1
|
Yahia Z, Yahia A, Abdelaziz T. N-acetylcysteine Clinical Applications. Cureus 2024; 16:e72252. [PMID: 39450216 PMCID: PMC11499967 DOI: 10.7759/cureus.72252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2024] [Indexed: 10/26/2024] Open
Abstract
This study aims to evaluate the therapeutic application of N-acetylcysteine (NAC) as a treatment or adjunct therapy for various medical conditions. While its efficacy in treating acetaminophen overdose, cystic fibrosis, and chronic obstructive pulmonary disease is well-established, emerging evidence suggests that NAC may also benefit a broader spectrum of illnesses due to its safety, simplicity, and affordability. A comprehensive review was conducted by searching PubMed, relevant books, and conference proceedings for publications discussing NAC about the specified health conditions. The clinically relevant data were analysed using the American Family Physician Evidence-Based Medicine Toolkit, following a standard integrated review methodology. NAC shows potential as an adjunctive treatment for a wide range of medical conditions, particularly chronic diseases. It may be beneficial for polycystic ovary syndrome, endometriosis, male infertility, cataracts, glaucoma, dry eye syndrome, parkinsonism, multiple sclerosis, Alzheimer's disease, stroke outcomes, non-acetaminophen-induced acute liver failure, Crohn's disease, ulcerative colitis, schizophrenia, bipolar disorder, and obsessive-compulsive disorder. Although evidence for some conditions is less robust, NAC's therapeutic potential warrants further investigation. Given the aging population and the decline in glutathione levels, the use of NAC should be considered across a variety of medical conditions. This paper suggests that NAC supplementation could play a significant role in reducing morbidity and mortality associated with numerous chronic diseases.
Collapse
Affiliation(s)
- Zoubaida Yahia
- General Practice, Wrightington, Wigan and Leigh NHS Foundation Trust, Wigan, GBR
| | - Amer Yahia
- Medical Assessment Unit, Royal Derby Hospital, Derby, GBR
| | | |
Collapse
|
2
|
Liu C, Wang G, Han W, Tian Q, Li M. Ferroptosis: a potential therapeutic target for stroke. Neural Regen Res 2024; 19:988-997. [PMID: 37862200 PMCID: PMC10749612 DOI: 10.4103/1673-5374.385284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/05/2023] [Accepted: 08/03/2023] [Indexed: 10/22/2023] Open
Abstract
Ferroptosis is a form of regulated cell death characterized by massive iron accumulation and iron-dependent lipid peroxidation, differing from apoptosis, necroptosis, and autophagy in several aspects. Ferroptosis is regarded as a critical mechanism of a series of pathophysiological reactions after stroke because of iron overload caused by hemoglobin degradation and iron metabolism imbalance. In this review, we discuss ferroptosis-related metabolisms, important molecules directly or indirectly targeting iron metabolism and lipid peroxidation, and transcriptional regulation of ferroptosis, revealing the role of ferroptosis in the progression of stroke. We present updated progress in the intervention of ferroptosis as therapeutic strategies for stroke in vivo and in vitro and summarize the effects of ferroptosis inhibitors on stroke. Our review facilitates further understanding of ferroptosis pathogenesis in stroke, proposes new targets for the treatment of stroke, and suggests that more efforts should be made to investigate the mechanism of ferroptosis in stroke.
Collapse
Affiliation(s)
- Chengli Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Guijun Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Wenrui Han
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Qi Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
3
|
Getsy PM, Coffee GA, May WJ, Baby SM, Bates JN, Lewis SJ. The Reducing Agent Dithiothreitol Modulates the Ventilatory Responses That Occur in Freely Moving Rats during and following a Hypoxic-Hypercapnic Challenge. Antioxidants (Basel) 2024; 13:498. [PMID: 38671945 PMCID: PMC11047747 DOI: 10.3390/antiox13040498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
The present study examined the hypothesis that changes in the oxidation-reduction state of thiol residues in functional proteins play a major role in the expression of the ventilatory responses in conscious rats that occur during a hypoxic-hypercapnic (HH) gas challenge and upon return to room air. A HH gas challenge in vehicle-treated rats elicited robust and sustained increases in minute volume (via increases in frequency of breathing and tidal volume), peak inspiratory and expiratory flows, and inspiratory and expiratory drives while minimally affecting the non-eupneic breathing index (NEBI). The HH-induced increases in these parameters, except for frequency of breathing, were substantially diminished in rats pre-treated with the potent and lipophilic disulfide-reducing agent, L,D-dithiothreitol (100 µmol/kg, IV). The ventilatory responses that occurred upon return to room air were also substantially different in dithiothreitol-treated rats. In contrast, pre-treatment with a substantially higher dose (500 µmol/kg, IV) of the lipophilic congener of the monosulfide, N-acetyl-L-cysteine methyl ester (L-NACme), only minimally affected the expression of the above-mentioned ventilatory responses that occurred during the HH gas challenge or upon return to room air. The effectiveness of dithiothreitol suggests that the oxidation of thiol residues occurs during exposure to a HH gas challenge and that this process plays an essential role in allowing for the expression of the post-HH excitatory phase in breathing. However, this interpretation is contradicted by the lack of effects of L-NACme. This apparent conundrum may be explained by the disulfide structure affording unique functional properties to dithiothreitol in comparison to monosulfides. More specifically, the disulfide structure may give dithiothreitol the ability to alter the conformational state of functional proteins while transferring electrons. It is also possible that dithiothreitol is simply a more efficient reducing agent following systemic injection, although one interpretation of the data is that the effects of dithiothreitol are not due to its reducing ability.
