1
|
Yubolphan R, Pratchayasakul W, Koonrungsesomboon N, Chattipakorn N, Chattipakorn SC. Potential links between platelets and amyloid-β in the pathogenesis of Alzheimer's disease: Evidence from in vitro, in vivo, and clinical studies. Exp Neurol 2024; 374:114683. [PMID: 38211684 DOI: 10.1016/j.expneurol.2024.114683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Cerebral amyloid angiopathy (CAA) is a prevalent comorbidity among patients with Alzheimer's disease (AD), present in up to 80% of cases with varying levels of severity. There is evidence to suggest that CAA might intensify cognitive deterioration in AD patients, thereby accelerating the development of AD pathology. As a source of amyloids, it has been postulated that platelets play a significant role in the pathogenesis of both AD and CAA. Although several studies have demonstrated that platelet activation plays an important role in the pathogenesis of AD and CAA, a clear understanding of the mechanisms involved in the three steps: platelet activation, platelet adhesion, and platelet aggregation in AD pathogenesis still remains elusive. Moreover, potential therapeutic targets in platelet-mediated AD pathogenesis have not been explicitly addressed. Therefore, the aim of this review is to collate and discuss the in vitro, in vivo, and clinical evidence related to platelet dysfunction, including associated activation, adhesion, and aggregation, with specific reference to amyloid-related AD pathogenesis. Potential therapeutic targets of platelet-mediated AD pathogenesis are also discussed. By enriching the understanding of the intricate relationship between platelet dysfunction and onset of AD, researchers may unveil new therapeutic targets or strategies to tackle this devastating neurodegeneration.
Collapse
Affiliation(s)
- Ruedeemars Yubolphan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wasana Pratchayasakul
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nut Koonrungsesomboon
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
2
|
Obrecht M, Zurbruegg S, Accart N, Lambert C, Doelemeyer A, Ledermann B, Beckmann N. Magnetic resonance imaging and ultrasound elastography in the context of preclinical pharmacological research: significance for the 3R principles. Front Pharmacol 2023; 14:1177421. [PMID: 37448960 PMCID: PMC10337591 DOI: 10.3389/fphar.2023.1177421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
The 3Rs principles-reduction, refinement, replacement-are at the core of preclinical research within drug discovery, which still relies to a great extent on the availability of models of disease in animals. Minimizing their distress, reducing their number as well as searching for means to replace them in experimental studies are constant objectives in this area. Due to its non-invasive character in vivo imaging supports these efforts by enabling repeated longitudinal assessments in each animal which serves as its own control, thereby enabling to reduce considerably the animal utilization in the experiments. The repetitive monitoring of pathology progression and the effects of therapy becomes feasible by assessment of quantitative biomarkers. Moreover, imaging has translational prospects by facilitating the comparison of studies performed in small rodents and humans. Also, learnings from the clinic may be potentially back-translated to preclinical settings and therefore contribute to refining animal investigations. By concentrating on activities around the application of magnetic resonance imaging (MRI) and ultrasound elastography to small rodent models of disease, we aim to illustrate how in vivo imaging contributes primarily to reduction and refinement in the context of pharmacological research.
Collapse
Affiliation(s)
- Michael Obrecht
- Diseases of Aging and Regenerative Medicines, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Stefan Zurbruegg
- Neurosciences Department, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Nathalie Accart
- Diseases of Aging and Regenerative Medicines, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Christian Lambert
- Diseases of Aging and Regenerative Medicines, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Arno Doelemeyer
- Diseases of Aging and Regenerative Medicines, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Birgit Ledermann
- 3Rs Leader, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Nicolau Beckmann
- Diseases of Aging and Regenerative Medicines, Novartis Institutes for BioMedical Research, Basel, Switzerland
| |
Collapse
|
3
|
