its multiple actions, affecting neurons, glia, vascular cells, and inflammatory cells, histamine is likely to be an important target in cerebral ischemia. But due to its low penetration of the blood-brain barrier and its wide actions in the periphery, histamine-related agents, like H3 antagonists and carnosine, show potential for cerebral ischemia therapy. However, important questions about the molecular aspects and pathophysiology of histamine and related agents in cerebral ischemia remain to be answered to form a solid scientific basis for therapeutic application.
Collapse
Affiliation(s)
- Wei-Wei Hu
- Department of Pharmacology, Key Laboratory of Medical
Neurobiology of the Ministry of Health of China, Zhejiang Province
Key Laboratory of Neurobiology, School of Basic Medical Sciences,
College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Zhong Chen
- Department of Pharmacology, Key Laboratory of Medical
Neurobiology of the Ministry of Health of China, Zhejiang Province
Key Laboratory of Neurobiology, School of Basic Medical Sciences,
College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| |
Collapse
|
45
|
Duong TQ. Multimodal MRI of experimental stroke. Transl Stroke Res 2011; 3:8-15. [PMID: 24323751 DOI: 10.1007/s12975-011-0140-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 12/01/2011] [Accepted: 12/05/2011] [Indexed: 10/14/2022]
Abstract
Stroke is the fourth leading cause of death and the leading cause of long-term disability in USA. Brain imaging data from experimental stroke models and stroke patients have shown that there is often a gradual progression of potentially reversible ischemic injury toward infarction. Reestablishing tissue perfusion and/or treating with neuroprotective drugs in a timely fashion are expected to salvage some ischemic tissues. Diffusion-weighted imaging based on magnetic resonance imaging (MRI) in which contrast is based on water motion can detect ischemic injury within minutes after onsets, whereas computed tomography and other imaging modalities fail to detect stroke injury for at least a few hours. Along with quantitative perfusion imaging, the perfusion-diffusion mismatch which approximates the ischemic penumbra could be imaged noninvasively. This review describes recent progresses in the development and application of multimodal MRI and image analysis techniques to study ischemic tissue at risk in experimental stroke in rats.
Collapse
Affiliation(s)
- Timothy Q Duong
- Research Imaging Institute, Departments of Ophthalmology, Radiology and Physiology, University of Texas Health Science Center, 8403 Floyd Curl Dr, San Antonio, TX, 78229, USA,
| |
Collapse
|
46
|
Nguyen TN, Babikian VL, Romero R, Pikula A, Kase CS, Jovin TG, Norbash AM. Intra-arterial treatment methods in acute stroke therapy. Front Neurol 2011; 2:9. [PMID: 21516256 PMCID: PMC3079955 DOI: 10.3389/fneur.2011.00009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 02/07/2011] [Indexed: 11/13/2022] Open
Abstract
Acute revascularization is associated with improved outcomes in ischemic stroke patients. It is unclear which method of intra-arterial intervention, if any, is ideal. Promising approaches in acute stroke treatment are likely a combination of intravenous and endovascular revascularization efforts, combining early treatment initiation with direct clot manipulation and/or PTA/stenting. In this review, we will discuss available thrombolytic therapies and endovascular recanalization techniques, beginning with chemical thrombolytic agents, followed by mechanical devices, and a review of ongoing trials. Further randomized studies comparing medical therapy, intravenous and endovascular treatments are essential, and their implementation will require the wide support and enthusiasm from the neurologic, neuroradiologic, and neurosurgical stroke communities.
Collapse
Affiliation(s)
- Thanh N Nguyen
- Department of Neurology, Boston Medical Center, Boston University School of Medicine Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Transient ischemic attack evaluation models: hospitalization, same-day clinics, or rapid evaluation units. Am J Ther 2011; 18:45-50. [PMID: 20634680 DOI: 10.1097/mjt.0b013e3181e4a671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Transient ischemic attack (TIA) has been well established as a risk factor for future stroke. Therefore, the diagnosis of TIA may serve as a golden opportunity for providing early time sensitive therapies to this high-risk group. Currently, there is no standardized algorithm for triaging suspected TIA, leading to errors in diagnosis, significant delays in evaluation and treatment, and greater morbidity and mortality. There are several proposed methods for triaging patients: hospitalization, same-day clinics, and rapid evaluation units. We review the benefits and limitations for each model, focusing on stroke risk reduction, costs, and feasibility.
Collapse
|