Collapse
Affiliation(s)
- Paulina M. Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA; (P.M.G.); (G.A.C.)
| | - Gregory A. Coffee
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA; (P.M.G.); (G.A.C.)
| | - Walter J. May
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22903, USA;
| | - Santhosh M. Baby
- Galleon Pharmaceuticals, Inc., 213 Witmer Road, Horsham, PA 19044, USA;
| | - James N. Bates
- Department of Anesthesiology, University of Iowa Hospitals and Clinics, Iowa, IA 52242, USA;
| | - Stephen J. Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA; (P.M.G.); (G.A.C.)
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
- Functional Electrical Stimulation Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
4
|
Lebrun F, Levard D, Lemarchand E, Yetim M, Furon J, Potzeha F, Marie P, Lesept F, Blanc M, Haelewyn B, Rubio M, Letourneur A, Violle N, Orset C, Vivien D. Improving stroke outcomes in hyperglycemic mice by modulating tPA/NMDAR signaling to reduce inflammation and hemorrhages. Blood Adv 2024; 8:1330-1344. [PMID: 38190586 PMCID: PMC10943589 DOI: 10.1182/bloodadvances.2023011744] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/10/2024] Open
Abstract
ABSTRACT The pharmacological intervention for ischemic stroke hinges on intravenous administration of the recombinant tissue-type plasminogen activator (rtPA, Alteplase/Actilyse) either as a standalone treatment or in conjunction with thrombectomy. However, despite its clinical significance, broader use of rtPA is constrained because of the risk of hemorrhagic transformations (HTs). Furthermore, the presence of diabetes or chronic hyperglycemia is associated with an elevated risk of HT subsequent to thrombolysis. This detrimental impact of tPA on the neurovascular unit in patients with hyperglycemia has been ascribed to its capacity to induce endothelial N-methyl-D-aspartate receptor (NMDAR) signaling, contributing to compromised blood-brain barrier integrity and neuroinflammatory processes. In a mouse model of thromboembolic stroke with chronic hyperglycemia, we assessed the effectiveness of rtPA and N-acetylcysteine (NAC) as thrombolytic agents. We also tested the effect of blocking tPA/NMDAR signaling using a monoclonal antibody, Glunomab. Magnetic resonance imaging, speckle contrast imaging, flow cytometry, and behavioral tasks were used to evaluate stroke outcomes. In hyperglycemic animals, treatment with rtPA resulted in lower recanalization rates and increased HTs. Conversely, NAC treatment reduced lesion sizes while mitigating HTs. After a single administration, either in standalone or combined with rtPA-induced thrombolysis, Glunomab reduced brain lesion volumes, HTs, and neuroinflammation after stroke, translating into improved neurological outcomes. Additionally, we demonstrated the therapeutic efficacy of Glunomab in combination with NAC or as a standalone strategy in chronic hyperglycemic animals. Counteracting tPA-dependent endothelial NMDAR signaling limits ischemic damages induced by both endogenous and exogenous tPA, including HTs and inflammatory processes after ischemic stroke in hyperglycemic animals.
Collapse
Affiliation(s)
- Florent Lebrun
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, GIP Cyceron, Institute Blood and Brain @ Caen-Normandie, Caen, France
- STROK@LLIANCE, ETAP-Lab, Caen, France
| | - Damien Levard
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, GIP Cyceron, Institute Blood and Brain @ Caen-Normandie, Caen, France
| | - Eloïse Lemarchand
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, GIP Cyceron, Institute Blood and Brain @ Caen-Normandie, Caen, France
| | - Mervé Yetim
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, GIP Cyceron, Institute Blood and Brain @ Caen-Normandie, Caen, France
| | - Jonathane Furon
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, GIP Cyceron, Institute Blood and Brain @ Caen-Normandie, Caen, France
| | - Fanny Potzeha
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, GIP Cyceron, Institute Blood and Brain @ Caen-Normandie, Caen, France
| | - Pauline Marie
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, GIP Cyceron, Institute Blood and Brain @ Caen-Normandie, Caen, France
| | | | | | - Benoit Haelewyn
- GIP Cyceron, Caen, France
- Experimental Stroke Research Platform, Normandie University, CURB, Caen, France
| | - Marina Rubio
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, GIP Cyceron, Institute Blood and Brain @ Caen-Normandie, Caen, France
| | | | | | - Cyrille Orset
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, GIP Cyceron, Institute Blood and Brain @ Caen-Normandie, Caen, France
- Experimental Stroke Research Platform, Normandie University, CURB, Caen, France
| | - Denis Vivien
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, GIP Cyceron, Institute Blood and Brain @ Caen-Normandie, Caen, France
- Experimental Stroke Research Platform, Normandie University, CURB, Caen, France
- Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
| |
Collapse
|
5
|
Salvagno M, Sterchele ED, Zaccarelli M, Mrakic-Sposta S, Welsby IJ, Balestra C, Taccone FS. Oxidative Stress and Cerebral Vascular Tone: The Role of Reactive Oxygen and Nitrogen Species. Int J Mol Sci 2024; 25:3007. [PMID: 38474253 DOI: 10.3390/ijms25053007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
The brain's unique characteristics make it exceptionally susceptible to oxidative stress, which arises from an imbalance between reactive oxygen species (ROS) production, reactive nitrogen species (RNS) production, and antioxidant defense mechanisms. This review explores the factors contributing to the brain's vascular tone's vulnerability in the presence of oxidative damage, which can be of clinical interest in critically ill patients or those presenting acute brain injuries. The brain's high metabolic rate and inefficient electron transport chain in mitochondria lead to significant ROS generation. Moreover, non-replicating neuronal cells and low repair capacity increase susceptibility to oxidative insult. ROS can influence cerebral vascular tone and permeability, potentially impacting cerebral autoregulation. Different ROS species, including superoxide and hydrogen peroxide, exhibit vasodilatory or vasoconstrictive effects on cerebral blood vessels. RNS, particularly NO and peroxynitrite, also exert vasoactive effects. This review further investigates the neuroprotective effects of antioxidants, including superoxide dismutase (SOD), vitamin C, vitamin E, and the glutathione redox system. Various studies suggest that these antioxidants could be used as adjunct therapies to protect the cerebral vascular tone under conditions of high oxidative stress. Nevertheless, more extensive research is required to comprehensively grasp the relationship between oxidative stress and cerebrovascular tone, and explore the potential benefits of antioxidants as adjunctive therapies in critical illnesses and acute brain injuries.