Iannucci J, Grammas P. Thrombin, a Key Driver of Pathological Inflammation in the Brain. Cells 2023; 12:cells12091222. [PMID: 37174621 PMCID: PMC10177239 DOI: 10.3390/cells12091222] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/21/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Neurodegenerative diseases, including Alzheimer's disease (AD), are major contributors to death and disability worldwide. A multitude of evidence suggests that neuroinflammation is critical in neurodegenerative disease processes. Exploring the key mediators of neuroinflammation in AD, a prototypical neurodegenerative disease, could help identify pathologic inflammatory mediators and mechanisms in other neurodegenerative diseases. Elevated levels of the multifunctional inflammatory protein thrombin are commonly found in conditions that increase AD risk, including diabetes, atherosclerosis, and traumatic brain injury. Thrombin, a main driver of the coagulation cascade, has been identified as important to pathological events in AD and other neurodegenerative diseases. Furthermore, recent evidence suggests that coagulation cascade-associated proteins act as drivers of inflammation in the AD brain, and studies in both human populations and animal models support the view that abnormalities in thrombin generation promote AD pathology. Thrombin drives neuroinflammation through its pro-inflammatory activation of microglia, astrocytes, and endothelial cells. Due to the wide-ranging pro-inflammatory effects of thrombin in the brain, inhibiting thrombin could be an effective strategy for interrupting the inflammatory cascade which contributes to neurodegenerative disease progression and, as such, may be a potential therapeutic target for AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Jaclyn Iannucci
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | | |
Collapse
|
4
|
Grossmann K. Direct Oral Anticoagulants (DOACs) for Therapeutic Targeting of Thrombin, a Key Mediator of Cerebrovascular and Neuronal Dysfunction in Alzheimer's Disease. Biomedicines 2022; 10:1890. [PMID: 36009437 PMCID: PMC9405823 DOI: 10.3390/biomedicines10081890] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022] Open
Abstract
Although preclinical research and observer studies on patients with atrial fibrillation concluded that direct oral anticoagulants (DOACs) can protect against dementia like Alzheimer's disease (AD), clinical investigation towards therapeutical approval is still pending. DOACs target pathological thrombin, which is, like toxic tau and amyloid-ß proteins (Aß), an early hallmark of AD. Especially in hippocampal and neocortical areas, the release of parenchymal Aß into the blood induces thrombin and proinflammatory bradykinin synthesis by activating factor XII of the contact system. Thrombin promotes platelet aggregation and catalyzes conversion of fibrinogen to fibrin, leading to degradation-resistant, Aß-containing fibrin clots. Together with oligomeric Aß, these clots trigger vessel constriction and cerebral amyloid angiopathy (CAA) with vessel occlusion and hemorrhages, leading to vascular and blood-brain barrier (BBB) dysfunction. As consequences, brain blood flow, perfusion, and supply with oxygen (hypoxia) and nutrients decrease. In parenchymal tissue, hypoxia stimulates Aß synthesis, leading to Aß accumulation, which is further enhanced by BBB-impaired perivascular Aß clearance. Aß trigger neuronal damage and promote tau pathologies. BBB dysfunction enables thrombin and fibrin(ogen) to migrate into parenchymal tissue and to activate glial cells. Inflammation and continued Aß production are the results. Synapses and neurons die, and cognitive abilities are lost. DOACs block thrombin by inhibiting its activity (dabigatran) or production (FXa-inhibitors, e.g., apixaban, rivaroxaban). Therefore, DOAC use could preserve vascular integrity and brain perfusion and, thereby, could counteract vascular-driven neuronal and cognitive decline in AD. A conception for clinical investigation is presented, focused on DOAC treatment of patients with diagnosed AD in early-stage and low risk of major bleeding.
Collapse
Affiliation(s)
- Klaus Grossmann
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
5
|
Nehra G, Bauer B, Hartz AMS. Blood-brain barrier leakage in Alzheimer's disease: From discovery to clinical relevance. Pharmacol Ther 2022; 234:108119. [PMID: 35108575 PMCID: PMC9107516 DOI: 10.1016/j.pharmthera.2022.108119] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. AD brain pathology starts decades before the onset of clinical symptoms. One early pathological hallmark is blood-brain barrier dysfunction characterized by barrier leakage and associated with cognitive decline. In this review, we summarize the existing literature on the extent and clinical relevance of barrier leakage in AD. First, we focus on AD animal models and their susceptibility to barrier leakage based on age and genetic background. Second, we re-examine barrier dysfunction in clinical and postmortem studies, summarize changes that lead to barrier leakage in patients and highlight the clinical relevance of barrier leakage in AD. Third, we summarize signaling mechanisms that link barrier leakage to neurodegeneration and cognitive decline in AD. Finally, we discuss clinical relevance and potential therapeutic strategies and provide future perspectives on investigating barrier leakage in AD. Identifying mechanistic steps underlying barrier leakage has the potential to unravel new targets that can be used to develop novel therapeutic strategies to repair barrier leakage and slow cognitive decline in AD and AD-related dementias.