Collapse
Affiliation(s)
- Michele Salvagno
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| | - Elda Diletta Sterchele
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| | - Mario Zaccarelli
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology-National Research Council (CNR-IFC), 20133 Milan, Italy
| | - Ian James Welsby
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Costantino Balestra
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
- Anatomical Research and Clinical Studies, Vrije Universiteit Brussels (VUB), 1050 Elsene, Belgium
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Motor Sciences Department, Physical Activity Teaching Unit, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| |
Collapse
|
6
|
Uemura T, Uchida M, Nakamura M, Shimekake M, Sakamoto A, Terui Y, Higashi K, Ishii I, Kashiwagi K, Igarashi K. A search for acrolein scavengers among food components. Amino Acids 2023; 55:509-518. [PMID: 36752871 DOI: 10.1007/s00726-023-03248-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/01/2023] [Indexed: 02/09/2023]
Abstract
Brain stroke is a major cause of being bedridden for elderly people, and preventing stroke is important for maintaining quality of life (QOL). Acrolein is a highly reactive aldehyde and causes tissue damage during stroke. Decreasing acrolein toxicity ameliorates tissue injury during brain stroke. In this study, we tried to identify food components which decrease acrolein toxicity. We found that 2-furanmethanethiol, cysteine methyl and ethyl esters, alliin, lysine and taurine decreased acrolein toxicity. These compounds neutralized acrolein by direct interaction. However, the interaction between acrolein and taurine was not so strong. Approximately 30 mM taurine was necessary to interact with 10 μM acrolein, and 2 g/kg taurine was necessary to decrease the size of mouse brain infarction. Taurine also slightly increased polyamine contents, which are involved in decrease in the acrolein toxicity. Mitochondrial potential damage by acrolein was also protected by taurine. Our results indicate that daily intake of foods containing 2-furanmethanethiol, cysteine methyl and ethyl esters, alliin, lysine and taurine may prevent severe injury in brain stroke and improve the quality of life for elderly people.
Collapse
Affiliation(s)
- Takeshi Uemura
- Amine Pharma Research Institute, Innovation Plaza at Chiba University, 1-8-15 Inohana, Chuo-Ku, Chiba, 260-0856, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
- Department of Pharmaceutical Sciences, Josai University, Sakado, Saitama, Japan
| | - Masashi Uchida
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Mizuho Nakamura
- Amine Pharma Research Institute, Innovation Plaza at Chiba University, 1-8-15 Inohana, Chuo-Ku, Chiba, 260-0856, Japan
| | - Momo Shimekake
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Akihiko Sakamoto
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba, Japan
| | - Yusuke Terui
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba, Japan
| | - Kyohei Higashi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Itsuko Ishii
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Keiko Kashiwagi
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba, Japan
| | - Kazuei Igarashi
- Amine Pharma Research Institute, Innovation Plaza at Chiba University, 1-8-15 Inohana, Chuo-Ku, Chiba, 260-0856, Japan.
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.
| |
Collapse
|
7
|
Molecular Characteristics of Toxicity of Acrolein Produced from Spermine. Biomolecules 2023; 13:biom13020298. [PMID: 36830667 PMCID: PMC9952977 DOI: 10.3390/biom13020298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/06/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Acrolein (CH2=CH-CHO), an unsaturated aldehyde produced from spermine, is one of the major contributors to oxidative stress. Acrolein has been found to be more toxic than reactive oxygen species (H2O2 and •OH), and it can be easily conjugated with proteins, bringing about changes in nature of the proteins. Acrolein is detoxified by glutathione in cells and was found to be mainly produced from spermine through isolating two cell lines of acrolein-resistant Neuro2a cells. The molecular characteristics of acrolein toxicity and tissue damage elicited by acrolein were investigated. It was found that glyceraldehyde-3-phosphate dehydrogenase (GAPDH); cytoskeleton proteins such as vimentin, actin, α- and β-tubulin proteins; and apolipoprotein B-100 (ApoB100) in LDL are strongly damaged by acrolein conjugation. In contrast, activities of matrix metalloproteinase-9 (MMP-9) and proheparanase (proHPSE) are enhanced, and antibody-recognizing abilities of immunoglobulins are modified by acrolein conjugation, resulting in aggravation of diseases. The functional changes of these proteins by acrolein have been elucidated at the molecular level. The findings confirmed that acrolein is the major contributor causing tissue damage in the elderly.
Collapse
|
8
|
Polonikov A, Bocharova I, Azarova I, Klyosova E, Bykanova M, Bushueva O, Polonikova A, Churnosov M, Solodilova M. The Impact of Genetic Polymorphisms in Glutamate-Cysteine Ligase, a Key Enzyme of Glutathione Biosynthesis, on Ischemic Stroke Risk and Brain Infarct Size. Life (Basel) 2022; 12:life12040602. [PMID: 35455093 PMCID: PMC9032935 DOI: 10.3390/life12040602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this pilot study was to explore whether polymorphisms in genes encoding the catalytic (GCLC) and modifier (GCLM) subunits of glutamate-cysteine ligase, a rate-limiting enzyme in glutathione synthesis, play a role in the development of ischemic stroke (IS) and the extent of brain damage. A total of 1288 unrelated Russians, including 600 IS patients and 688 age- and sex-matched healthy subjects, were enrolled for the study. Nine common single nucleotide polymorphisms (SNPs) of the GCLC and GCLM genes were genotyped using the MassArray-4 system. SNP rs2301022 of GCLM was strongly associated with a decreased risk of ischemic stroke regardless of sex and age (OR = 0.39, 95%CI 0.24−0.62, p < 0.0001). Two common haplotypes of GCLM possessed protective effects against ischemic stroke risk (p < 0.01), but exclusively in nonsmoker patients. Infarct size was increased by polymorphisms rs636933 and rs761142 of GCLC. The mbmdr method enabled identifying epistatic interactions of GCLC and GCLM gene polymorphisms with known IS susceptibility genes that, along with environmental risk factors, jointly contribute to the disease risk and brain infarct size. Understanding the impact of genes and environmental factors on glutathione metabolism will allow the development of effective strategies for the treatment of ischemic stroke and disease prevention.
Collapse
Affiliation(s)
- Alexey Polonikov
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia; (E.K.); (M.B.); (O.B.); (A.P.); (M.S.)
- Correspondence:
| | - Iuliia Bocharova
- Department of Medical Biological Disciplines, Belgorod State University, 85 Pobedy Street, 308015 Belgorod, Russia; (I.B.); (M.C.)
- Division of Neurosurgery, Kursk Regional Clinical Hospital, 45a Sumskaya, 305027 Kursk, Russia
| | - Iuliia Azarova
- Department of Biological Chemistry, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia;
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
| | - Elena Klyosova
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia; (E.K.); (M.B.); (O.B.); (A.P.); (M.S.)
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
| | - Marina Bykanova
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia; (E.K.); (M.B.); (O.B.); (A.P.); (M.S.)
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
| | - Olga Bushueva
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia; (E.K.); (M.B.); (O.B.); (A.P.); (M.S.)
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
| | - Anna Polonikova
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia; (E.K.); (M.B.); (O.B.); (A.P.); (M.S.)
| | - Mikhail Churnosov
- Department of Medical Biological Disciplines, Belgorod State University, 85 Pobedy Street, 308015 Belgorod, Russia; (I.B.); (M.C.)
| | - Maria Solodilova
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia; (E.K.); (M.B.); (O.B.); (A.P.); (M.S.)
| |
Collapse
|
9
|
Baby S, Gruber R, Discala J, Puskovic V, Jose N, Cheng F, Jenkins M, Seckler J, Lewis S. Systemic Administration of Tempol Attenuates the Cardiorespiratory Depressant Effects of Fentanyl. Front Pharmacol 2021; 12:690407. [PMID: 34248639 PMCID: PMC8260831 DOI: 10.3389/fphar.2021.690407] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/11/2021] [Indexed: 11/30/2022] Open
Abstract
Fentanyl is a high-potency opioid receptor agonist that elicits profound analgesia and suppression of breathing in humans and animals. To date, there is limited evidence as to whether changes in oxidant stress are important factors in any of the actions of acutely administered fentanyl. This study determined whether the clinically approved superoxide dismutase mimetic, Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl), or a potent antioxidant, N-acetyl-L-cysteine methyl ester (L-NACme), modify the cardiorespiratory and analgesic actions of fentanyl. We examined whether the prior systemic injection of Tempol or L-NACme affects the cardiorespiratory and/or analgesic responses elicited by the subsequent injection of fentanyl in isoflurane-anesthetized and/or freely moving male Sprague-Dawley rats. Bolus injections of Tempol (25, 50 or 100 mg/kg, IV) elicited minor increases in frequency of breathing, tidal volume and minute ventilation. The ventilatory-depressant effects of fentanyl (5 μg/kg, IV) given 15 min later were dose-dependently inhibited by prior injections of Tempol. Tempol elicited dose-dependent and transient hypotension that had (except for the highest dose) resolved when fentanyl was injected. The hypotensive responses elicited by fentanyl were markedly blunted after Tempol pretreatment. The analgesic actions of fentanyl (25 μg/kg, IV) were not affected by Tempol (100 mg/kg, IV). L-NACme did not modify any of the effects of fentanyl. We conclude that prior administration of Tempol attenuates the cardiorespiratory actions of fentanyl without affecting the analgesic effects of this potent opioid. As such, Tempol may not directly affect opioid-receptors that elicit the effects of fentanyl. Whether, the effects of Tempol are solely due to alterations in oxidative stress is in doubt since the powerful antioxidant, L-NACme, did not affect fentanyl-induced suppression of breathing.