Collapse
Affiliation(s)
- Geetika Nehra
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Bjoern Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
6
|
Wang HL, Zhang CL, Qiu YM, Chen AQ, Li YN, Hu B. Dysfunction of the Blood-brain Barrier in Cerebral Microbleeds: from Bedside to Bench. Aging Dis 2021; 12:1898-1919. [PMID: 34881076 PMCID: PMC8612614 DOI: 10.14336/ad.2021.0514] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/14/2021] [Indexed: 02/06/2023] Open
Abstract
Cerebral microbleeds (CMBs) are a disorder of cerebral microvessels that are characterized as small (<10 mm), hypointense, round or ovoid lesions seen on T2*-weighted gradient echo MRI. There is a high prevalence of CMBs in community-dwelling healthy older people. An increasing number of studies have demonstrated the significance of CMBs in stroke, dementia, Parkinson's disease, gait disturbances and late-life depression. Blood-brain barrier (BBB) dysfunction is considered to be the event that initializes CMBs development. However, the pathogenesis of CMBs has not yet been clearly elucidated. In this review, we introduce the pathogenesis of CMBs, hypertensive vasculopathy and cerebral amyloid angiopathy, and review recent research that has advanced our understanding of the mechanisms underlying BBB dysfunction and CMBs presence. CMBs-associated risk factors can exacerbate BBB breakdown through the vulnerability of BBB anatomical and functional changes. Finally, we discuss potential pharmacological approaches to target the BBB as therapy for CMBs.
Collapse
Affiliation(s)
| | | | | | - An-qi Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ya-nan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
7
|
Grossmann K. Alzheimer's Disease-Rationales for Potential Treatment with the Thrombin Inhibitor Dabigatran. Int J Mol Sci 2021; 22:ijms22094805. [PMID: 33946588 PMCID: PMC8125318 DOI: 10.3390/ijms22094805] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is caused by neurodegenerative, but also vascular and hemostatic changes in the brain. The oral thrombin inhibitor dabigatran, which has been used for over a decade in preventing thromboembolism and has a well-known pharmacokinetic, safety and antidote profile, can be an option to treat vascular dysfunction in early AD, a condition known as cerebral amyloid angiopathy (CAA). Recent results have revealed that amyloid-β proteins (Aβ), thrombin and fibrin play a crucial role in triggering vascular and parenchymal brain abnormalities in CAA. Dabigatran blocks soluble thrombin, thrombin-mediated formation of fibrin and Aβ-containing fibrin clots. These clots are deposited in brain parenchyma and blood vessels in areas of CAA. Fibrin-Aβ deposition causes microvascular constriction, occlusion and hemorrhage, leading to vascular and blood-brain barrier dysfunction. As a result, blood flow, perfusion and oxygen and nutrient supply are chronically reduced, mainly in hippocampal and neocortical brain areas. Dabigatran has the potential to preserve perfusion and oxygen delivery to the brain, and to prevent parenchymal Aβ-, thrombin- and fibrin-triggered inflammatory and neurodegenerative processes, leading to synapse and neuron death, and cognitive decline. Beneficial effects of dabigatran on CAA and AD have recently been shown in preclinical studies and in retrospective observer studies on patients. Therefore, clinical studies are warranted, in order to possibly expand dabigatran approval for repositioning for AD treatment.
Collapse
Affiliation(s)
- Klaus Grossmann
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
8
|
Long-Term Dabigatran Treatment Delays Alzheimer's Disease Pathogenesis in the TgCRND8 Mouse Model. J Am Coll Cardiol 2020; 74:1910-1923. [PMID: 31601371 DOI: 10.1016/j.jacc.2019.07.081] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/18/2019] [Accepted: 07/28/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder with important vascular and hemostatic alterations that should be taken into account during diagnosis and treatment. OBJECTIVES This study evaluates whether anticoagulation with dabigatran, a clinically approved oral direct thrombin inhibitor with a low risk of intracerebral hemorrhage, ameliorates AD pathogenesis in a transgenic mouse model of AD. METHODS TgCRND8 AD mice and their wild-type littermates were treated for 1 year with dabigatran etexilate or placebo. Cognition was evaluated using the Barnes maze, and cerebral perfusion was examined by arterial spin labeling. At the molecular level, Western blot and histochemical analyses were performed to analyze fibrin content, amyloid burden, neuroinflammatory activity, and blood-brain barrier (BBB) integrity. RESULTS Anticoagulation with dabigatran prevented memory decline, cerebral hypoperfusion, and toxic fibrin deposition in the AD mouse brain. In addition, long-term dabigatran treatment significantly reduced the extent of amyloid plaques, oligomers, phagocytic microglia, and infiltrated T cells by 23.7%, 51.8%, 31.3%, and 32.2%, respectively. Dabigatran anticoagulation also prevented AD-related astrogliosis and pericyte alterations, and maintained expression of the water channel aquaporin-4 at astrocytic perivascular endfeet of the BBB. CONCLUSIONS Long-term anticoagulation with dabigatran inhibited thrombin and the formation of occlusive thrombi in AD; preserved cognition, cerebral perfusion, and BBB function; and ameliorated neuroinflammation and amyloid deposition in AD mice. Our results open a field for future investigation on whether the use of direct oral anticoagulants might be of therapeutic value in AD.