Collapse
Affiliation(s)
- Santhosh Baby
- Galleon Pharmaceuticals, Inc., Horsham, PA, United States
| | - Ryan Gruber
- Galleon Pharmaceuticals, Inc., Horsham, PA, United States
| | - Joseph Discala
- Galleon Pharmaceuticals, Inc., Horsham, PA, United States
| | | | - Nijo Jose
- Department of Radiotherapy and Oncology, Kasturba Medical College, Manipal, India
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Michael Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States.,Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - James Seckler
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Stephen Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
10
|
Schwalfenberg GK. N-Acetylcysteine: A Review of Clinical Usefulness (an Old Drug with New Tricks). J Nutr Metab 2021; 2021:9949453. [PMID: 34221501 PMCID: PMC8211525 DOI: 10.1155/2021/9949453] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/26/2021] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE To review the clinical usefulness of N-acetylcysteine (NAC) as treatment or adjunctive therapy in a number of medical conditions. Use in Tylenol overdose, cystic fibrosis, and chronic obstructive lung disease has been well documented, but there is emerging evidence many other conditions would benefit from this safe, simple, and inexpensive intervention. Quality of Evidence. PubMed, several books, and conference proceedings were searched for articles on NAC and health conditions listed above reviewing supportive evidence. This study uses a traditional integrated review format, and clinically relevant information is assessed using the American Family Physician Evidence-Based Medicine Toolkit. A table summarizing the potential mechanisms of action for N-acetylcysteine in these conditions is presented. Main Message. N-acetylcysteine may be useful as an adjuvant in treating various medical conditions, especially chronic diseases. These conditions include polycystic ovary disease, male infertility, sleep apnea, acquired immune deficiency syndrome, influenza, parkinsonism, multiple sclerosis, peripheral neuropathy, stroke outcomes, diabetic neuropathy, Crohn's disease, ulcerative colitis, schizophrenia, bipolar illness, and obsessive compulsive disorder; it can also be useful as a chelator for heavy metals and nanoparticles. There are also a number of other conditions that may show benefit; however, the evidence is not as robust. CONCLUSION The use of N-acetylcysteine should be considered in a number of conditions as our population ages and levels of glutathione drop. Supplementation may contribute to reducing morbidity and mortality in some chronic conditions as outlined in the article.
Collapse
Affiliation(s)
- Gerry K. Schwalfenberg
- Department of Family Medicine, University of Alberta, No. 301, 9509-156 Street, Edmonton T5P 4J5, AB, Canada
| |
Collapse
|
11
|
Carinci M, Vezzani B, Patergnani S, Ludewig P, Lessmann K, Magnus T, Casetta I, Pugliatti M, Pinton P, Giorgi C. Different Roles of Mitochondria in Cell Death and Inflammation: Focusing on Mitochondrial Quality Control in Ischemic Stroke and Reperfusion. Biomedicines 2021; 9:biomedicines9020169. [PMID: 33572080 PMCID: PMC7914955 DOI: 10.3390/biomedicines9020169] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunctions are among the main hallmarks of several brain diseases, including ischemic stroke. An insufficient supply of oxygen and glucose in brain cells, primarily neurons, triggers a cascade of events in which mitochondria are the leading characters. Mitochondrial calcium overload, reactive oxygen species (ROS) overproduction, mitochondrial permeability transition pore (mPTP) opening, and damage-associated molecular pattern (DAMP) release place mitochondria in the center of an intricate series of chance interactions. Depending on the degree to which mitochondria are affected, they promote different pathways, ranging from inflammatory response pathways to cell death pathways. In this review, we will explore the principal mitochondrial molecular mechanisms compromised during ischemic and reperfusion injury, and we will delineate potential neuroprotective strategies targeting mitochondrial dysfunction and mitochondrial homeostasis.
Collapse
Affiliation(s)
- Marianna Carinci
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
| | - Bianca Vezzani
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
| | - Simone Patergnani
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
| | - Peter Ludewig
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany; (P.L.); (K.L.); (T.M.)
| | - Katrin Lessmann
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany; (P.L.); (K.L.); (T.M.)
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany; (P.L.); (K.L.); (T.M.)
| | - Ilaria Casetta
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (M.P.)
| | - Maura Pugliatti
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (M.P.)
| | - Paolo Pinton
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
- Correspondence:
| |
Collapse
|
12
|
Uemura T, Suzuki T, Ko K, Nakamura M, Dohmae N, Sakamoto A, Terui Y, Toida T, Kashiwagi K, Igarashi K. Structural change and degradation of cytoskeleton due to the acrolein conjugation with vimentin and actin during brain infarction. Cytoskeleton (Hoboken) 2020; 77:414-421. [PMID: 33070462 DOI: 10.1002/cm.21638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/22/2022]
Abstract
We have found recently that dendritic spine extension is inhibited through acrolein conjugation with α- and β-tubulin proteins during brain infarction. In this current study, we looked for other acrolein-conjugated proteins in the 100,000g precipitate fraction, to clarify how cytoskeleton structure is modified by acrolein. Acrolein-conjugated proteins were sought from acrolein-treated mouse FM3A and Neuro2a cells and from tissues isolated from mouse brain infarction. It was found that vimentin was conjugated with acrolein, and the conjugated amino acid residue was Cys328, which is the only Cys residue in vimentin. It was also found that Cys207, 257, 285, and Lys118 in actin, another cytoskeleton protein, were conjugated with acrolein. The structure and localization of vimentin and actin filaments were changed greatly in infarct brain in photochemically induced thrombosis model mice and in acrolein-treated Neuro2a cells. In addition, degradation of cytoskeleton proteins was accelerated in the order vimentin > tubulin > actin in mouse brain infarction. These findings indicate that a dysfunction of the cytoskeleton by acrolein is strongly involved in the tissue damage during brain infarction, together with the apoptosis caused by glyceraldehyde-3-phosphate dehydrogenase and protein degradation by matrix metalloproteinase-9.