Collapse
|
9
|
Abstract
Alzheimer's disease (AD) is a multifactorial syndrome with a plethora of progressive, degenerative changes in the brain parenchyma, but also in the cerebrovascular and hemostatic system. A therapeutic approach for AD is reviewed, which is focused on the role of amyloid-β protein (Aβ) and fibrin in triggering intra-brain vascular dysfunction and connected, cognitive decline. It is proposed that direct oral anticoagulants (DOACs) counteract Aβ-induced pathological alterations in cerebral blood vessels early in AD, a condition, known as cerebral amyloid angiopathy (CAA). By inhibiting thrombin for fibrin formation, anticoagulants can prevent accumulations of proinflammatory thrombin and fibrin, and deposition of degradation-resistant, Aβ-containing fibrin clots. These fibrin-Aβ clots are found in brain parenchyma between neuron cells, and in and around cerebral blood vessels in areas of CAA, leading to decreased cerebral blood flow. Consequently, anticoagulant treatment could reduce hypoperfusion and restricted supply of brain tissue with oxygen and nutrients. Concomitantly, hypoperfusion-enhanced neurodegenerative processes, such as progressive Aβ accumulation via synthesis and reduced perivascular clearance, neuroinflammation, and synapse and neuron cell loss, could be mitigated. Given full cerebral perfusion and reduced Aβ- and fibrin-accumulating and inflammatory milieu, anticoagulants could be able to decrease vascular-driven progression in neurodegenerative and cognitive changes, present in AD, when treated early, therapeutically, or prophylactically.
Collapse
Affiliation(s)
- Klaus Grossmann
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| |
Collapse
|
10
|
Michael N, Grigoryan MM, Kilday K, Sumbria RK, Vasilevko V, van Ryn J, Cribbs DH, Paganini-Hill A, Fisher MJ. Effects of Dabigatran in Mouse Models of Aging and Cerebral Amyloid Angiopathy. Front Neurol 2019; 10:966. [PMID: 31611836 PMCID: PMC6776875 DOI: 10.3389/fneur.2019.00966] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 08/23/2019] [Indexed: 01/11/2023] Open
Abstract
Oral anticoagulants are a critical component of stroke prevention, but carry a risk of brain hemorrhage. These hemorrhagic complications tend to occur in elderly individuals, especially those with predisposing conditions such as cerebral amyloid angiopathy (CAA). Clinical evidence suggests that non-vitamin K antagonist oral anticoagulants are safer than traditional oral anticoagulants. We analyzed whether the anticoagulant dabigatran produces cerebral microhemorrhage (the pathological substrate of MRI-demonstrable cerebral microbleeds) or intracerebral hemorrhage in aged mice with and without hemorrhage-predisposing angiopathy. We studied aged (22 months old) Tg2576 (a model of CAA) and wild-type (WT) littermate mice. Mice received either dabigatran etexilate (DE) (Tg N = 7; WT N = 10) or vehicle (Tg N = 9; WT N = 7) by gavage for 4 weeks. Anticoagulation effects of DE were confirmed using thrombin time assay. No mice experienced intracerebral hemorrhage. Cerebral microhemorrhage analysis, performed using Prussian-blue and H&E staining, showed no significant change in either number or size of cerebral microhemorrhage in DE-treated animals. Analysis of biochemical parameters for endothelial activation (ICAM-1), blood-brain barrier disruption (IgG, claudin-5, fibrinogen), microglial activation (Iba-1), or astrocyte activation (GFAP) showed neither exacerbation nor protective effects of DE in either Tg2576 or WT mice. Our study provides histological and biochemical evidence that aged mice, with or without predisposing factors for brain hemorrhage, tolerate anticoagulation with dabigatran. The absence of dabigatran-induced intracerebral hemorrhage or increased frequency of acute microhemorrhage may provide some reassurance for its use in high-risk patient populations.