Collapse
Affiliation(s)
- Takeshi Uemura
- Amine Pharma Research Institute, Innovation Plaza at Chiba University, Chiba, Chiba, Japan.,Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan
| | - Takehiro Suzuki
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Kenta Ko
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan
| | - Mizuho Nakamura
- Amine Pharma Research Institute, Innovation Plaza at Chiba University, Chiba, Chiba, Japan
| | - Naoshi Dohmae
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Akihiko Sakamoto
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba, Japan
| | - Yusuke Terui
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba, Japan
| | - Toshihiko Toida
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan
| | - Keiko Kashiwagi
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba, Japan
| | - Kazuei Igarashi
- Amine Pharma Research Institute, Innovation Plaza at Chiba University, Chiba, Chiba, Japan.,Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan
| |
Collapse
|
13
|
Chen L, Zhao H, Shen J, Ji X. Association Between Ghrelin Gene Polymorphism and Cerebral Infarction. Med Sci Monit 2020; 26:e924539. [PMID: 32667288 PMCID: PMC7382299 DOI: 10.12659/msm.924539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The aim of this study was to explore the associations of ghrelin gene polymorphisms at rs26312, rs26802 and rs27647 with cerebral infarction. Material/Methods A total of 200 cerebral infarction patients in our hospital were enrolled as the disease group, while 200 healthy people were enrolled as the control group. Peripheral venous blood was collected from both groups, and the ghrelin gene polymorphisms at rs26312, rs26802, and rs27647 in nucleated cells were detected through sequencing. Results The genotype distribution at ghrelin gene loci rs26802 and rs27647 in the disease group was significantly different from that in the control group. The distribution of recessive model at ghrelin gene locus rs26802 in the disease group was different from that in the control group, in which the TG+GG frequency was evidently higher in the disease group. The AA genotype at ghrelin gene locus rs26312 was remarkably associated with the ghrelin gene expression level, and the expression level of ghrelin gene in the disease group was remarkably lower than that in the control group. The genotype at ghrelin gene locus rs26312 was associated with activated partial thromboplastin time (APTT), and APTT was significantly shorter in patients with GG genotype. The genotype at ghrelin gene locus rs26802 was associated with D-dimer, and the D-dimer level was significantly lower in patients with TG genotype. The genotype at ghrelin gene locus rs27647 was associated with prothrombin time (PT), and PT was obviously shorter in patients with TT genotype. Conclusions The ghrelin gene polymorphisms are remarkably associated with the occurrence of cerebral infarction.
Collapse
Affiliation(s)
- Li Chen
- Department of Neurology, The Second Affiliated Hospital of Yangtze University and Jingzhou Central Hospital, Jingzhou, Hubei, China (mainland)
| | - Hua Zhao
- Department of Neurology, The Second Affiliated Hospital of Yangtze University and Jingzhou Central Hospital, Jingzhou, Hubei, China (mainland)
| | - Jing Shen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Yangtze University and Jingzhou Central Hospital, Jingzhou, Hubei, China (mainland)
| | - Xiaoyu Ji
- Department of Neurology, The Affiliated Lianyungang Oriental Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China (mainland)
| |
Collapse
|
14
|
Alquisiras-Burgos I, Ortiz-Plata A, Franco-Pérez J, Millán A, Aguilera P. Resveratrol reduces cerebral edema through inhibition of de novo SUR1 expression induced after focal ischemia. Exp Neurol 2020; 330:113353. [PMID: 32380020 DOI: 10.1016/j.expneurol.2020.113353] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/26/2020] [Accepted: 05/01/2020] [Indexed: 12/21/2022]
Abstract
Cerebral edema is a clinical problem that frequently follows ischemic infarcts. Sulfonylurea receptor 1 (SUR1) is an inducible protein that can form a heteromultimeric complex with aquaporin 4 (AQP4) that mediate the ion/water transport involved in brain tissue swelling. Transcription of the Abcc8 gene coding for SUR1 depends on the activity of transcriptional factor SP1, which is modulated by the cellular redox environment. Since oxidative stress is implicated in the induced neuronal damage in ischemia and edema formation, the present study aimed to evaluate if the antioxidant resveratrol (RSV) prevents the damage by reducing the de novo expression of SUR1 in the ischemic brain. Male Wistar rats were subjected to 2 h of middle cerebral artery occlusion followed by different times of reperfusion. RSV (1.9 mg/kg; i.v.) was administered at the onset of reperfusion. Brain damage and edema formation were recognized by neurological evaluation, time of survival, TTC (2,3,5-Triphenyltetrazolium chloride) staining, Evans blue extravasation, and water content. RSV mechanism of action was studied by SP1 binding activity measured through the Electrophoretic Mobility Shift Assay, and Abcc8 and Aqp4 gene expression evaluated by qPCR, immunofluorescence, and Western blot. We found that RSV reduced the infarct area and cerebral edema, prevented blood-brain barrier damage, improved neurological performance, and increased survival. Additionally, our findings suggest that the antioxidant activity of RSV targeted SP transcription factors and inhibited SUR1 and AQP4 expression. Thus, RSV by decreasing SUR1 expression could contribute to reducing edema formation, constituting a therapeutic alternative for edema reduction in stroke.
Collapse
Affiliation(s)
- Iván Alquisiras-Burgos
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Insurgentes Sur #3877, CDMX 14269, México
| | - Alma Ortiz-Plata
- Laboratorio de Neuropatología Experimental, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Insurgentes Sur #3877, CDMX 14269, México.
| | - Javier Franco-Pérez
- Laboratorio de Formación Reticular, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Insurgentes Sur #3877, CDMX 14269, México.
| | - Alejandro Millán
- Posgrado en Ciencias Biomédicas, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Lázaro Cárdenas s/n Ciudad Universitaria, Chilpancingo, Guerrero, 39070, México
| | - Penélope Aguilera
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Insurgentes Sur #3877, CDMX 14269, México.
| |
Collapse
|
15
|
Nasir M, Trujillo D, Levine J, Dwyer JB, Rupp ZW, Bloch MH. Glutamate Systems in DSM-5 Anxiety Disorders: Their Role and a Review of Glutamate and GABA Psychopharmacology. Front Psychiatry 2020; 11:548505. [PMID: 33329087 PMCID: PMC7710541 DOI: 10.3389/fpsyt.2020.548505] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Serotonin reuptake inhibitors and benzodiazepines are evidence-based pharmacological treatments for Anxiety Disorders targeting serotonin and GABAergic systems, respectively. Although clearly effective, these medications fail to improve anxiety symptoms in a significant proportion of patients. New insights into the glutamate system have directed attention toward drugs that modulate glutamate as potential alternative treatments for anxiety disorders. Here we summarize the current understanding of the potential role of glutamate neurotransmission in anxiety disorders and highlight specific glutamate receptors that are potential targets for novel anxiety disorder treatments. We also review clinical trials of medications targeting the glutamate system in DSM-5 anxiety disorders. Understanding the role of the glutamate system in the pathophysiology of anxiety disorder may aid in developing novel pharmacological agents that are effective in treating anxiety disorders.
Collapse
Affiliation(s)
- Madeeha Nasir
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States
| | - Daniel Trujillo
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States
| | - Jessica Levine
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States
| | - Jennifer B Dwyer
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States.,Yale Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States
| | - Zachary W Rupp
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States.,Frank H. Netter School of Medicine, Quinnipiac University, North Haven, CT, United States
| | - Michael H Bloch
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States.,Yale Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
16
|
Uemura T, Tsaprailis G, Gerner EW. GSTΠ stimulates caveolin-1-regulated polyamine uptake via actin remodeling. Oncotarget 2019; 10:5713-5723. [PMID: 31620246 PMCID: PMC6779281 DOI: 10.18632/oncotarget.27192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 08/16/2019] [Indexed: 12/31/2022] Open
Abstract
Polyamines spermidine and spermine, and their diamine precursor putrescine, are essential for normal cellular functions in both pro- and eukaryotes. Cellular polyamine levels are regulated by biosynthesis, degradation and transport. Transport of dietary and luminal bacterial polyamines in gastrointestinal (GI) tissues plays a significant role in tissue polyamine homeostasis. We have reported that caveolin-1 play an inhibitory role in polyamine uptake in GI tissues. We investigated the mechanism of caveolin-1-regulated polyamine transport. We found that glutathione S-transferase Π(GSTΠ) was secreted from caveolin-1 knockdown cells and stimulated spermidine transport in human colon-derived HCT116 cells. GSTΠ secreted in the medium increased S-glutathionylated protein level in the plasma membrane fraction. Proteomic analysis revealed that actin was S-glutathionylated by GSTΠ. Immunofluorescence microscopy demonstrated that actin filaments around plasma membrane were S-glutathionylated in caveolin-1 knockdown cells. Inhibition of actin remodeling by jasplakinolide caused a decrease in polyamine uptake activity. These data support a model in which caveolin-1 negatively regulates polyamine uptake by inhibiting GSTΠ secretion, which stimulates actin remodeling and endocytosis.
Collapse
Affiliation(s)
- Takeshi Uemura
- Amine Pharma Research Institute, Chuo-ku, Chiba 260-0856, Japan
| | - George Tsaprailis
- Center for Toxicology, College of Pharmacy, Tucson, Arizona 85721, USA
| | - Eugene W Gerner
- Cancer Prevention Pharmaceuticals, Tucson, Arizona 85718, USA
| |
Collapse
|
17
|
Inhibition of dendritic spine extension through acrolein conjugation with α-, β-tubulin proteins. Int J Biochem Cell Biol 2019; 113:58-66. [PMID: 31150838 DOI: 10.1016/j.biocel.2019.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 11/23/2022]
Abstract
We have recently found that conjugation of acrolein with a 50 kDa protein(s) is strongly associated with tissue damage during brain infarction. In the current study, the identity and function of the 50 kDa protein(s) conjugated with acrolein during brain infarction were investigated. The 50 kDa protein(s) conjugated with acrolein were identified as α- and β-tubulins. Ten cysteine residues in α- and β-tubulins (Cys25, 295, 347 and 376 in α-tubulin and Cys12, 129, 211, 239, 303 and 354 in β-tubulin) were mainly conjugated with acrolein. Since two cysteine residues of α-tubulin (Cys347 and 376) and four cysteine residues of β-tubulin (Cys12, 129, 239 and 354) were located at the interaction site of α- and β-tubulins, association between α- and β-tubulins to form microtubules was strongly inhibited by conjugation with acrolein. Accordingly, dendritic spine extension consisting of microtubules was greatly inhibited in acrolein-treated Neuro2a cells. The results strongly suggest that acrolein contributes to the functional losses in brain signaling through its conjugation with α- and β-tubulins.