Collapse
Affiliation(s)
- Neethu Michael
- Department of Neurology, University of California, Irvine, Irvine, CA, United States
| | | | - Kelley Kilday
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Rachita K Sumbria
- Department of Neurology, University of California, Irvine, Irvine, CA, United States.,Department of Biopharmaceutical Sciences, School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA, United States
| | - Vitaly Vasilevko
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Joanne van Ryn
- Department of Cardiometabolic Research, Boehringer Ingelheim, Hanover, Germany
| | - David H Cribbs
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Annlia Paganini-Hill
- Department of Neurology, University of California, Irvine, Irvine, CA, United States
| | - Mark J Fisher
- Department of Neurology, University of California, Irvine, Irvine, CA, United States.,Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, United States.,Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
11
|
Pétrault M, Ouk T, Pétrault O, Bastide M, Bordet R, Bérézowski V. Safety of oral anticoagulants on experimental brain microbleeding and cognition. Neuropharmacology 2019; 155:162-172. [PMID: 31132437 DOI: 10.1016/j.neuropharm.2019.05.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/24/2022]
Abstract
This study aims at determining the ability of clinical-based doses of four oral anticoagulants to transform the onset of a cerebral microhemorrhages (CMH) burden into a symptomatic intracerebral hemorrhage (ICH) in the healthy brain, and precipitate cognitive impairment. Wild-type mice were anticoagulated for 10 days using apixaban, rivaroxaban or dabigatran as direct oral anticoagulants (DOACs), or warfarin as vitamin K-antagonist. Meanwhile, a burden of ∼20 CMHs was induced in the Sylvian territory by intra-carotid injection of cyclodextrin nanoparticles. At bleeding onset, only warfarin provoked deadly hematoma, and dramatically increased mortality (+45%). All the DOACs enhanced CMH burden through a greater number of intermediate-sized microhemorrhages (+80% to +180%). Although silent at onset, both baseline- and anticoagulant-enhanced CMH burdens increased mortality (+11% to +58%) along the following year without statistical difference among groups, and despite cessation of anticoagulation and absence of CMH progression or transformation into ICH. All survivor mice exhibited reduction in visual recognition memory from 9 months. In the healthy brain, DOACs preserve the onset of microhemorrhages from transformation into ICH, and do not precipitate cognitive impairment despite enhancement of CMH burden. High CMH burdens should however be considered for early detection and preventive memory care apart from anticoagulation decisions.
Collapse
Affiliation(s)
- Maud Pétrault
- Univ. Lille, Inserm, CHU Lille, U1171, Degenerative and Vascular Cognitive Disorders, F-59000, Lille, France
| | - Thavarak Ouk
- Univ. Lille, Inserm, CHU Lille, U1171, Degenerative and Vascular Cognitive Disorders, F-59000, Lille, France
| | - Olivier Pétrault
- Univ. Lille, Inserm, CHU Lille, U1171, Degenerative and Vascular Cognitive Disorders, F-59000, Lille, France; UArtois, F-62300, Lens, France
| | - Michèle Bastide
- Univ. Lille, Inserm, CHU Lille, U1171, Degenerative and Vascular Cognitive Disorders, F-59000, Lille, France
| | - Régis Bordet
- Univ. Lille, Inserm, CHU Lille, U1171, Degenerative and Vascular Cognitive Disorders, F-59000, Lille, France
| | - Vincent Bérézowski
- Univ. Lille, Inserm, CHU Lille, U1171, Degenerative and Vascular Cognitive Disorders, F-59000, Lille, France; UArtois, F-62300, Lens, France.