Collapse
|
18
|
Igarashi K, Uemura T, Kashiwagi K. Assessing acrolein for determination of the severity of brain stroke, dementia, renal failure, and Sjögren's syndrome. Amino Acids 2019; 52:119-127. [PMID: 30863888 DOI: 10.1007/s00726-019-02700-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/11/2019] [Indexed: 11/26/2022]
Abstract
It was found recently that acrolein (CH2=CH-CHO), mainly produced from spermine, is more toxic than ROS (reactive oxygen species, O2-·, H2O2, and ·OH). In this review, we describe how the seriousness of brain infarction, dementia, renal failure, and Sjӧgren's syndrome is correlated with acrolein. In brain infarction and dementia, it was possible to identify incipient patients with high sensitivity and specificity by measuring protein-conjugated acrolein (PC-Acro) in plasma together with IL-6 and CRP in brain infarction and Aβ40/42 in dementia. The level of PC-Acro in plasma and saliva correlated with the seriousness of renal failure and Sjӧgren's syndrome, respectively. Thus, development of acrolein scavenger medicines containing SH-group such as N-acetylcysteine derivatives is important to maintain QOL (quality of life) of the elderly.
Collapse
Affiliation(s)
- Kazuei Igarashi
- Amine Pharma Research Institute, Innovation Plaza at Chiba University, 1-8-15 Inohana, Chuo-ku, Chiba, Chiba, 260-0856, Japan.
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Chiba, 260-8675, Japan.
| | - Takeshi Uemura
- Amine Pharma Research Institute, Innovation Plaza at Chiba University, 1-8-15 Inohana, Chuo-ku, Chiba, Chiba, 260-0856, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Chiba, 260-8675, Japan
| | - Keiko Kashiwagi
- Faculty of Pharmacy, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba, 288-0025, Japan
| |
Collapse
|
19
|
The functional role of polyamines in eukaryotic cells. Int J Biochem Cell Biol 2018; 107:104-115. [PMID: 30578954 DOI: 10.1016/j.biocel.2018.12.012] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/15/2018] [Accepted: 12/19/2018] [Indexed: 11/22/2022]
Abstract
Polyamines, consisting of putrescine, spermidine and spermine are essential for normal cell growth and viability in eukaryotic cells. Since polyamines are cations, they interact with DNA, ATP, phospholipids, specific kinds of proteins, and especially with RNA. Consequently, the functions of these acidic compounds and some proteins are modified by polyamines. In this review, the functional modifications of these molecules by polyamines are presented. Structural change of specific mRNAs by polyamines causes the stimulation of the synthesis of several different proteins, which are important for cell growth and viability. eIF5 A, the only known protein containing a spermidine derivative, i.e. hypusine, also functions at the level of translation. Experimental results thus far obtained strongly suggest that the most important function of polyamines is at the level of translation.
Collapse
|
20
|
Quintanilla ME, Morales P, Ezquer F, Ezquer M, Herrera-Marschitz M, Israel Y. Commonality of Ethanol and Nicotine Reinforcement and Relapse in Wistar-Derived UChB Rats: Inhibition by N
-Acetylcysteine. Alcohol Clin Exp Res 2018; 42:1988-1999. [DOI: 10.1111/acer.13842] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/15/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Maria Elena Quintanilla
- Molecular and Clinical Pharmacology Program; Institute of Biomedical Sciences; University of Chile; Santiago Chile
| | - Paola Morales
- Molecular and Clinical Pharmacology Program; Institute of Biomedical Sciences; University of Chile; Santiago Chile
- Neuroscience Department; Faculty of Medicine; University of Chile; Santiago Chile
| | - Fernando Ezquer
- Facultad de Medicina Clínica; Centro de Medicina Regenerativa; Alemana-Universidad del Desarrollo; Santiago Chile
- Facultad de Medicina; Centro de Medicina Regenerativa; Clinica Alemana-Universidad del Desarrollo; Santiago Chile
| | - Marcelo Ezquer
- Facultad de Medicina Clínica; Centro de Medicina Regenerativa; Alemana-Universidad del Desarrollo; Santiago Chile
- Facultad de Medicina; Centro de Medicina Regenerativa; Clinica Alemana-Universidad del Desarrollo; Santiago Chile
| | - Mario Herrera-Marschitz
- Molecular and Clinical Pharmacology Program; Institute of Biomedical Sciences; University of Chile; Santiago Chile
| | - Yedy Israel
- Molecular and Clinical Pharmacology Program; Institute of Biomedical Sciences; University of Chile; Santiago Chile
| |
Collapse
|