| |
Collapse
|
12
|
Yokoyama M, Mizuma A, Terao T, Tanaka F, Nishiyama K, Hasegawa Y, Nagata E, Nogawa S, Kobayashi H, Yanagimachi N, Okazaki T, Kitagawa K, Takizawa S. Effectiveness of Nonvitamin K Antagonist Oral Anticoagulants and Warfarin for Preventing Further Cerebral Microbleeds in Acute Ischemic Stroke Patients with Nonvalvular Atrial Fibrillation and At Least One Microbleed: CMB-NOW Multisite Pilot Trial. J Stroke Cerebrovasc Dis 2019; 28:1918-1925. [PMID: 31005561 DOI: 10.1016/j.jstrokecerebrovasdis.2019.03.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/05/2019] [Accepted: 03/23/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Nonvitamin K antagonist oral anticoagulants (NOACs) are considered superior, or at least noninferior, to warfarin in preventing stroke or systemic embolism in patients with nonvalvular atrial fibrillation. Here, we recruited acute ischemic stroke patients with nonvalvular atrial fibrillation and at least one cerebral microbleed (CMB), and evaluated the proportion of patients who had an increased number of CMBs (%) after receiving anticoagulant therapy with NOACs or with warfarin for 12 months. METHODS This was a multicenter, prospective, observational cohort study at 20 centers, conducted between 2015 and 2017, in which we recruited 85 patients with at least one CMB detected by 1.5T magnetic resonance imaging (T2*WI) at baseline, who received NOACs or warfarin for at least 12 months. We compared the proportions of patients with increased numbers of CMBs in the NOACs and warfarin treatment groups. RESULTS The proportions of patients with increased numbers of CMBs at month 12 of treatment were 28.6% and 66.7% in the NOACs and warfarin groups, respectively. The new CMBs showed no specific regional localization in either group. In the NOACs and warfarin groups, physicians prescribed lower-than-standard dosing in 13.3% and 50% of the cases, respectively. The administration of reduced doses at physicians' discretion did not appear to alter the incidence of new CMBs. DISCUSSION This is the first evidence to suggest efficacy of NOACs for preventing further CMBs in patients with at least one CMB, although no statistical evaluation was carried out.
Collapse
Affiliation(s)
- Mutsumi Yokoyama
- Department of Neurology, Fujisawa City Hospital, Fujiswa, Kanagawa, Japan
| | - Atsushi Mizuma
- Departments of Neurology, Tokai University School of Medicine, Isehara, Tokyo, Japan
| | - Tohru Terao
- Department of Neurosurgery, Atsugi City Hospital, Atsugi, Kanagawa, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Kazutoshi Nishiyama
- Department of Neurology, Kitasato University School of Medicine, Tokyo, Japan
| | - Yasuhiro Hasegawa
- Department of Neurology, St. Marianna University School of Medicine, Kwasaki, Kanagawa, Japan
| | - Eiichiro Nagata
- Departments of Neurology, Tokai University School of Medicine, Isehara, Tokyo, Japan
| | - Shigeru Nogawa
- Department of Neurology, Tokai University Hachioji Hospital, Hachioji, Tokyo, Japan
| | - Hiroyuki Kobayashi
- Department of Clinical Pharmacology, Tokai University School of Medicine, Isehara, Tokyo, Japan
| | - Noriharu Yanagimachi
- Department of Diagnostic Radiology, Tokai University School of Medicine, Isehara, Tokyo, Japan
| | - Takashi Okazaki
- Department of Diagnostic Radiology, Tokai University School of Medicine, Isehara, Tokyo, Japan
| | - Kazuo Kitagawa
- Department of Neurology, Tokyo Women's Medical University, Shinjuku City, Tokyo, Japan
| | - Shunya Takizawa
- Departments of Neurology, Tokai University School of Medicine, Isehara, Tokyo, Japan.
| | | |
Collapse
|
13
|
Pétrault M, Casolla B, Ouk T, Cordonnier C, Bérézowski V. Cerebral microbleeds: Beyond the macroscope. Int J Stroke 2019; 14:468-475. [DOI: 10.1177/1747493019830594] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
While being increasingly recognized in clinical routine, brain microbleeds remain a puzzling finding for physicians. These small dot-like lesions are thought to be old perivascular collections of hemosiderin deposits. They can be found in different neurological settings such as cerebrovascular or neurodegenerative diseases. While their microscopic size would suggest considering these lesions as anecdotal, they are now regarded as biomarkers of severity of an underlying cerebrovascular disease. Their natural history and the interactions with surrounding brain cells remain unknown. However, their presence may impact therapeutic decisions. Deciphering the biological mechanisms leading to, or following microbleeds would enable us to address a key question: do microbleeds arise and impact the surrounding parenchyma like a miniature version of intracerebral hemorrhages or do they represent a different kind of injury? We hereby discuss, based on both clinical and experimental literature, the gap between the definition of microbleeds coming from neuroimaging and the pathophysiological hypotheses raised from histopathological and experimental data. Our analysis supports the need for a convergent effort from clinicians and basic scientists to go beyond the current “macro” view and disclose the cellular and molecular insights of these cerebral hemorrhagic microlesions.
Collapse
Affiliation(s)
- Maud Pétrault
- Department of Medical Pharmacology, Univ Lille, Inserm U1171-Degenerative and Vascular Cognitive Disorders, CHU Lille, Lille, France
| | - Barbara Casolla
- Department of Neurology, Univ Lille, Inserm U1171-Degenerative and Vascular Cognitive Disorders, CHU Lille, Lille, France
| | - Thavarak Ouk
- Department of Medical Pharmacology, Univ Lille, Inserm U1171-Degenerative and Vascular Cognitive Disorders, CHU Lille, Lille, France
| | - Charlotte Cordonnier
- Department of Neurology, Univ Lille, Inserm U1171-Degenerative and Vascular Cognitive Disorders, CHU Lille, Lille, France
| | - Vincent Bérézowski
- Department of Medical Pharmacology, Univ Lille, Inserm U1171-Degenerative and Vascular Cognitive Disorders, CHU Lille, Lille, France
- Univ Artois, Lens, France
| |
Collapse
|
14
|
Nadeau CA, Dietrich K, Wilkinson CM, Crawford AM, George GN, Nichol HK, Colbourne F. Prolonged Blood-Brain Barrier Injury Occurs After Experimental Intracerebral Hemorrhage and Is Not Acutely Associated with Additional Bleeding. Transl Stroke Res 2018; 10:287-297. [PMID: 29949086 PMCID: PMC6526148 DOI: 10.1007/s12975-018-0636-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/07/2018] [Accepted: 06/04/2018] [Indexed: 01/27/2023]
Abstract
Intracerebral hemorrhage (ICH) causes blood-brain barrier (BBB) damage along with altered element levels in the brain. BBB permeability was quantified at 3, 7, and 14 days with Evans Blue dye after collagenase-induced ICH in rat. At peak permeability (day 3), a gadolinium (Gd)-based contrast agent was injected to further characterize BBB disruption, and X-ray fluorescence imaging (XFI) was used to map Gd, Fe, Cl, and other elements. XFI revealed that Ca, Cl, Gd, and Fe concentrations were significantly elevated, whereas K was significantly decreased. Therefore, using Gd-XFI, we co-determined BBB dysfunction with alterations in the metallome, including those that contribute to cell death and functional outcome. Warfarin was administered 3 days post-ICH to investigate whether additional or new bleeding occurs during peak BBB dysfunction, and hematoma volume was assessed on day 4. Warfarin administration prolonged bleeding time after a peripheral cut-induced bleed, but warfarin did not worsen hematoma volume. Accordingly, extensive BBB leakage occurred after ICH, but did not appear to affect total hematoma size.
Collapse
Affiliation(s)
- Colby A Nadeau
- Department of Psychology, University of Alberta, P217 Biological Sciences Building, Edmonton, Alberta, T6G 2E9, Canada
| | - Kristen Dietrich
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Cassandra M Wilkinson
- Department of Psychology, University of Alberta, P217 Biological Sciences Building, Edmonton, Alberta, T6G 2E9, Canada
| | - Andrew M Crawford
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Graham N George
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, Canada.,Department of Chemistry, University of Saskatchewan, Saskatoon, Canada
| | - Helen K Nichol
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Canada
| | - Frederick Colbourne
- Department of Psychology, University of Alberta, P217 Biological Sciences Building, Edmonton, Alberta, T6G 2E9, Canada. .,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada.
| |
Collapse
|
15
|
Ahn SJ, Anrather J, Nishimura N, Schaffer CB. Diverse Inflammatory Response After Cerebral Microbleeds Includes Coordinated Microglial Migration and Proliferation. Stroke 2018; 49:1719-1726. [PMID: 29844029 PMCID: PMC6019563 DOI: 10.1161/strokeaha.117.020461] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/05/2018] [Accepted: 04/25/2018] [Indexed: 12/21/2022]
Abstract
Supplemental Digital Content is available in the text. Background and Purpose— Cerebral microbleeds are linked to cognitive decline, but it remains unclear how they impair neuronal function. Infarction is not typically observed near microbleeds, suggesting more subtle mechanisms, such as inflammation, may play a role. Because of their small size and largely asymptomatic nature, real-time detection and study of spontaneous cerebral microbleeds in humans and animal models are difficult. Methods— We used in vivo 2-photon microscopy through a chronic cranial window in adult mice to follow the inflammatory response after a cortical microhemorrhage of ≈100 µm diameter, induced by rupturing a targeted cortical arteriole with a laser. Results— The inflammatory response included the invasion of blood-borne leukocytes, the migration and proliferation of brain-resident microglia, and the activation of astrocytes. Nearly all inflammatory cells responding to the microhemorrhage were brain-resident microglia, but a small number of CX3CR1+ and CCR2+ macrophages, ultimately originating from the invasion of blood-borne monocytes, were also found near the lesion. We found a coordinated pattern of microglia migration and proliferation, where microglia within 200 µm of the microhemorrhage migrated toward the lesion over hours to days. In contrast, microglia proliferation was not observed until ≈40 hours after the lesion and occurred primarily in a shell-shaped region where the migration of microglia decreased their local density. These data suggest that local microglia density changes may trigger proliferation. Astrocytes activated in a similar region as microglia but delayed by a few days. By 2 weeks, this inflammatory response had largely resolved. Conclusions— Although microhemorrhages are small in size, the brain responds to a single bleed with an inflammatory response that involves brain-resident and blood-derived cells, persists for weeks, and may impact the adjacent brain microenvironment.
Collapse
Affiliation(s)
- Sung Ji Ahn
- From the Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY (S.J.A., N.N., C.B.S.)
| | - Josef Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY (J.A.)
| | - Nozomi Nishimura
- From the Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY (S.J.A., N.N., C.B.S.)
| | - Chris B Schaffer
- From the Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY (S.J.A., N.N., C.B.S.)
| |
Collapse
|
16
|
Shih AY, Hyacinth HI, Hartmann DA, van Veluw SJ. Rodent Models of Cerebral Microinfarct and Microhemorrhage. Stroke 2018; 49:803-810. [PMID: 29459393 DOI: 10.1161/strokeaha.117.016995] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 12/21/2017] [Accepted: 01/09/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Andy Y Shih
- From the Department of Neuroscience (A.Y.S., D.A.H.) and Center for Biomedical Imaging (A.Y.S.), Medical University of South Carolina, Charleston, SC; Aflac Cancer and Blood Disorder Center, Children's Healthcare of Atlanta and Emory University Department of Pediatrics, GA (H.I.H.); and Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (S.J.v.V.).
| | - Hyacinth I Hyacinth
- From the Department of Neuroscience (A.Y.S., D.A.H.) and Center for Biomedical Imaging (A.Y.S.), Medical University of South Carolina, Charleston, SC; Aflac Cancer and Blood Disorder Center, Children's Healthcare of Atlanta and Emory University Department of Pediatrics, GA (H.I.H.); and Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (S.J.v.V.)
| | - David A Hartmann
- From the Department of Neuroscience (A.Y.S., D.A.H.) and Center for Biomedical Imaging (A.Y.S.), Medical University of South Carolina, Charleston, SC; Aflac Cancer and Blood Disorder Center, Children's Healthcare of Atlanta and Emory University Department of Pediatrics, GA (H.I.H.); and Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (S.J.v.V.)
| | - Susanne J van Veluw
- From the Department of Neuroscience (A.Y.S., D.A.H.) and Center for Biomedical Imaging (A.Y.S.), Medical University of South Carolina, Charleston, SC; Aflac Cancer and Blood Disorder Center, Children's Healthcare of Atlanta and Emory University Department of Pediatrics, GA (H.I.H.); and Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (S.J.v.V.)
| |
Collapse
|
17
|
Leinenga G, Götz J. Safety and Efficacy of Scanning Ultrasound Treatment of Aged APP23 Mice. Front Neurosci 2018; 12:55. [PMID: 29467614 PMCID: PMC5808306 DOI: 10.3389/fnins.2018.00055] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/23/2018] [Indexed: 01/11/2023] Open
Abstract
Deposition of amyloid-β (Aβ) peptide leads to amyloid plaques that together with tau deposits characterize the brains of patients with Alzheimer's disease (AD). In modeling this pathology, transgenic animals such as the APP23 strain, that expresses a mutant form of the amyloid precursor protein found in familial cases of AD, have been instrumental. In previous studies, we have shown that repeated treatments with ultrasound in a scanning mode (termed scanning ultrasound or SUS) were effective in removing Aβ and restoring memory functions, without the need for a therapeutic agent such as an Aβ antibody. Considering that age is the most important risk factor for AD, we extended this study in which the mice were only 12 months old at the time of treatment by assessing a cohort of 2 year-old mice. Interestingly, at this age, APP23 mice are characterized by cerebral amyloid angiopathy (CAA) and the presence of occasional microbleeds. We found that SUS in aged mice that have been exposed to four SUS sessions that were spread out over 8 weeks and analyzed 4 weeks later did not show evidence of increased CAA or microbleeds. Furthermore, amyloid was reduced as assessed by methoxy-XO4 fluorescence. In addition, plaque-associated microglia were more numerous in SUS treated mice. Together this adds to the notion that SUS may be a treatment modality for human neurodegenerative diseases.
Collapse
Affiliation(s)
- Gerhard Leinenga
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|